JPH0263199B2 - - Google Patents

Info

Publication number
JPH0263199B2
JPH0263199B2 JP8928484A JP8928484A JPH0263199B2 JP H0263199 B2 JPH0263199 B2 JP H0263199B2 JP 8928484 A JP8928484 A JP 8928484A JP 8928484 A JP8928484 A JP 8928484A JP H0263199 B2 JPH0263199 B2 JP H0263199B2
Authority
JP
Japan
Prior art keywords
boron carbide
powder
copper
nickel
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8928484A
Other languages
Japanese (ja)
Other versions
JPS60235096A (en
Inventor
Sadaaki Hagino
Kenichi Hijikata
Takeshi Yoshida
Tsutomu Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP8928484A priority Critical patent/JPS60235096A/en
Publication of JPS60235096A publication Critical patent/JPS60235096A/en
Publication of JPH0263199B2 publication Critical patent/JPH0263199B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 発明の目的 本発明は炭化ホウ素が均一に分散した中性子遮
蔽吸収材料の製造を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION It is an object of the present invention to provide for the production of neutron shielding and absorbing materials in which boron carbide is uniformly dispersed.

従来技術 炭化ホウ素は優れた熱中性子吸収材料である
が、通常は粉末として供給され、使用上種々の制
限があつた。また、高密度な製品を得るために
は、ホツトプレスによるかあるいは高温での焼結
を必要とするなど製造条件が厳しく、高価になる
ため多量に用いられない。この問題点を解決する
方途としてプラステイクや金層に炭化ホウ素が分
散した製品を製造する研究が行なわれており、そ
の狙いは所定量の炭化ホウ素をいかに均一に分散
させ得ることが出来るかということと、製品の強
度を可及的に高くすることである。
Prior Art Although boron carbide is an excellent thermal neutron absorbing material, it is usually supplied as a powder and has various limitations in its use. In addition, in order to obtain a high-density product, manufacturing conditions are severe, such as requiring hot pressing or high-temperature sintering, and the product is expensive, so it is not used in large quantities. As a way to solve this problem, research is being conducted to manufacture products in which boron carbide is dispersed in plastake or gold layers, and the aim is to find out how uniformly a predetermined amount of boron carbide can be dispersed. and to make the product as strong as possible.

強度を高くするためにはマトリツクスとなる材
質の選定が重要であり、プラステイクでは強度が
弱く、さらに温度が高くなるにつれて強度の低下
が顕著となる欠点がある。さらに熱伝導率が低い
のもこの種の中性子遮蔽材として用いるにプラス
テイクでは満足な結果は得られない。プラステイ
クに代わる材料として、鉛あるいはアルミニウム
等の金属を使用することが考えられ、これらの材
料はプラステイクよりも強度あるいは熱伝導率に
おいて改善される可能性がある。しかしながらこ
れらの材料は融点が低いことが共通であり、使用
される条件において十分な信頼を得ることは出来
ない。特に火災等の事故の際に問題が多いと考え
られる。プラステイク、鉛、アルミニウム等より
も強度が高く、融点が高く、同時に熱伝導率にも
優れる材料を選定することが重要となる。
In order to increase the strength, it is important to select the material that will become the matrix, and plastic take has the disadvantage that its strength is low and its strength decreases more significantly as the temperature rises. Furthermore, because of its low thermal conductivity, Plastake cannot provide satisfactory results when used as this type of neutron shielding material. It is possible to use metals such as lead or aluminum as an alternative material to plastic take, and these materials may have improved strength or thermal conductivity compared to plastic take. However, these materials commonly have a low melting point, and cannot be sufficiently reliable under the conditions in which they are used. This is thought to cause many problems, especially in the event of an accident such as a fire. It is important to select a material that is stronger than plastic, lead, aluminum, etc., has a higher melting point, and also has superior thermal conductivity.

