JPS60142249A - Surface echo gate method in ultrasonic flaw detection - Google Patents

Surface echo gate method in ultrasonic flaw detection

Info

Publication number
JPS60142249A
JPS60142249A JP58249106A JP24910683A JPS60142249A JP S60142249 A JPS60142249 A JP S60142249A JP 58249106 A JP58249106 A JP 58249106A JP 24910683 A JP24910683 A JP 24910683A JP S60142249 A JPS60142249 A JP S60142249A
Authority
JP
Japan
Prior art keywords
probe
flaw detection
echo
pulse
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58249106A
Other languages
Japanese (ja)
Inventor
Akio Suzuki
紀生 鈴木
Hiroshi Kajikawa
梶川 弘
Tadashi Nishihara
西原 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58249106A priority Critical patent/JPS60142249A/en
Publication of JPS60142249A publication Critical patent/JPS60142249A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To generate at a correct time a flaw detecting gate which is not influenced by a curvature and unevenness of the surface of a material to be inspected, by forming a flaw detecting gate of one of two probes for constituting one pair, at the time when a detecting surface echo of the other probe has exceeded a prescribed value. CONSTITUTION:A defective echo in flaw detecting gates 14G-17G is detected by transmitting ultrasonic beams 14a-17a to a material to be inspected 1 from probes 14-17 for constituting a pair of two pieces, placed in an axis symmetry, rotating a rotary mechanism of a probe device by a local water dipping method. At a flaw detection start point of a channel (CH) A, an ultrasonic pulse is transmitted from the probe 14 by generation of a trigger pulse, and a part of said pulse is reflected by the surface of a material to be inspected 1 and received by the probe 16. A part of other pulse invades the inside of the material to be inspected 1, reflected by a defect and received by the probe 14. When a receiving time of the probe 16 is set as a reference time of a start point of the flaw detecting gate 14G of the CH A, the flaw detecting gate 14G is opened without being influenced by a curvature of the surface of the material. Other CHs B-C are also the same.

Description

【発明の詳細な説明】 本発明は、超音波探傷における表面エコーケート法に関
し、被検相表面の曲率や凹凸に影響されずに探傷ケート
を正しい時刻に生成できるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface echocat method in ultrasonic flaw detection, and is capable of generating a flaw detection cat at the correct time without being affected by the curvature or unevenness of the surface of a target phase.

垂直法で超音波探傷する場合、第1図の如く被検材lに
対して垂直に探触子2を配置しておき、ごの探触子2か
ら接触媒質層3を介して被検+旧に超音波ビームを送信
すると、第2図に小4ように送信波Tに続いて表面エコ
ーS、欠陥工:I −F、底面エコーBか順次j−1ら
れ、探傷ケートG内に検出される欠陥エコーf・でもっ
て欠陥4を判断する。
When performing ultrasonic flaw detection using the vertical method, the probe 2 is placed perpendicularly to the material to be inspected as shown in Fig. When an ultrasonic beam is transmitted in the past, as shown in Figure 2, the transmitted wave T is followed by a surface echo S, a defective part: I - F, and a bottom echo B, j-1, which are detected in the flaw detection cage G. Defect 4 is determined based on the defect echo f.

