JPS60141801A - Reformed metallic powder - Google Patents

Reformed metallic powder

Info

Publication number
JPS60141801A
JPS60141801A JP58245466A JP24546683A JPS60141801A JP S60141801 A JPS60141801 A JP S60141801A JP 58245466 A JP58245466 A JP 58245466A JP 24546683 A JP24546683 A JP 24546683A JP S60141801 A JPS60141801 A JP S60141801A
Authority
JP
Japan
Prior art keywords
powder
plating
metal
particles
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58245466A
Other languages
Japanese (ja)
Inventor
Yoshio Kawasumi
川澄 良雄
Masayuki Takei
武居 政幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP58245466A priority Critical patent/JPS60141801A/en
Publication of JPS60141801A publication Critical patent/JPS60141801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To reform metallic powder having a spherical, flake, dendrite or short wire shape to the metallic powder having an excellent powder characteristic by subjecting said metallic powder to plating thereby changing the shape thereof and connecting the powder particles to each other by the plating metal. CONSTITUTION:The shape of the metallic powder is made into a spherical, flake, dendrite or short wire shape by the kind and powdering method of a metal, by which a large difference is generated in the fluidity, moldability, etc. thereof in the stage of producing the powder consisting of the metal. The powder is made into a slurry and is fluidied uniformly at an extremely low speed so as to contact with the cathode plate in a plating cell, by which the powder is plated in order to eliminate the above-mentioned difference. The plating provides roundness to the sharp pointed parts with the metal plated on the single particles and changes the shape of the powder by connecting the plural metallic particles with the plating metal, thereby contributing to the formation of the powder having the shape that the metal does not possess intrinsically and to the improvement of the fluidity and moldability of the powder as well as deflection strength of the molding thereof.

Description

【発明の詳細な説明】 本発明は各種金属粉の改質に係わるもので。[Detailed description of the invention] The present invention relates to the modification of various metal powders.

詳しくは原料金属粉にメッキ操作を施すことにより1表
面をメッキされた個々の金属粒子(以下メッキ単粒子と
いう)を生成するか、あるいはメッキ層を介して互いに
連結した複数の金属粒子(以下連結粒子という)を生成
させ、成型性、流動性あるいは均一混合性などの粉末特
性のすぐれた改質金属粉を製造することを目的とする。
Specifically, plating is performed on raw metal powder to produce individual metal particles with one surface plated (hereinafter referred to as plated single particles), or multiple metal particles connected to each other via a plating layer (hereinafter referred to as connected particles). The purpose is to produce modified metal powder with excellent powder properties such as moldability, fluidity, and uniform mixability.

近年粉体工業の発展に伴い種々な粉末が容易に得られる
ようになった。これに伴って用途も大巾に拡大され必要
特性も又多岐に渡っている。
In recent years, with the development of the powder industry, various powders have become easier to obtain. Along with this, the applications have expanded greatly and the required characteristics have also become more diverse.

即ち、金属の種類としてはAu、 Pd、 Ag、 N
i、 Ou。
That is, the types of metals are Au, Pd, Ag, and N.
i, Ou.

Co、 Fe、 Ag−Pd等があシ、形状面では球状
、リン片状、樹枝状、短線状等多品種に渡っている。
Co, Fe, Ag-Pd, etc. are available, and there are many different shapes such as spherical, scale-like, dendritic, and short linear.

それぞれ金属種及び粒度1粒形によって成型体(成型焼
成体を含む)の特性は大巾に異なり 一長一短がある。
The characteristics of molded bodies (including molded and fired bodies) vary greatly depending on the metal type and grain size, and each has advantages and disadvantages.

例えば1球状粉は流動性は良いが成型性が悪く寸法精度
、抗折力に乏しい欠点がある。逆に樹枝状粉は成型性は
良いが流動性が悪く自動成型時には製品側々の重量にバ
ラツキが出るため結果として成型体の寸法精度が乏しく
なる欠点がある。更にリン片状及び短線状粉の場合は、
成型時に個々の粒子が規則的に配列してしまうため製品
の抗折力が低下する欠点がある。従って成型体の作成に
は使用目的に合致した粒形の選定が重要で無差別に使用
することは不可能である。銅粉系の成型体の製造におい
て安価なアトマイズ粉(球形)がほとんど使用されてい
ないのは正に上記の理由による。
For example, single spherical powder has good fluidity but poor moldability and has the disadvantage of poor dimensional accuracy and transverse rupture strength. On the other hand, dendritic powder has good moldability but poor flowability, and when automatically molded, the weight of each product varies, resulting in poor dimensional accuracy of the molded product. Furthermore, in the case of flaky and short linear powder,
There is a drawback that the transverse rupture strength of the product decreases because the individual particles are arranged regularly during molding. Therefore, when creating a molded product, it is important to select a particle shape that matches the purpose of use, and it is impossible to use them indiscriminately. The reason why inexpensive atomized powder (spherical) is hardly used in the production of copper powder-based molded bodies is precisely for the above reason.