本発明においては、マトリツクス材料として、
ニツケルあるいはそれらの合金を選定することに
より上記欠点を除くことが出来た。すなわち、本
発明の要点は、銅、ニツケルの1種または2種を
マトリツクス材として使用することを特徴とし、
これら銅および/またはニツケルのマトリツクス
中に炭化ホウ素が均一に分散した製品を工業的に
合理的な価格で製造する方法を示したものであ
る。
In the present invention, as the matrix material,
By selecting nickel or an alloy thereof, the above drawbacks could be eliminated. That is, the main point of the present invention is that one or both of copper and nickel are used as the matrix material,
The present invention shows a method for producing products in which boron carbide is uniformly dispersed in a copper and/or nickel matrix at an industrially reasonable price.

炭化ホウ素銅および/またはニツケルのマトリ
ツクス中に分散させる方法として、従来の技術か
らすれば、炭化ホウ素粉末と銅粉末あるいはニツ
ケル粉末とを混合し、混合した粉末を成形、焼結
する方法、または混合した粉末をホツトプレスす
る方法等の通常の粉末冶金法が考えられる。しか
しながらこのような方法で製造した複合体につい
て炭化ホウ素の分散の均一性を調べたところ、十
分な均一性が得られないことが確認された。この
理由は炭化ホウ素の密度が2.51g/cm3、銅の密度
が8.6g/cm3、ニツケルの密度が8.9g/cm3であ
り、炭化ホウ素とマトリツクス材との密度差が大
きいために、これらの粉末を混合しても均一に分
散させることが困難なことによる。中性子遮蔽材
として使用する時、炭化ホウ素がマトリツクス中
に均一に分散していることは重要な因子であるこ
とから、このような通常の粉末冶金法による製造
方法は適当でない。
Conventional techniques for dispersing boron carbide in copper and/or nickel matrices include mixing boron carbide powder with copper powder or nickel powder, molding and sintering the mixed powder, or mixing. Ordinary powder metallurgy methods such as hot-pressing powdered powder can be considered. However, when the uniformity of dispersion of boron carbide in the composite produced by such a method was examined, it was confirmed that sufficient uniformity could not be obtained. The reason for this is that the density of boron carbide is 2.51 g/cm 3 , the density of copper is 8.6 g/cm 3 , and the density of nickel is 8.9 g/cm 3 , and the density difference between boron carbide and the matrix material is large. This is because even if these powders are mixed, it is difficult to disperse them uniformly. When used as a neutron shielding material, uniform dispersion of boron carbide in the matrix is an important factor, so such a conventional powder metallurgy manufacturing method is not suitable.

通常の粉末冶金以外の方法として、銅あるいは
ニツケルをルツボ中に融解しておき、その中に炭
化ホウ素粉末を投入し溶湯を攪拌しつつ固化させ
ることが考えられる。この方法は将来の大量生産
を想定した時には興味ある技術と言えるが、銅、
ニツケルの融点が1000度以上の高いことからも、
このような高温の湯溶中に炭化ホウ素粉末を分散
させることが現段階では技術的に十分確立されて
いない。さらに、粉末冶金法の場合と同様に炭化
ホウ素と銅あるいは炭化ホウ素とニツケルの密度
の差が大きいことから、この方法によつても十分
均一な炭化ホウ素の分散した製品を得ることは困
難であると考えられる。
As a method other than the usual powder metallurgy, it is conceivable to melt copper or nickel in a crucible, introduce boron carbide powder into the crucible, and solidify the molten metal while stirring. This method can be said to be an interesting technology when considering future mass production, but copper
As nickel has a high melting point of over 1000 degrees,
At present, the technology of dispersing boron carbide powder in such a hot melt has not been sufficiently established. Furthermore, as in the case of powder metallurgy, there is a large difference in density between boron carbide and copper or between boron carbide and nickel, so it is difficult to obtain a product in which boron carbide is sufficiently uniformly dispersed even with this method. it is conceivable that.

発明の構成 本発明は炭化ホウ素粒子を銅またはニツケルあ
るいはそれらの合金で被覆し、被覆粒子を圧縮し
焼結するかまたはホツトプレスすることからなる
炭化ホウ素を均一に分散した中性子遮蔽吸収材料
の製法を提供する。
Structure of the Invention The present invention provides a method for producing a neutron shielding and absorbing material in which boron carbide is uniformly dispersed, which comprises coating boron carbide particles with copper or nickel or an alloy thereof, and compressing and sintering or hot pressing the coated particles. provide.