従って、探傷ゲートGのゲート幅Guは被検44の厚さ
、或いは被検材の材料力学的に探傷が必要とされる深さ
に相当する時間幅であり、探傷ケ−IGの設定は、探傷
ト、極めて小便−(ある。ごの探傷ケートGの開始点は
、垂直法では1分に人心4表面エコーSが得られるため
、これを基l)hにして規定することかできる。しかし
、斜角探傷法では表面エコーSは第3図の如く向う側に
11に逸するために殆ど1%られす、従っ′(、第4図
からも明らかなように表面エコーSで探傷ゲートGを設
定するごとは回能である。また斜角法においては、表面
直下から探傷する必要のある場合か多く、探傷ゲートG
の開始点を表面に正確に一致さ−けることが必要になる
。この場合、被検材1の表面が非常に沿らかな平面であ
れば、探触子と被検月1の距離を一定に保つごとにより
、探触子2から送信された超音波が利表面に届くまでの
時間は一定であるので、超音波を送信して、ある一定の
時間を経た後に探傷ケートGを開くようにできる。これ
は固定ゲート方式と呼ばれ、既に市販の探傷器に一般に
取付りられ′ζいる。しかし、被検材1の表面に曲率や
凹凸がある場合には、探触子2と材料表面の距l1ll
lを一定に保つことが非常に困ytになる。例えば、舶
用プ1:1ペラの超音波探傷におい°ζは、被検材1の
表面が曲率を持っていることから、斜角探傷法の適用の
際に、前述のような問題があった。
Therefore, the gate width Gu of the flaw detection gate G is a time width corresponding to the thickness of the test object 44 or the depth at which flaw detection is required due to the material mechanics of the test material, and the setting of the flaw detection gate IG is as follows. The starting point of the flaw detection case G can be defined based on this, since four surface echoes S of the human heart can be obtained in one minute using the vertical method. However, in the oblique flaw detection method, the surface echo S misses to the opposite side 11 as shown in Figure 3, so it is reduced by almost 1%. In addition, in the angle method, it is often necessary to detect flaws from just below the surface, and the flaw detection gate G
It is necessary to match the starting point exactly to the surface. In this case, if the surface of the material to be inspected 1 is a very smooth plane, the ultrasonic waves transmitted from the probe 2 can be Since the time it takes for the ultrasonic waves to reach is constant, it is possible to transmit the ultrasonic waves and open the flaw detection cage G after a certain period of time has elapsed. This is called the fixed gate method, and is already commonly installed in commercially available flaw detectors. However, if the surface of the material 1 to be tested has curvature or unevenness, the distance between the probe 2 and the material surface is
It becomes very difficult to keep l constant. For example, in ultrasonic flaw detection of a 1:1 marine propeller, the surface of the test material 1 has a curvature, so when applying the angle angle flaw detection method, there was a problem as mentioned above. .

本発明は、このよ・)なijL来の問題点を解消するこ
とを目的として提供されたものであって、その特徴とす
る処は、2(固−組の探触子を局部水lす用水位内にほ
ぼ軸対称に配置しておき、一方の探触子かパルスエコー
法により被検材の内部を探傷する状!ルにある時、該一
方の探触子がら送信された超凸波ビートの表面エコーを
他方の探触子で検出し、その表面エコーがあるしきい値
を越えた時刻を)ん準にして、探傷状態にある前記一方
の探触子のための探傷ケ−1−を生成する点にある。
The present invention was provided for the purpose of solving the problems of the previous ijL, and its features are as follows: 2. When the probe is placed almost axially symmetrically within the water level, and one probe is in a position where the inside of the material to be inspected is detected using the pulse echo method, the ultra-convex signal transmitted by that one probe is detected. The surface echo of the wave beat is detected by the other probe, and the time when the surface echo exceeds a certain threshold value is used as a reference point to detect the flaw detection case for the one probe in the flaw detection state. It is at the point where it generates 1-.