上述の現状にかんがみ本発明者等は種々研究を重ねた結
果、金属粉に金属をメ・ツキすることによって従来の諸
問題が大巾に解消されることを見いだした。本願におい
て、金属には合金も包含されるものとする。
In view of the above-mentioned current situation, the inventors of the present invention have conducted various studies and found that the various conventional problems can be largely solved by coating metal powder with metal. In this application, metals also include alloys.

本発明を適用すれば、原料粉が微細球状粉の場合には、
メッキ操作によって連結粒子を生成させ、それによシネ
定形粒子を得ることができる。この結果1粒子間のから
み合いが強くなり成型性を大巾に改善することができる
。原料粉が樹枝状粉の場合には、メッキ操作によシネ定
形粒子を生成させる。それによシ枝先部が優先的にメッ
キされるためそれぞれの枝先部は丸味を帯びてくる。従
って粒子個々のからみ合いは適当に緩和され流動性が大
巾に改善される。
If the present invention is applied, when the raw material powder is fine spherical powder,
The plating operation produces connected particles, which can yield cine-shaped particles. As a result, the entanglement between particles becomes stronger, and moldability can be greatly improved. When the raw material powder is dendritic powder, cine-shaped particles are generated by the plating operation. As a result, the tips of the branches are plated preferentially, so each branch tip becomes rounded. Therefore, the entanglement of individual particles is appropriately relaxed and fluidity is greatly improved.

結果的に所定時間内での金型への充填量の調節が容易と
なり、成型体側々の重量変化が大巾に減少する。更に、
原料粉が微細リン片状ないし短線状の場合はメッキ操作
によって連結粒子を生成させる。それにより個々の粒子
が不規則に接合される結果、成型時の粒子1個々の配列
のの 規則性が消失すると共に粒子個々からみ合いが△ 強くなり成型体の抗折力が向上する。
As a result, it becomes easy to adjust the amount of filling into the mold within a predetermined period of time, and weight changes from side to side of the molded body are greatly reduced. Furthermore,
If the raw material powder is in the form of fine flakes or short lines, connected particles are generated by plating. As a result of this, the individual particles are joined irregularly, and as a result, the regularity of the arrangement of the individual particles 1 during molding disappears, and the intertwining of the individual particles becomes stronger, improving the transverse rupture strength of the molded product.

メッキ操作の結果として得られる改質金属粉の性状、特
にメッキ単粒子を生成させるか、連結粒子を生成させる
かを決定する操作要因としては、原料金属粉の粒子(以
下−次粒子という)の大きさと形状、メッキ作業時のス
ラリー濃度とスラリー中の粒子の流動攪拌状態9粒子へ
のメッキ量およびメッキ方式がある。これらの要因の最
適値はケースバイケースであシ、−義的に定量的決定を
することはでき寿いが、定性的には一次粒子のサイズが
小さく、スラリー濃度をある程度高くシ、メッキ量を多
くした方が連−3= 結粒子を生成させやすい。メッキ液中で流動する一次粒
子同志が互に接触する機会が多く、シかもある程度接触
したままで共存する機会に恵まれ、かつ全体が均一に流
動している状態であることが、メッキによって粒子同志
が連結しやすくなる必要条件だからである。また、メッ
キ量が余りに少々いときは粒子同志の連結ができないこ
とは理解されよう。
The properties of the modified metal powder obtained as a result of the plating operation, in particular, the operational factors that determine whether to generate plated single particles or connected particles are the characteristics of the raw metal powder particles (hereinafter referred to as secondary particles). There are size and shape, slurry concentration during plating work, flow and agitation state of particles in slurry, amount of plating on nine particles, and plating method. The optimal values for these factors vary on a case-by-case basis, and although it is impossible to make a definitive quantitative determination, qualitatively, it is important to consider that the primary particle size is small, the slurry concentration is high to a certain extent, and the amount of plating is It is easier to generate connected particles by increasing the number of particles. By plating, the primary particles flowing in the plating solution have many opportunities to come into contact with each other and coexist with some degree of contact, and the particles are uniformly flowing as a whole. This is because it is a necessary condition that makes it easy to connect. Furthermore, it will be understood that if the amount of plating is too small, the particles cannot be connected to each other.