本発明によれば、以下詳細に述べる方法で銅、
ニツケルあるいはそれらの合金をマトリツクスと
し、炭化ホウ素が均一に分散した製品を製造する
ことが出来る。
According to the present invention, copper,
By using nickel or an alloy thereof as a matrix, it is possible to manufacture products in which boron carbide is uniformly dispersed.

炭化ホウ素粉末に銅、ニツケルあるいはそれら
の合金を被覆する方法として、気相成長法あるい
は液相成長法が可能であり、いずれの方法によつ
ても本発明を達成できるが、生産性、コストの観
点から無電解メツキあるいは無電解メツキ後電解
メツキを採用することが好ましい。本発明では、
気相成長法では真空蒸着法が、液相成長法では無
電解メツキ法が特に好ましい。
Vapor phase growth or liquid phase growth can be used as a method for coating boron carbide powder with copper, nickel, or their alloys, and although the present invention can be achieved by either method, it is difficult to achieve productivity and cost. From this point of view, it is preferable to employ electroless plating or electrolytic plating after electroless plating. In the present invention,
Among the vapor phase growth methods, the vacuum evaporation method is particularly preferred, and among the liquid phase growth methods, the electroless plating method is particularly preferred.

気相成長法あるいは液相成長法により、銅、ニ
ツケルあるいはそれらの合金を炭化ホウ素粉末の
裏面に被覆する場合、粉末の粒度が粗すぎると粉
末表面積が小さいために所定量の金属を被覆する
のに長い時間を要し、製造の面から好ましくな
い。さらに炭化ホウ素粉末の粒度が極端に粗すぎ
ると、製品中にこの粗い炭化ホウ素が島状に分布
する組織となり、これは中性子遮蔽体として要求
される炭化ホウ素が可能な限り均一に全面分布す
るという観点から不利になる。これらのことを勘
案して試験を行つた結果、炭化ホウ素粉末の平均
粒径は500ミクロン以下が好ましいことがわかつ
た。なお、平均粒径に対する粒度分布はシヤープ
はほど好ましいと考えられるが、特に粒度分布を
指定する必要はない。
When coating copper, nickel, or their alloys on the back side of boron carbide powder by vapor phase growth or liquid phase growth, if the particle size of the powder is too coarse, the surface area of the powder is small, making it difficult to coat the specified amount of metal. It takes a long time to process, which is unfavorable from a manufacturing standpoint. Furthermore, if the particle size of the boron carbide powder is extremely coarse, the coarse boron carbide will be distributed in the form of islands in the product. disadvantageous from your point of view. As a result of conducting tests taking these matters into consideration, it was found that the average particle size of boron carbide powder is preferably 500 microns or less. Incidentally, although it is considered preferable that the particle size distribution be as sharp as possible with respect to the average particle diameter, it is not necessary to specify the particle size distribution in particular.