以下、図示の実施例について本発明を詳述Jると、第5
図及び第6図は舶用プ【」ペラの超音波探傷に使用する
4探触子型の局部水浸法による探触子回転装置を示し、
5はX軸及びY軸方向に走査可能に設けられた支持板で
、この支持板5の下側面に、被検材2上を移動自在な水
槽6が設りられ、この水槽6内に探触子回転機構7が配
置され、かつその内部に水8が供給されている。探触子
回転機構7は軸受9.10を介して支持板5」二の軸受
ケース11に回転自在に保持された筒状の回転軸12と
、この回転軸12の下端に装着された探触子ボルダ−1
3とを有し、その探触子ホルダー13には周方向に90
°のピッチで4個の斜角探触子14〜17が組込まれて
いる。探触子14〜17は被検材1の表面から20關の
範囲を31111のピッチで探傷できるように配置した
が、これに限定されるものではない。各探触子14〜1
7は例えば屈折角θが45°、超音波ヒーム14a−1
1aのビーム径が9.2++IIであって、第7図に示
すようにその各超畠波ビーA14a〜17aが深さ2.
5.7.5.12.5、I7,5龍の位置で回転中心と
交差すイ、ように、人々回転中心から僅かずつ距離を変
えて配置口:されている。従って、探触子14〜I7を
]回転させた1、シ、人々の探イ易ケート14G〜17
G内のエコーを受信すれば、その探傷領域は第7図に示
j如く算1+を玉状(斜線で示3部分)となり、この範
囲にある欠陥のエコーを捉えることができイ、。l肛V
探触イ回転機構7を駆動するモータ、19は探触子回転
機構7の回転角を検出するロータリ上ンコーダ゛Cあっ
て、これらは支持板5に装着され“(J’jす、・\ル
ト伝動機構20.21を介して回転軸12に連動速結さ
れている。22は探触子回転機構7の各探触−7−14
〜17に対して超音波信号を送受するためのスリノゾリ
ングである。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
Figures 6 and 6 show a four-probe type probe rotation device using the local water immersion method used for ultrasonic flaw detection of marine propellers.
Reference numeral 5 denotes a support plate that is provided so as to be scannable in the X-axis and Y-axis directions.A water tank 6 that is movable over the test material 2 is provided on the lower side of the support plate 5. A tentacle rotation mechanism 7 is arranged, and water 8 is supplied inside the mechanism. The probe rotation mechanism 7 includes a cylindrical rotating shaft 12 rotatably held in a bearing case 11 of a support plate 5'' via bearings 9 and 10, and a probe mounted on the lower end of this rotating shaft 12. Child boulder-1
3, and the probe holder 13 has 90 holes in the circumferential direction.
Four oblique angle probes 14 to 17 are installed at a pitch of .degree. Although the probes 14 to 17 are arranged so as to be able to detect flaws in a range of 20 degrees from the surface of the test material 1 at a pitch of 31111, the present invention is not limited thereto. Each probe 14-1
For example, 7 is an ultrasonic beam 14a-1 with a refraction angle θ of 45°.
The beam diameter of 1a is 9.2++II, and as shown in FIG. 7, each of the super wave bees A14a to 17a has a depth of 2.
5.7.5.12.5、I7、5 Dragon's position intersects with the center of rotation, so that the distance from the center of rotation changes slightly. Therefore, when the probes 14 to I7 are rotated, the probes 14G to 17
If an echo within G is received, the flaw detection area becomes a bead-shaped area (shaded area 3) as shown in FIG. 7, and echoes of defects within this range can be captured. Anal V
A motor for driving the probe rotation mechanism 7 and a rotary encoder 19 for detecting the rotation angle of the probe rotation mechanism 7 are mounted on the support plate 5. It is connected to the rotary shaft 12 via a rotary transmission mechanism 20.21.22 indicates each probe-7-14 of the probe rotation mechanism 7.
This is a Surinozo ring for transmitting and receiving ultrasonic signals to and from 17.

上記構成において、探傷時には、探触子回転機構7を回
φ)、さUながら各探触子14〜17より被検材lに対
し7て超音波ビーノ、14a〜17aを送信し、探(J
’HIす゛−ト14G〜17らにおける欠陥エコーを検
出して欠陥を111断する。この場合、第7図に示すよ
う6、二4つのチャンネルのl朶f鵡り一−11,1G
〜17Gの開始点は被検材lの表面、即Iつ超音波パル
スのに−ム中心が被検相lの表面にj゛11達する時刻
を基((I′−にして、これに一定の遅延時間ΔFを加
算して定義されている。そして、これらの探傷ケ−1・
146〜17Gに従って各探触子14〜17でl1ll
′1番に深い1向・\と探傷していくのである。
In the above configuration, during flaw detection, the probe rotation mechanism 7 is rotated φ), and ultrasonic beams 14a to 17a are transmitted from each probe 14 to 17 to the material to be inspected l while the probe rotation mechanism 7 is rotated (φ). J
Detecting defective echoes in the HI streets 14G to 17, etc., and cutting off the defect 111. In this case, as shown in FIG.
The starting point of ~17G is based on the time when the surface of the specimen l, that is, the center of the ultrasonic pulse I, reaches the surface of the specimen phase l at j゛11 ((I'-), and It is defined by adding the delay time ΔF of flaw detection case 1.
l1ll for each probe 14-17 according to 146-17G
'The deepest flaw is detected.