メッキ単粒子を生成させるには、−次粒子のサイズがあ
る程度大きく、スラリー濃度をやや低くシ、メッキ量も
少なくてよい。メッキ液中で流動する一次粒子同志が互
いに接触する機会が少なく、あるいは接触してもすぐ反
撥して離れてしまうような状態で、かつ全体が均一に流
動している状態であることが良好なメッキ単粒子を生成
させるための条件である。
In order to generate plated single particles, the size of the secondary particles should be large to some extent, the slurry concentration should be somewhat low, and the amount of plating should be small. It is desirable that the primary particles flowing in the plating solution have little chance of coming into contact with each other, or that even if they do come into contact, they will immediately repel and separate, and that the entire particle should be in a uniformly flowing state. These are conditions for producing plated single particles.

メッキ方式としては化学的還元剤を用いる化学的無電解
メッキ、還元剤として金属粉を用い。
The plating method is chemical electroless plating using a chemical reducing agent, and metal powder is used as the reducing agent.

置換反応によって無電解メッキを起こさせる置換メッキ
および電気分解反応を利用する電気メ4− ツキがある。化学的無電解メッキあるいは置換メッキの
場合には1以上に記載された要因を念頭において2個々
の場合に応じた最適条件値をめてメッキ操作を実施すれ
ば良いが、電気メツキ方式の場合には、基本的に溶液中
における金属粒子の流動電解となるため、−次粒子が陰
極全面に分散存在し、かつ常に陰極面への接触と離散を
くシ返す状態を維持することが必須条件となるので、特
別な留意が必要である。例えば、底面を陰極とするメッ
キ槽中で微細な一次粒子に流動電解メッキする場合には
、大部分の一次粒子が浮遊するような速度で攪拌すると
There are displacement plating, which causes electroless plating through a displacement reaction, and electroplating, which utilizes an electrolysis reaction. In the case of chemical electroless plating or displacement plating, the plating operation should be carried out by keeping in mind the factors listed above and determining the optimal condition values for each individual case, but in the case of electroplating, Basically, this is a fluid electrolysis of metal particles in a solution, so it is essential that secondary particles are dispersed over the entire surface of the cathode and that they are constantly in contact with the cathode surface and in a state where they are not dispersed. Therefore, special attention is required. For example, when performing fluid electrolytic plating on fine primary particles in a plating tank with the bottom as a cathode, stirring should be done at a speed that allows most of the primary particles to float.

−次粒子へのメッキが行われないので、極めて緩徐な速
度で、しかも均一な流動を起こすような攪拌を行わなけ
ればならない。連結粒子生成の条件の目安として例えば
Q、n〜5μmの粒度の球状N1粉を化学的無電解N1
メッキする場合の例について述べるなら、原料N1粉ス
ラリー濃度は5ないし100 f/l、好ましくは20
〜aOt/lで、攪拌の程度、すなわち攪拌翼の回転数
はメツキ槽径30Ω〜、攪拌翼長及び巾がそれぞれ20
0%、20%、メッキ液量1szの場合で回転数100
〜500 rpmが好ましく、最適値としては300〜
4 n Orpmである。メッキ浴組成の差はあまシ認
められず、公知の浴組成。
- Since the secondary particles are not plated, stirring must be carried out at a very slow speed to produce uniform flow. As a guide to the conditions for producing connected particles, for example, Q, spherical N1 powder with a particle size of n to 5 μm is chemically electroless N1 powder.
For example, in the case of plating, the raw material N1 powder slurry concentration is 5 to 100 f/l, preferably 20
〜aOt/l, the degree of stirring, that is, the rotation speed of the stirring blade is 30Ω in diameter of the plating tank, and the length and width of the stirring blade are 20Ω, respectively.
0%, 20%, plating liquid volume 1sz, rotation speed 100
〜500 rpm is preferable, and the optimum value is 300〜
4 n Orpm. There was no noticeable difference in the plating bath composition, and the bath composition was known.