以上で述べたように炭化ホウ素粉末の表面に銅
あるいはニツケルを所定量コーテイングした粉末
を成形、焼結することにより炭化ホウ素が均一に
分散した製品を得ることができた。しかしなが
ら、この管通焼結の方法では十分高い焼結密度の
複合体を得ることが困難であることがわかつた。
焼結密度が低いと、一般に強度の低下、熱伝導率
の低下が生じ、この種の材料の使用条件下では、
好ましくない。さらに焼結密度の低下は、製品体
積あたりの炭化ホウ素含有量の低下を招き、結果
的にはホウ素含有濃度が低下し、中性子の遮蔽・
吸収能力が低下する。このことから製品密度は可
及的に高いことが望ましく、かつ炭化ホウ素含有
量の高いことが必要である。本発明では、炭化ホ
ウ素粉末に銅、ニツケルあるいはそれらの合金を
コーテイングし、ホツトプレスすることにより、
高密度であると同時に炭化ホウ素がマトリツクス
中に均一に分散した複合体を製造することができ
る。本発明において、炭化ホウ素粉末に銅、ニツ
ケルあるいはそれらの合金をコーテイングした粉
末の、金属の占める体積が低くなると十分高密度
な焼結体を得ることが困難となる。試験の結果、
金属の体積割合が複合体の理論体積の25%未満に
なるとホツトプレスを行つても複合体の密度は95
%に達することが困難となり、しかも強度につい
ても十分高いものが得られなかつた。一方、炭化
ホウ素量については、特に制限はないが、少なす
ぎると遮蔽・吸収効果を上げるため複合体の使用
量を多くしなければならないので、工業的に使用
するにはこの量は40容量%以上が望ましい。
As described above, by molding and sintering boron carbide powder whose surface was coated with a predetermined amount of copper or nickel, a product in which boron carbide was uniformly dispersed could be obtained. However, it has been found that it is difficult to obtain a composite with a sufficiently high sintered density using this tube sintering method.
Low sintering density generally results in reduced strength, reduced thermal conductivity, and under the conditions of use for this type of material.
Undesirable. Furthermore, a decrease in sintered density leads to a decrease in boron carbide content per product volume, resulting in a decrease in boron concentration and neutron shielding.
Absorptive capacity decreases. For this reason, it is desirable that the product density be as high as possible, and it is necessary that the boron carbide content be high. In the present invention, boron carbide powder is coated with copper, nickel, or an alloy thereof and hot pressed.
Composites can be produced that are dense and at the same time have boron carbide uniformly dispersed in the matrix. In the present invention, if the volume occupied by the metal in the powder obtained by coating boron carbide powder with copper, nickel, or an alloy thereof becomes low, it becomes difficult to obtain a sufficiently high-density sintered body. Test results,
If the volume fraction of metal is less than 25% of the theoretical volume of the composite, the density of the composite will be 95% even if hot pressing is performed.
%, and it was not possible to obtain a sufficiently high strength. On the other hand, there is no particular limit to the amount of boron carbide, but if it is too small, the amount of the composite must be increased to increase the shielding and absorption effect, so for industrial use, this amount must be 40% by volume. The above is desirable.

本発明では、ホツトプレスによる方法以外にホ
ツトアイソスタテイクプレス法でも、満足な製品
が得られる。さらに本発明では、大量にかつ安価
に製造する方法として、通常の焼結法により得ら
れた複合体を圧延すると、密度が高くなり、圧延
温度を300℃以上にすることにより良い結果が得
られる。
In the present invention, a satisfactory product can be obtained not only by the hot press method but also by the hot isostatic press method. Furthermore, in the present invention, as a method for manufacturing in large quantities and at low cost, rolling a composite obtained by a normal sintering method increases the density, and good results can be obtained by setting the rolling temperature to 300°C or higher. .

発明の効果 本発明方法によれば理論密度の98%以上の密度
を有する炭化ホウ素中性子遮蔽吸収用材料を容易
に製造することができる。
Effects of the Invention According to the method of the present invention, a boron carbide neutron shielding/absorbing material having a density of 98% or more of the theoretical density can be easily produced.

実施様態 次に本発明を実施例により詳細に説明する。Implementation mode Next, the present invention will be explained in detail with reference to examples.