しかし、被検材lがプし1ペフの場名、その表面はなだ
らかな曲・斜を持ゲCいることから、探触子14〜17
とプ1コベラ表面のML! 1jJが場所により変チj
」するために、j]Y床の固定チー1力式゛ζは、イ来
操触子14て検出されろ・\き欠陥エコーが、探傷ケー
ト14Gから外ボ1.“(し7ま−7て検出(さなかっ
〕こり、j、Lって探触子15て検出され−C1欠陥の
大きさやi″j:さの推定の精度かjli化−4るとい
うようt事態が生じる問題がある。
However, since the material to be tested has a surface with a gentle curve and slope, probes 14 to 17
ML on the surface of Pu1 Covera! 1jJ varies depending on the location
In order to do this, the fixed chi 1 force type ゛ζ on the Y floor is detected by the operation probe 14. The defect echo is transmitted from the flaw detection cage 14G to the outer hole 1. ``(If not detected, j, L is the size of the defect detected by the probe 15, and the accuracy of estimating the size of the C1 defect. There is a problem in which a t-situation occurs.

そごで、探触子14〜17の後段に第8図に示すような
伯号処理系を設け、第!(図に示Jようム手順で探傷ケ
ートを定義する。第8図において、23〜26はパルサ
、27〜30はレンーハ、31〜3<cgアナリグピー
クホルダを含む信号処理部1.35〜38は探傷リ−−
(発生回路“乙ごれらは探触子14〜17に対応して4
−J−ヤン;j(十分だ&J設りられている。39はタ
イミング−Jシト1−!−ラで、探傷インタバル、トリ
ガパルス等の各タイミングを発生ずるものである。
Therefore, a bar processing system as shown in FIG. 8 was installed after the probes 14 to 17. (The flaw detection cage is defined according to the procedure shown in the figure. In Fig. 8, 23 to 26 are pulsers, 27 to 30 are lenghers, and signal processing units 1, 35 to 31, including 31 to 3<cg analysis peak holders, 38 is a flaw detection lead.
(Generation circuit “Otogorera 4 corresponding to probes 14 to 17
-J-yan;j (sufficient &J is provided. 39 is timing -J site 1-!-ra, which generates various timings such as flaw detection interval and trigger pulse.

第9図は4チヤンネル探傷のタイツ・チャートを示す。Figure 9 shows a tights chart for four channel flaw detection.

7IO(;l、10ヒツトのロータリエンコーダ19の
出力パルスで、これの2個分の時間を順番に4つのナヤ
ン不ルに割り当て、それらを探傷インクハルへ〜!〕と
■・]′び1.II〜44で示ず。探傷り一一ト発生回
路35〜38の動作Q月η容は八−c、n−・+1.C
−−−A、l) −・11にりいて同様であるので、以
下では、A−Cの組に−)いて詳細を説明Jる。
7IO (;l, With the output pulse of the rotary encoder 19 of 10 hits, the time equivalent to 2 of this is allocated to the four nayan faults in order, and they are sent to the flaw detection ink hull~!] and ■・]' and 1. Not shown in II to 44.The operating Q monthly η capacity of the flaw detection fault generation circuits 35 to 38 is 8-c, n-.+1.C.
---A, l)--・11 are the same, so below, details will be explained based on the group A-C.