浴温で十分である。Niメッキ量については5〜80 
wt4が好ましいが、最適量としては30〜50 wt
4である。なお、化学的無電解N1メッキ浴中の許容N
1濃度は0.1〜0.2 Vtなので、原料N1粉の濃
度及び目標N1メッキ量とからめた必要Ni量が不足す
る場合はメッキ操作を繰返す必要がある。
Bath temperature is sufficient. The amount of Ni plating is 5 to 80.
wt4 is preferred, but the optimal amount is 30-50 wt
It is 4. In addition, the allowable N in the chemical electroless N1 plating bath
Since the Ni concentration is 0.1 to 0.2 Vt, it is necessary to repeat the plating operation if the necessary Ni amount is insufficient considering the concentration of the raw material N1 powder and the target N1 plating amount.

以下に実施例にて本発明の方法を詳細に説明する。The method of the present invention will be explained in detail in Examples below.

実施例1 原料金属粉としてインコ社製の平均粒径3μの球状N1
粉を使用し、化学的無電解N1メッキ法にてN1を50
 wt%メッキした例について述べる。
Example 1 Spherical N1 manufactured by Inco Co., Ltd. with an average particle size of 3μ as raw metal powder
Using powder, N1 is 50% by chemical electroless N1 plating method.
An example of wt% plating will be described.

メッキ槽は外部加熱方式とし直径300%。The plating tank is externally heated and has a diameter of 300%.

高さ400Xのホーロー容器を使用し、攪拌翼は長さ1
50%、巾15%の上型翼とし1回転数は400 rp
mに固定した。メッキ浴は塩化ニッケルo、106 M
/l 、酒石酸ナトリウムα32 M/l 。
Use an enamel container with a height of 400X, and the stirring blade has a length of 1
50% width, 15% width upper wing, and the number of revolutions is 400 rp.
It was fixed at m. Plating bath: Nickel chloride O, 106M
/l, sodium tartrate α32 M/l.

硫酸ヒドラジy 0.26M/l 、1)H1s (N
a0HKて)とし8を使用した。原料N1粉の添加量は
目標N1メッキ量を50 wt優としたため5.12 
t/l (メッキ液中のN1+“量49. a 4 y
 )とし、1回のメッキ操作で所定の製品を得ることと
した。所定量のメッキ液に所定量の原料N1粉を入れ、
メッキ浴温を80〜83℃に保ち、メッキ操作を行った
。メッキ反応は約15分で終了しメッキ後液は無色透明
になった。得られたN1メツキ粉を水洗、乾燥し、 N
iメッキ粉99.6 fを得た。メッキ後液中のNi+
+ はo、 o 1t/を以下であったのでN1メッキ
量は目標値にほとんど同じであることが容易に推定出来
た。
hydrazisulfate y 0.26M/l, 1) H1s (N
8 was used. The amount of raw material N1 powder added was 5.12 because the target N1 plating amount was set to more than 50 wt.
t/l (Amount of N1+" in the plating solution 49. a 4 y
), and it was decided to obtain the desired product in one plating operation. Add a predetermined amount of raw material N1 powder to a predetermined amount of plating solution,
The plating operation was performed while keeping the plating bath temperature at 80 to 83°C. The plating reaction was completed in about 15 minutes, and the plating solution became colorless and transparent. The obtained N1 metal powder was washed with water, dried, and
99.6 f of i-plating powder was obtained. Ni+ in the solution after plating
Since + was less than o, o 1t/, it was easily estimated that the amount of N1 plating was almost the same as the target value.

得られたNi 50 wH6メツキN1粉及び原料N1
粉を走査電顕写真に撮シ外観の比較を行った。そ 1゜
の結果原料N1粉はほとんど単一粒子のみで表面は細か
く且つ短かい針状晶よシなっていた。一方50 wtl
メッキ粉は表面が比較的滑らかな粒子が複数個縦に、十
字状にあるいはボール状に連結した不定型の連結粒子を
形ち造っていた。
Obtained Ni50wH6metsukiN1 powder and raw material N1
The appearance of the powder was compared using scanning electron micrographs. As a result of 1°, the raw material N1 powder consisted of almost only single particles, and the surface was like fine and short needle-like crystals. while 50 wtl
The plating powder formed irregularly shaped connected particles in which multiple particles with relatively smooth surfaces were connected vertically, in a cross shape, or in a ball shape.