実施例 1 平均粒径50μmのB4C粉末100gを60℃のPdcl2
(0.003g/、PH4.0)液で5分間活性化処理し、
水洗し、50℃のCuめつき液(奥野製薬工業製
OPCカツパー、PH10.5)で3時間浸漬し、水洗
し、中和し(H2SO41ml/)水洗、乾燥した。
尚、Cuめつき液中の全Cuイオン濃度は360gであ
り、3時間のめつきによりその99.5%が、B4C粉
末表面に析出した。被覆層の厚さは炭化ホウ素の
体積と銅の体積が同じにした(複合体の空〓部分
の体積のうち銅の体積が50%)であつた。この銅
で被覆した粉末をグラフアイトモールドを使用
し、圧力150Kg/cm3、温度/800℃でホツトプレス
した。この複合体の密度は理論密度に対して98%
であつた。顕微鏡観察の結果、マトリツクス中の
炭化ホウ素は均一に分布していることが確認され
た。この炭化ホウ素/銅複合体の特性として熱伝
導率および抗折強度を測定した。熱伝導率は
90kcal/cm・h・k、抗折強度は15Kg/mm2であ
り、中性子遮蔽体として使用されるに十分な特性
であつた。
Example 1 100 g of B 4 C powder with an average particle size of 50 μm was heated to Pdcl 2 at 60°C.
(0.003g/, PH4.0) solution for 5 minutes,
Wash with water and heat at 50℃ Cu plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.)
It was immersed in OPC Katsupar (PH10.5) for 3 hours, washed with water, neutralized (H 2 SO 4 1 ml/), washed with water, and dried.
The total Cu ion concentration in the Cu plating solution was 360 g, and 99.5% of it was deposited on the surface of the B 4 C powder after 3 hours of plating. The thickness of the coating layer was such that the volume of boron carbide was equal to the volume of copper (the volume of copper was 50% of the volume of the empty part of the composite). This copper-coated powder was hot pressed using a graphite mold at a pressure of 150 kg/cm 3 and a temperature of 800°C. The density of this composite is 98% of the theoretical density
It was hot. As a result of microscopic observation, it was confirmed that boron carbide in the matrix was uniformly distributed. Thermal conductivity and bending strength were measured as characteristics of this boron carbide/copper composite. The thermal conductivity is
The strength was 90 kcal/cm·h·k and the bending strength was 15 Kg/mm 2 , which were sufficient characteristics to be used as a neutron shield.

実施例 2 平均粒径120μmのB4C粉末100gを60℃のPdCl2
(0.003g/、PH4.0)液で5分間活性化処理し、
水洗し、60℃のNiめつき液(日本カニゼン製、
SB−55、PH6.9)3時間浸漬し、水洗し、乾燥し
た。Niめつきより370gNiがB4C粉表面上に析出
した。被覆層の厚さは実施例1と同様に被覆後の
製品体積の50%であつた。このニツケルで粉末を
グラフアイトモールドを使用し、圧力150Kg/cm3
温度950℃でホツトプレスした。この製品の密度
は理論密度に対して98%であつた。
Example 2 100 g of B 4 C powder with an average particle size of 120 μm was heated to PdCl 2 at 60°C.
(0.003g/, PH4.0) solution for 5 minutes,
Wash with water and heat with Ni plating solution (manufactured by Nippon Kanizen) at 60℃.
SB-55, PH6.9) Soaked for 3 hours, washed with water, and dried. 370g of Ni was precipitated on the surface of the B 4 C powder by Ni plating. As in Example 1, the thickness of the coating layer was 50% of the volume of the product after coating. Using this nickel powder in a graphite mold, the pressure was 150Kg/cm 3 ,
Hot pressed at a temperature of 950°C. The density of this product was 98% of the theoretical density.

実施例 3 実施例1および実施例2と同じ方法で得た銅ま
たはニツケルを無電解メツキした炭化ホウ素粉末
を重量パーセントで等しくなるように混合し、混
合した粉末をグラフアイトモールドを使用し、圧
力150Kg/cm3、温度900℃でホツトプレスした。こ
の製品の組織を観察した結果、銅およびニツケル
でコーテイングした粉末は均一に分散しているこ
とが確認され、また焼結密度は理論密度に対して
99%以上を示した。高密度の得られた原因として
異種粉末の混合の効果、即ち、銅およびニツケル
をコーテイングした粉末の粒度が異なることによ
つて緻密化し、銅とニツケルが固溶したことによ
る焼結が促進されたと考えられる。
Example 3 Boron carbide powder obtained by electroless plating of copper or nickel obtained in the same manner as in Example 1 and Example 2 was mixed to have an equal weight percentage, and the mixed powder was heated using a graphite mold under pressure. Hot pressing was carried out at 150Kg/cm 3 and at a temperature of 900°C. As a result of observing the structure of this product, it was confirmed that the powder coated with copper and nickel was uniformly dispersed, and the sintered density was compared to the theoretical density.
It showed over 99%. The reason for the high density is the effect of mixing different types of powder, that is, the different particle sizes of the powder coated with copper and nickel lead to densification, and the solid solution of copper and nickel promotes sintering. Conceivable.