探傷インタハ月穐41の開始点において、1へリガパル
ス^45が発生され、これを受け“(探触子14より超
音波パルスか送信される。この超音波パルスの−181
;は被検材1表面で反射され、回Φム中心頓に対し7て
探触(’−14とほぼ軸対称に配置されている探iQJ
:j’16に−I分な16幅を持った表面−Im ml
−として受信さね、る。また、超音波パルスの他の一部
は被検材lの内C(1(に透過し、もし欠陥があれば反
射され、欠陥エコ1−Fとして)朶イ易4入5島にある
)茅触偵1・1により受信される(探傷(A ”jへ4
6)。1茅1壮子I6で表面ニ]−5を受信する時刻は
、必す探耐!(1/lて欠陥エコーFを受信する時刻よ
りも前でJJリ (探陽偵号C47) 、また、探触子
I4から超音波パルスか送信されて探触子16で表面コ
ーコーSとして受信されるまでの時間は、探触子と被検
材の表面までの距離に依存し、ていることから、この表
面1つ−Sの受信時刻をチャンネルへの探傷り御一同4
Gの開りζ1点の基準時刻とU2て利用すれば、祠表面
の曲イ1に影響されることな(、冶切な時刻から探傷ゲ
ート14らを開くことができる。なお第9し1中、4)
3は表面エコーの受信時刻から探傷ケ−1・を開くまで
の肋間を微XBI するための固定遅延ゲートてあり、
−ノーヤンネル^につい−(は、ははO8[!c、、チ
ャノ不ルO、C,Oの坤〕により長い遅延■、冒111
を設定し7(、第7図に示すような探傷り−1・が設定
ζきイl j−うにし°(いる。49は探傷ケート’(
’ JJす、ごのケート内に検出された信号に対し、ピ
ークボー月N等のf5号処理を行っている。
At the starting point of the flaw detection interface 41, a pulse 1 is generated, and in response to this, an ultrasonic pulse is transmitted from the probe 14. -181 of this ultrasonic pulse
; is reflected by the surface of the test material 1, and the probe iQJ, which is placed almost axially symmetrically with the probe ('-14), is
: j'16 -I surface with 16 width -Im ml
- It is received as ru. In addition, the other part of the ultrasonic pulse is transmitted to C (1 (and if there is a defect, it is reflected as a defect echo 1-F) of the test material 1). Received by Kaya Tensei 1.1 (Detection (A ”j to 4
6). The time when you receive the surface d]-5 at 1 mo 1 Zhuangzi I6 is a must-see! (JJ Re (Detector Detective C47) before the time when the defective echo F is received at 1/l) Also, an ultrasonic pulse is transmitted from the probe I4 and is received by the probe 16 as a surface echo S. The time it takes for the flaw detection to be detected depends on the distance between the probe and the surface of the material to be tested.
By using the reference time of the opening ζ1 point of G and U2, it is possible to open the flaw detection gate 14 from an appropriate time without being affected by the curve 1 of the shrine surface. ,4)
3 has a fixed delay gate to perform a minute XBI of the intercostal space from the time when the surface echo is received until the opening of the flaw detection case 1.
-About No Yanel^-(Ha, haha O8 [!c,, Chano Furu O, C, O's gon] caused a long delay■, blasphemy 111
7 (, the flaw detection hole -1 as shown in Fig. 7 is set
'JJ is performing f5 processing such as peak baud month N on the signal detected in the cell phone.

なお、チャンイルへだけについ゛(は、次のような上人
がなされ(いる。即ら、第10図に示すように、表面直
Y;を十分な幅(φ9.2 mm)の超首波ビーノ、で
探傷しようと3−ると、チャンネルへの探傷ゲートの開
始点は、探触子14から送信された超音波パルスか被検
材lの表面に到達する時刻よりもネi−): (0,4
2μS)だり♀くする必要がある。このために第1O図
に示゛4ように、探触子16と被検材1表面の距MII
 j! Cを探触子14のそれρ八よりも僅か(0,7
+n+n) たり短くしている。
It should be noted that the following method was used only for the channel. Namely, as shown in Fig. When trying to perform flaw detection with the Vino, the starting point of the flaw detection gate to the channel is longer than the time at which the ultrasonic pulse transmitted from the probe 14 reaches the surface of the test material l): (0,4
2μS) or ♀. For this purpose, as shown in FIG. 1O, the distance MII between the probe 16 and the surface of the specimen 1 is
j! C is slightly smaller than that of the probe 14 (0,7
+n+n) or shorter.