実施例2 原料金属粉として厚さO,n〜1μm、大きさ5〜20
μmのリン片秋山粉を使用し緩速攪拌式流動床法で50
wt1Ouメツキした例について述べる。メッキ槽は直
径200%、高さ300%のステンレス製ビーカーとし
、底部以外の内面はゴムライニングを行い絶縁を行った
。緩速攪拌翼は十字型とし、それぞれ櫛の歯状に溝を付
、 け、櫛の歯状部の先端とメッキ槽底面(固定陰極面
となる)との距離が2〜3九となるようセットした。な
お攪拌翼の長さは195Xとし。
Example 2 Thickness O, n~1 μm, size 5~20 as raw metal powder
50 μm using the slow stirring fluidized bed method using Rinka Akiyama powder.
An example of wt1Ou plating will be described. The plating bath was a stainless steel beaker with a diameter of 200% and a height of 300%, and the inner surface except the bottom was rubber-lined for insulation. The slow stirring blades are cross-shaped, each with comb tooth-shaped grooves, so that the distance between the tip of the comb teeth and the bottom surface of the plating tank (which becomes the fixed cathode surface) is 2 to 39 mm. I set it. Note that the length of the stirring blade is 195X.

高さは30′Xとし、櫛の歯状の溝の高さは2゜X、溝
巾は5%、歯の巾は3鬼とした。陽極は電気銅とし、巾
30%、厚さ10%、長さ100X(浸液部50X)と
し、メッキ槽外面よシされぞれ吊シ下げた。メッキ槽底
面への通電はメッキ槽外面に銅板を巻きメッキ槽全体が
陰極と9− なる形ちで行った。
The height was 30'X, the height of the comb tooth-shaped grooves was 2°X, the groove width was 5%, and the tooth width was 3mm. The anode was made of electrolytic copper, had a width of 30%, a thickness of 10%, and a length of 100X (immersion part 50X), and was suspended from the outer surface of the plating tank. Electricity was applied to the bottom of the plating tank by wrapping a copper plate around the outside of the plating tank so that the entire plating tank was connected to the cathode.

メッキ浴組成はOu 50 r/z、 H,SO415
0”//Lとし、液量は4.5を使用した。原料錐粉添
加量500 t、通電電流150A、浴温65〜70℃
Plating bath composition is Ou 50 r/z, H, SO415
0"//L, and the liquid volume was 4.5. The amount of raw material corn powder added was 500 t, the current was 150 A, and the bath temperature was 65 to 70°C.
.

攪拌翼回転数0.5 rpmでメッキ操作を行った。The plating operation was performed at a stirring blade rotation speed of 0.5 rpm.

2、76 H通電後得られたOuメッキOu粉を洗浄乾
燥し999.2 fのOuメッキOu粉を得た。
The Ou-plated Ou powder obtained after energization for 2,76 hours was washed and dried to obtain 999.2 f Ou-plated Ou powder.

得られたOuメッキOu粉を及び原料粉を実施例1同様
比較した結果、原料銅粉はほとんど単一粒子のみで周辺
部が凹凸の激しいリン片状粉であった。一方50 wt
l Ouメッキ粉は周辺部が丸味を帯びた複数個の粒子
が主に平面部に対し垂直ないし斜に接合した連結粒子か
ら成る不規則形状の粉となっていた。
As a result of comparing the obtained Ou-plated O powder and the raw material powder in the same manner as in Example 1, it was found that the raw material copper powder was a flake-like powder with almost only a single particle and a highly uneven peripheral part. On the other hand, 50wt
The l Ou plating powder was an irregularly shaped powder consisting of connected particles, in which a plurality of particles with rounded peripheries were joined mainly perpendicularly or obliquely to the flat surface.

以上実施例にて本発明の方法を詳述したが。The method of the present invention has been described in detail in the Examples above.

更に本発明が画期的であることを示すため実施例1及び
2のメッキ前、後粉の特性を比較した結果を表1に示め
す。
Furthermore, in order to show that the present invention is revolutionary, Table 1 shows the results of comparing the characteristics of the powders before and after plating in Examples 1 and 2.