実施例 4 平均粒径20μmのB4C粉10g、35gのCuを真空
蒸着した。真空蒸着条件は2×10-4Torrで、蒸
発源としては黒鉛るつぼを用い、高周波誘導加熱
により加熱を行なつた。蒸着時間は2.5時間であ
つた。このときのB4C粉上へのCu析出量は、35.5
gであつた。被覆層の厚さは実施例1と同様に被
覆後の製品体積の50%であつた。この銅で被覆し
た粉末をグラフアイトモールドを使用し、圧力
150Kg/cm3、温度800℃でホツトプレスした。この
製品の密度は理論密度に対して98%であつた。
Example 4 10 g of B 4 C powder with an average particle size of 20 μm and 35 g of Cu were vacuum deposited. The vacuum deposition conditions were 2×10 −4 Torr, a graphite crucible was used as the evaporation source, and heating was performed by high-frequency induction heating. The deposition time was 2.5 hours. The amount of Cu precipitated on the B 4 C powder at this time was 35.5
It was hot at g. As in Example 1, the thickness of the coating layer was 50% of the volume of the product after coating. Using a graphite mold, this copper-coated powder is
Hot pressing was carried out at 150Kg/cm 3 and a temperature of 800°C. The density of this product was 98% of the theoretical density.

実施例 5 実施例1と同じ方法で被覆した炭化ホウ素/銅
粉末をステンレス銅の容器に充填し温度900℃、
到達圧力1000気圧でホツトアイソスタテイクプレ
スした。この製品の密度は理論密度に対して98%
であつた。
Example 5 Boron carbide/copper powder coated in the same manner as in Example 1 was filled into a stainless copper container and heated to a temperature of 900°C.
A hot isostatic press was carried out at an ultimate pressure of 1000 atm. The density of this product is 98% of the theoretical density
It was hot.

実施例 6 実施例1と同じ方法で被覆した炭化ホウ素/銅
粉末を1t/cm3の圧力で成形した後、930℃で6時
間真空雰囲気で焼結した。この焼結体の密度は理
論密度に対して75%であつた。さらに高密度製品
を得るためにこの焼結体をステンレス缶に真空封
入し、800℃の温度で圧延した。圧延後の製品の
密度は96%であつた。
Example 6 Boron carbide/copper powder coated in the same manner as in Example 1 was molded at a pressure of 1 t/cm 3 and then sintered at 930° C. for 6 hours in a vacuum atmosphere. The density of this sintered body was 75% of the theoretical density. In order to obtain a higher density product, this sintered body was vacuum sealed in a stainless steel can and rolled at a temperature of 800°C. The density of the product after rolling was 96%.

以上の実施例で示した製品はいずれも炭化ホウ
素が均一に分散しており、高密度であることから
中性子遮蔽用材料として有用であることがわかつ
た。
In all of the products shown in the examples above, boron carbide was uniformly dispersed and had a high density, so it was found that they were useful as neutron shielding materials.

実施例 7 平均粒径50μの炭化ホウ素粉末100gを実施例
1の方法で活性化処理したのち、 NiSO4・6H2O 15g/ CuSO4・5H2O 15g/ Na3C3H5O7・2H2O 60g/ NaH2PO2・H2O 20g/ PH10 温度80℃ のめつき液を用いてNi−Cu合金の無電解めつき
を実施し、被覆後の製品体積の55%の金属被覆を
得た。この炭化ホウ素/Ni−Cu粉末をステンレ
ス鋼の容器に充填し温度1000℃、到達圧力1000気
圧でホツトアイソスタテイクプレスした。この製
品の密度は理論密度に対し99%であつた。
Example 7 After activating 100g of boron carbide powder with an average particle size of 50μ by the method of Example 1, 15g of NiSO 4 6H 2 O / 15g CuSO 4 5H 2 O / 15g of Na 3 C 3 H 5 O 7 2H 2 O 60g / NaH 2 PO 2・H 2 O 20g / PH10 Electroless plating of Ni-Cu alloy was performed using a plating solution at a temperature of 80℃, and the metal coating covered 55% of the product volume after coating. I got it. This boron carbide/Ni-Cu powder was filled into a stainless steel container and hot isostatically pressed at a temperature of 1000°C and an ultimate pressure of 1000 atm. The density of this product was 99% of the theoretical density.