例えは、この実施例ては有すjヒーム(イかψ9.2m
m ’(、屈111角が45°゛(あるj トカラ、β
へ−7IC’ :0.7 m++ にし−こおりは、第
、11′;!14こ示−3’ J: ’+な探イ↓らゲ
ートを生成するごとか一部きる。
For example, this example has a
m'(, 111 angle is 45°(j Tokara, β
To 7 IC': 0.7 m++ Nishi-Kori is the 11th;! 14 Show - 3' J: '+ Search I ↓ It seems that some gates are generated.

曲・1シのある材料を探傷した実験例として 固定り°
−トカ式の場合を第11図に、本発明による表面ニー1
−グー1−法の場合を第1Z図に人々示し、これら4J
探錫ゲーI・内に現れた工:J−のピーク値を探耐;−
4のL枢に角に対し7てプロンi L ]に探傷パター
ンとし2ノこもの゛(ある。被検相1は第13図に示す
ように表面にりIして同じ19゛1き、IQさお、j、
び中心16,5さの横穴状欠陥1・1.1・2を持って
おり、探傷場所はその1)、0の2点である。固定ゲー
ト力式の場合にばP点でケートの開始点を(li+I節
し7、P点の表面トにある横穴状欠陥をチャンネル八で
検出できるようにし、た。しかし、0点では、14表面
の曲率のl:めt、二探触子lと材料表面の距離が遠く
なり、第11図に示すように欠陥が1=分な振幅で検出
−ζきなくなっている。
As an experimental example of flaw detection on a material with curves and 1 points, fixed °
- The case of the Toka type is shown in FIG. 11, and the surface knee 1 according to the present invention is shown in FIG.
- Gu 1 - The case of the method is shown in Figure 1Z, and these 4J
Techniques that appeared in Exploration Game I: Exploring the peak value of J-;-
There are two flaw detection patterns on the prong i L at the L axis of 4 at 7 points. IQ Sao, j,
It has horizontal hole-shaped defects 1, 1, 1, and 2 with a center of 16.5 and a diameter of 16.5, and the flaw detection locations are 1) and 0. In the case of the fixed gate force type, the starting point of the gate is set at point P (li + I node 7), and the horizontal hole-like defect on the surface of point P can be detected by channel 8. However, at point 0, 14 As the surface curvature l:met, the distance between the two probes l and the material surface becomes longer, and as shown in FIG. 11, defects can no longer be detected with an amplitude of 1=min.

一方、本発明では、探傷ゲートの開始点か表面エコーを
基fp、にして自動的に決められるため6ご、P点でも
〔1点でも、同し大きさで同し深さにA11’、J横穴
状欠陥P1.+72か同し振I陥で検出されている。
On the other hand, in the present invention, since the starting point of the flaw detection gate is automatically determined based on the surface echo fp, the starting point of the flaw detection gate is automatically determined based on the surface echo. J horizontal hole-like defect P1. +72 or the same swing I failure has been detected.

このことから、本発明の表面エコーり一−F法を採用す
ること6.二より、プ1」ペラの超畠波枠錫装置の欠陥
の大きさや73νさ等のパラメータをI[、、(r(+
に認識できろ、1、うになり、プ1.Jベラの品%J′
ifλ冗1に対する効果は大きいものがあるといえる。
From this, the surface echo Ri-F method of the present invention is adopted6. From 2, the parameters such as the size of the defect and the 73ν size of the ultra-fine frame tin device of P1'' are determined by I[, , (r(+
Recognize 1, urinari, pu1. J Bella's product %J'
It can be said that there is a large effect on the ifλ redundancy.