表1 実施例1及び2のメッキ前、後粉の緒特性実施例
及び表1から明らかなように原料粉の形状が異なっても
本発明を適用して改質することによって粉末特性が大巾
に向上することが分る。
Table 1 Characteristics of powder before and after plating in Examples 1 and 2 As is clear from the examples and Table 1, even if the shape of the raw material powder is different, the powder characteristics can be greatly improved by applying the present invention and modifying it. It can be seen that there is an improvement in

以上の実施例は、単純な効果比較のため一次粒子とメッ
キ金属が同種の場合を挙げたが、−次粒子に対し異種の
金属をメッキした場合にもそれなりの改質効果が期待さ
れる。
In the above embodiments, the case where the primary particles and the plated metal are of the same type was cited for simple comparison of effects, but a certain modification effect is also expected when the primary particles are plated with a different type of metal.

なお本発明によって得られた改質金属粉は異種金属粉と
混合して製造される製品にも用いられることはいうまで
もない。
It goes without saying that the modified metal powder obtained by the present invention can also be used in products manufactured by mixing it with different metal powders.

一11=111 =

【図面の簡単な説明】[Brief explanation of the drawing]

図は各種形状の原料金属粉に本発明を適用した場合の原
料金属粉と改質金属粉のそれぞれの形状を示す。 図中のヘッディングの符号のうち、Aは原料金属粉を、
Bは改質金属粉を示し、1,2,3.4はそれぞれ原料
金属粉の形状が球状、リン片状。 線状あるいは樹枝状の場合を示す。 特許出願人 日本鉱業株式会社 代理人 弁理士(7569)並用啓志 =12− 手続補正書 図 (IA) (IB)いb 00oo。 (3B) (:SA) 、−一・二・・′ 鎚く ”ff昭和59
年4 月り日 特許庁長官 若杉和夫 殿 1、事件の表示 昭和58年特許願第245466号 2、発明の名称 改質金属粉 3、補正をする者 事件との関係 特許出願人 住 所 東京都港区虎ノ門二丁目1o番1号名 称 日
本鉱業株式会社 代表者 笠 原 幸 雄 4、代 理 人 〒105 電話582−2111 6、補正の対象 明細書の図面の簡単な説明の欄1図面
Z補正の内容 (11図面の簡単な説明を以下の通シに補正する。 「4、図面の簡単な説明 各図は各種形状の原料金属粉に本発明 を適用した場合の原料金属粉と改質金属粉のそれぞれの
形状を示す。図11図2゜図32図4はそれぞれ2球状
、リン片状。 線状あるいは樹枝状の原料金属粉の形状を示し1図51
図61図71図8はそれぞれ図11図22図32図4の
原料金属粉に対して改質操作を施した金属粉の形状を示
す。」 (2) 図面を別紙のとおシ補正する。 以 上 第1図。□Q OO 第2図aO 第3図tゲ 一ζ−
The figure shows the respective shapes of raw metal powder and modified metal powder when the present invention is applied to raw metal powder of various shapes. Among the heading symbols in the figure, A indicates raw metal powder,
B indicates a modified metal powder, and 1, 2, and 3.4 indicate that the raw metal powder has a spherical shape and a scale-like shape, respectively. Indicates a linear or dendritic case. Patent applicant Nippon Mining Co., Ltd. Agent Patent attorney (7569) Keishi Junyo = 12- Procedural amendment diagram (IA) (IB) b 00oo. (3B) (:SA) , -1, 2...' Hammer "ff 1978
Kazuo Wakasugi, Commissioner of the Japan Patent Office on April 1, 20151, Case description Patent Application No. 245466, filed in 1982, 2, Title of invention: Modified metal powder, 3, Relationship with the amended person's case, Address of patent applicant, Tokyo. No. 1-1, Toranomon 2-chome, Minato-ku Name: Japan Mining Co., Ltd. Representative: Yukio Kasahara 4, Agent: 105 Telephone number: 582-2111 6, Subject of amendment Brief description of drawings in the specification column 1 Drawing Z Contents of the amendment (11 The brief explanation of the drawings will be amended as follows. 4. Brief explanation of the drawings Each figure shows raw metal powder and modified raw metal powder when the present invention is applied to raw metal powder of various shapes. The shapes of the metal powders are shown in Figure 11, Figure 2, Figure 32, and Figure 4, respectively, in the form of two spheres and flakes.
61, 71, and 8 show the shapes of metal powders obtained by modifying the raw metal powders in FIGS. 11, 22, 32, and 4, respectively. ” (2) Revise the drawing as a separate sheet. Above is Figure 1. □Q OO Figure 2 aO Figure 3 tgei ζ-