実施例 8 平均粒径120μの炭化ホウ素粉末100gに実施例
2と同様な方法で5μのNi被覆を行なつたのち、 Ni(NH2SO32・4H2O 450g/ NiCl2・6H2O 10g/ Co(NH2SO32・4H2O 5g/ H3BO3 40g/ PH4.0 温度50℃ のめつき液を用いてNi−10w%Co合金電気めつ
きを行ない、最終的に被覆後の製品体積の60%の
金属被覆を得た。
Example 8 100 g of boron carbide powder with an average particle size of 120 μ was coated with 5 μ of Ni in the same manner as in Example 2, and then 450 g of Ni(NH 2 SO 3 ) 2・4H 2 O/NiCl 2・6H 2 10g of O / Co (NH 2 SO 3 ) 2・4H 2 O 5g / H 3 BO 3 40g / PH4.0 Electroplating of Ni-10w%Co alloy was carried out using a plating solution at a temperature of 50℃, and the final A metal coating of 60% of the product volume after coating was obtained.

Ni被覆したB4C粉へのNi−Co合金電気めつき
は、被覆B4C粉をめつき液に分散させ、陰極上に
周期的磁場を形成することにより、Ni被覆B4C
粉を陰極上に吸着させ、その吸着時に電解を行な
うことにより、Ni被覆B4C粉上にNi−Co合金被
覆を得た。
Ni-Co alloy electroplating on Ni-coated B4C powder is performed by dispersing the coated B4C powder in a plating solution and forming a periodic magnetic field on the cathode.
A Ni--Co alloy coating was obtained on the Ni-coated B 4 C powder by adsorbing the powder onto the cathode and performing electrolysis during the adsorption.

このように作成した金属被覆B4C粉を実施例7
と同様にホツトアイソスタテイツクプレスを実施
し、理論密度に対して98%の製品を得た。
The metal-coated B 4 C powder prepared in this way was used in Example 7.
Hot isostatic pressing was carried out in the same manner as above, and a product with a theoretical density of 98% was obtained.

Claims (1)

【特許請求の範囲】 1 炭化ホウ素粒子を銅またはニツケルあるいは
それらの合金で被覆し、被覆粒子を圧縮し焼結す
るかまたはホツトプレスすることからなる炭化ホ
ウ素を均一に分散した中性子遮蔽吸収材料の製
法。 2 特許請求の範囲第1項に記載の製法であつ
て、被覆を無電解めつきあるいは無電解めつき後
に電解めつきによつて行なう方法。 3 特許請求の範囲第1項に記載の方法であつ
て、被覆を真空蒸着法によつて行なう方法。 4 特許請求の範囲第1項に記載の方法であつ
て、圧縮をアイソスタチツクプレス法によつて行
なう方法。 5 特許請求の範囲第1〜4項の何れかの項に記
載の製法であつて、炭化ホウ素粒子の粒径が
500μ(32メシユ)以下である製法。 6 特許請求の範囲第1〜5項の何れかの項に記
載の製法であつて、銅被覆炭化ホウ素粒子および
ニツケル被覆炭化ホウ素粒子が圧縮成形される製
法。 7 炭化ホウ素粒子を銅またはニツケルで被覆
し、被覆粒子を圧縮成形し焼結し、さらに得られ
る焼結体を圧延することからなる炭化ホウ素を均
一に分散した中性子遮蔽吸収材料の製法。
[Claims] 1. A method for producing a neutron shielding and absorbing material in which boron carbide is uniformly dispersed, which comprises coating boron carbide particles with copper, nickel, or an alloy thereof, and compressing and sintering or hot pressing the coated particles. . 2. The manufacturing method according to claim 1, wherein the coating is performed by electroless plating or electrolytic plating after electroless plating. 3. The method according to claim 1, in which the coating is performed by vacuum deposition. 4. The method according to claim 1, wherein the compression is performed by an isostatic press method. 5. The manufacturing method according to any one of claims 1 to 4, wherein the particle size of boron carbide particles is
A manufacturing method that produces less than 500μ (32 mesh). 6. The manufacturing method according to any one of claims 1 to 5, in which copper-coated boron carbide particles and nickel-coated boron carbide particles are compression molded. 7. A method for producing a neutron shielding and absorbing material in which boron carbide is uniformly dispersed, which comprises coating boron carbide particles with copper or nickel, compression molding and sintering the coated particles, and rolling the obtained sintered body.
JP8928484A 1984-05-07 1984-05-07 Manufacture of material for shielding and absorbing neutron Granted JPS60235096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8928484A JPS60235096A (en) 1984-05-07 1984-05-07 Manufacture of material for shielding and absorbing neutron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8928484A JPS60235096A (en) 1984-05-07 1984-05-07 Manufacture of material for shielding and absorbing neutron