以ト実施例に詳述したように本発明によれは、2 +t
l、I−組の探触子を局部水浸用水槽内にほぼφ111
幻(宿こ配置し7ておき、一方の探F+J! ’rがパ
ルスエコー法(,1,l、り被検+Aの内部を探1M−
Jる状態にある■、1、品 力の探1什rから送信さ相
n二超音波ビームの表面エノーを他力の探触tで検出し
、その表面エコーかあるしきい値を越えた時刻を基準に
して、探傷状態にある前記−力の探触子のための探傷ゲ
ートを生成するので、被検材表面の曲率や凹凸に影響さ
れ4゛に探傷ケー1を生成でき、プしzペラ等のと面が
曲率を(,11った+A利の探湯用として極め′C有り
」である。
As detailed in the Examples below, according to the present invention, 2 +t
Place the probes of I, I-group in the water tank for local water immersion with a diameter of approximately φ111.
Illusion (place 7), one probe F + J!
1. The surface echo of the ultrasonic beam transmitted from the power probe 1 was detected by the external force probe t, and the surface echo exceeded a certain threshold. Since the flaw detection gate is generated for the above-mentioned force probe in the flaw detection state based on the time, the flaw detection gate 1 can be generated at 4° due to the influence of the curvature and unevenness of the surface of the test material. The surface of the Z-Peller has a curvature of (11+A), which is extremely high for hot water exploration.

【図面の簡単な説明】[Brief explanation of the drawing]

第11X目、1車直法を示す配置図、第2図は止面法の
ハス二〕−プを示すし1、第3図は斜角法を示す配置1
ン1、第4図はフ゛[角〆)、の^スlI−ブを示ず図
、第51ツIは本発明の一実施例を示す1JJi面図、
第6図は同号部の底面1閉、第゛を図LSI同深傷探傷
を示す図、第)■ツロJ同信冒処理系のブt1ツク図、
第9図は同タイムチャー1、第10図は同探触子の配置
図、第11図は固定グー1〜方式による探傷パターン(
(aLl: P点、bは0点〕を示す図、第12図は表
面フーコーケート法による深化パターン((a)はP点
、(h)はu点〕を小ず図、第13図は被検材を示−り
図Cある。 ■ 被検材、6 水槽、7 探iQl: (−回申ム機
hl冒14〜17 斜角探触子、31〜34 信号処理
部、;35〜3)(探傷ゲート発生回路。 特許出願人 株式会社神戸装614所 第8図 第10図
No. 11
Part 1, Figure 4 is a view of the frame (not shown), Figure 51 is a 1JJi side view showing an embodiment of the present invention,
Figure 6 is the bottom of the same section, Figure 1 is a diagram showing depth flaw detection of the same LSI, Figure 1 is a diagram of the processing system for the Tsuro J Doshin Shinsei processing system,
Figure 9 is the same time chart 1, Figure 10 is the layout of the same probe, and Figure 11 is the flaw detection pattern using the fixed goo 1~ method.
(aLl: P point, b is 0 point)], Fig. 12 is a small diagram of the deepening pattern by the surface Foucauldian method ((a) is P point, (h) is u point), and Fig. 13 is a small diagram. Diagram C shows the materials to be tested. ■ Material to be tested, 6 Water tank, 7 Detector: 3) (Flaw detection gate generation circuit. Patent applicant: Kobeso Co., Ltd. 614, Figure 8, Figure 10)

Claims (1)

【特許請求の範囲】[Claims] 1.2個一組の探触子を局部水浸用水槽内にほぼ軸対称
に配置し7ておき、一方の探触子がパルスエコー法によ
り被検材の内部を探傷する状態にあるE、5、該一方の
探触子から送信された超音波ヒームの表面エコーを他方
の探触子で検出し、その表面工」−かあるしきい値を越
えた時刻を基21+・Gこして、探傷状Iルにある前記
一方の探触子のための探傷ゲートを生成することを特徴
とする超右疲探傷における表面エコーゲート法。
1. A set of two probes are arranged almost axially symmetrically in a water tank for local water immersion, and one probe is in a condition to detect flaws inside the specimen material using the pulse echo method. , 5. The surface echo of the ultrasonic beam transmitted from one probe is detected by the other probe, and the surface finish is calculated based on the time when the ultrasonic beam exceeds a certain threshold. , a surface echo gate method in super-right fatigue testing, characterized in that a flaw detection gate is generated for the one of the probes in the flaw detection shape I.
JP58249106A 1983-12-28 1983-12-28 Surface echo gate method in ultrasonic flaw detection Pending JPS60142249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58249106A JPS60142249A (en) 1983-12-28 1983-12-28 Surface echo gate method in ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58249106A JPS60142249A (en) 1983-12-28 1983-12-28 Surface echo gate method in ultrasonic flaw detection