Claims (3)

【特許請求の範囲】[Claims] (1) 金属粒子が該金属粒子を核として析着させた被
覆金属により単独被覆粒子構造あるいは複数粒子連結構
造をなしたことを特徴とする改質金属粉。
(1) A modified metal powder characterized in that the metal particles have a single coated particle structure or a multi-particle connected structure with a coated metal deposited using the metal particles as cores.
(2) 前記金属粒子と被覆金属が同種金属であること
を特徴とする特許請求の範囲第1項の改質金属粉。
(2) The modified metal powder according to claim 1, wherein the metal particles and the coating metal are the same type of metal.
(3) 前記の被覆金属の析着を電気メツキ法によって
行わせたことを特徴とする特許請求の範囲第1項あるい
は第2項の改質金属粉。
(3) The modified metal powder according to claim 1 or 2, wherein the coating metal is deposited by electroplating.
JP58245466A 1983-12-28 1983-12-28 Reformed metallic powder Pending JPS60141801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58245466A JPS60141801A (en) 1983-12-28 1983-12-28 Reformed metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58245466A JPS60141801A (en) 1983-12-28 1983-12-28 Reformed metallic powder

Publications (1)

Publication Number Publication Date
JPS60141801A true JPS60141801A (en) 1985-07-26

Family

ID=17134077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58245466A Pending JPS60141801A (en) 1983-12-28 1983-12-28 Reformed metallic powder

Country Status (1)

Country Link
JP (1) JPS60141801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777215A1 (en) * 1998-04-09 1999-10-15 Onera (Off Nat Aerospatiale) COMPOSITE POWDER FOR SOLDER-DIFFUSION

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538659A (en) * 1976-07-13 1978-01-26 Plas Tech Corp Method of producing fiber reinforced synthetic resin tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538659A (en) * 1976-07-13 1978-01-26 Plas Tech Corp Method of producing fiber reinforced synthetic resin tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777215A1 (en) * 1998-04-09 1999-10-15 Onera (Off Nat Aerospatiale) COMPOSITE POWDER FOR SOLDER-DIFFUSION
WO1999052671A1 (en) * 1998-04-09 1999-10-21 Onera (Office National D'etudes Et De Recherches Aerospatiales) Composite powder for diffusion-welding

Similar Documents

Publication Publication Date Title
US1986197A (en) Metallic composition
US2642654A (en) Electrodeposited composite article and method of making the same
US4944985A (en) Method for electroless plating of ultrafine or colloidal particles and products produced thereby
KR960017589A (en) High strength and high wear resistant diamond sintered body and manufacturing method thereof
US5036031A (en) Metal plated microsphere catalyst
CN109894610B (en) Metal-coated spherical cast tungsten carbide powder and preparation method thereof
US3723078A (en) Electroless alloy coatings having metallic particles dispersed therethrough
JP2713458B2 (en) Method for producing electrically deposited high temperature gas corrosion resistant layer
US2872312A (en) Electroless plating of non-conductors
JP3766161B2 (en) Coated powder, silver-coated copper powder and method for producing the same, conductive paste and conductive film
JPS60141801A (en) Reformed metallic powder
US3416992A (en) Molded plastic article
JP2015059271A (en) Method of manufacturing multistep metal composite body with superior surface quality
CN108950529A (en) A kind of tungsten carbide-copper-nickle composite powder preparation method
CN108823553A (en) A kind of preparation method of diamond surface Electroless Ni-P Plating
JPH0688880B2 (en) Metal-coated anhydrous calcium sulfate whisker
US2729559A (en) Method of manufacturing electric contact material
JPS5941489A (en) Method for electroplating particulate material
JPS5989788A (en) Method for electroplating staple fiber having electric conductivity
KR101787809B1 (en) Method for manufacturing a metal particle having micro-sized shell
JP2696567B2 (en) Method for producing ceramic particle reinforced metal matrix composite
JPS59205464A (en) Whisker for metal composite material
JP2999157B2 (en) Copper coated carbon powder
JP3295574B2 (en) Two-layer metal plated diamond fine particles and method for producing the same
JPH0263199B2 (en)