Publications (2)

Publication Number Publication Date
JPS60235096A JPS60235096A (en) 1985-11-21
JPH0263199B2 true JPH0263199B2 (en) 1990-12-27

Family

ID=13966404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8928484A Granted JPS60235096A (en) 1984-05-07 1984-05-07 Manufacture of material for shielding and absorbing neutron

Country Status (1)

Country Link
JP (1) JPS60235096A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032695A (en) * 1989-05-31 1991-01-09 Nisshin Steel Co Ltd Radiation shielding material with high heat removal efficiency
EP1087408B1 (en) * 1999-09-27 2007-05-09 Metallveredlung GmbH & Co. KG Process for producing a neutron-absorbing coating
US7295646B1 (en) 1999-09-27 2007-11-13 Metallveredlung Gmbh & Co. Kg Method for producing a coating for absorption of neutrons produced in nuclear reactions of radioactive materials
CN105970262B (en) * 2016-07-13 2018-06-26 中南大学 A kind of the wear-and corrosion-resistant material and its preparation process of band Ni-P-Ce-B4C@Cu composite deposites

Also Published As

Publication number Publication date
JPS60235096A (en) 1985-11-21

Similar Documents

Publication Publication Date Title
US6033622A (en) Method for making metal matrix composites
US2642654A (en) Electrodeposited composite article and method of making the same
CA1221731A (en) Electrochemical cell
KR950014350B1 (en) Method of manufacturing alloy of w-cu system
US5184662A (en) Method for clad-coating ceramic particles
EP0473715B1 (en) Mixed fiber composite structures: method of preparation, articles therefrom, and uses therefor
US5640669A (en) Process for preparing metallic porous body, electrode substrate for battery and process for preparing the same
US4227928A (en) Copper-boron carbide composite particle and method for its production
US5967400A (en) Method of forming metal matrix fiber composites
US4548774A (en) Method for preparing a SiC whisker-reinforced composite material
US3953647A (en) Graphite fiber reinforced metal matrix composite
US4012230A (en) Tungsten-nickel-cobalt alloy and method of producing same
GB1574007A (en) Cermets
JPS61132501A (en) Formed hydrogen storage alloy
US4046302A (en) Methods of manufacturing bodies of conglomerated particles
US3778261A (en) Manufacturing composite articles
Saida et al. Preparation of ultra-fine amorphous powders by the chemical reduction method and the properties of their sintered products
JPH0263199B2 (en)
CN105679560A (en) Preparation method of nickel-plated graphene-reinforced silver-based electrical contact material
US3902861A (en) Composite material
CN113199024B (en) Ternary layered compound, metal-based composite material, and preparation method and raw materials thereof
US3770492A (en) Method of manufacture of materials from polycrystalline filaments
JPS60145345A (en) High performance bearing material and manufacture
US4836979A (en) Manufacture of composite structures
US2978323A (en) Alloyed flocks from metal carbonyls and halides