Publications (1)

Publication Number Publication Date
JPS60142249A true JPS60142249A (en) 1985-07-27

Family

ID=17188039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58249106A Pending JPS60142249A (en) 1983-12-28 1983-12-28 Surface echo gate method in ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPS60142249A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121772A1 (en) * 2004-06-11 2005-12-22 Shinko Inspection & Service Co., Ltd. Ultrasonic testing method and ultrasonic test instrument
JP2008122732A (en) * 2006-11-14 2008-05-29 Brother Ind Ltd Image reader

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385488A (en) * 1977-01-07 1978-07-27 Nippon Steel Corp Ultrasonic flaw detecting method
JPS53105260A (en) * 1977-02-25 1978-09-13 Sumitomo Metal Ind Reflection type onnline supersonic inspector for simultaneous measurents of plate thickness and flaw
JPS5617028A (en) * 1979-07-20 1981-02-18 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385488A (en) * 1977-01-07 1978-07-27 Nippon Steel Corp Ultrasonic flaw detecting method
JPS53105260A (en) * 1977-02-25 1978-09-13 Sumitomo Metal Ind Reflection type onnline supersonic inspector for simultaneous measurents of plate thickness and flaw
JPS5617028A (en) * 1979-07-20 1981-02-18 Hitachi Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121772A1 (en) * 2004-06-11 2005-12-22 Shinko Inspection & Service Co., Ltd. Ultrasonic testing method and ultrasonic test instrument
JP2008122732A (en) * 2006-11-14 2008-05-29 Brother Ind Ltd Image reader

Similar Documents

Publication Publication Date Title
CN109324121A (en) A kind of gate detection device and detection method based on phased-array ultrasonic defectoscope
US3969926A (en) Alignment of ultrasonic transducer probe in pulse-echo testing
SE8602533L (en) ULTRACY PROCEDURE AND DEVICE FOR THE DETECTION AND SEATING OF DEFECTS IN METALS
US3828609A (en) Tube inspection system with interlaced scanning
US3924453A (en) Ultrasonic testing of tubing employing a spiral wave generator
CN205091298U (en) Path pipe butt weld supersound self -focusing phased array detection device
EP0217783A3 (en) Method of ultrasonic determination of the type of isolated point and extended faults in workpieces
JP6542254B2 (en) Wheelset axle and corresponding ultrasonic inspection method
JPS60142249A (en) Surface echo gate method in ultrasonic flaw detection
AU626151B2 (en) Ultrasonic testing method
CN108535359A (en) Electric connector fretting wear detection device based on ultrasonic technique and its operation method
GB1413755A (en) Ultrasonic non-destructive testing of tubes and rods
RU195253U1 (en) SCANNING DEVICE FOR ULTRASONIC CONTROL
CN107949787B (en) Ultrasonic testing device for spherical bodies
Fiedler et al. The laser ultrasonic inspection system (LUIS) at the Sacramento air logistics center
CN206832753U (en) A kind of equipment for clapping even couplant
JPS54153691A (en) Method and apparatus for ultrasonic flaw detection of nozzles
Bar-Cohen et al. Defect detection and characterization in composite sandwich structure by ultrasonics
RU2086975C1 (en) Method of ultrasonic inspection of articles having complex form of bodies of revolution
RU198395U1 (en) DEVICE FOR DETECTING DEFECTS IN THE SOLE OF RAIL RAILS AND FEATURES OF THE SOLE
Dikstra Ultrasonic weld inspection design using simulation
JPS62110150A (en) Method for ultrasonic flaw detection of bolt
LANGE et al. Ultrasonic time method of testing multilayered constructions by means of normal waves
LANGENBERG et al. Stationary reconstruction method. Development, test and comparison in ultrasonic testing(STATIONAERE REKONSTRUKTIONSVERFAHREN. ENTWICKLUNG, ERPROBUNG UND VERGLEICH BEI DER ULTRASCHALLPRUEFUNG)
SHCHERBINSKII et al. Observing weld joint defects using'tandem' system ultrasonic inspection