KR950014350B1 - Method of manufacturing alloy of w-cu system - Google Patents
Method of manufacturing alloy of w-cu system Download PDFInfo
- Publication number
- KR950014350B1 KR950014350B1 KR1019930021668A KR930021668A KR950014350B1 KR 950014350 B1 KR950014350 B1 KR 950014350B1 KR 1019930021668 A KR1019930021668 A KR 1019930021668A KR 930021668 A KR930021668 A KR 930021668A KR 950014350 B1 KR950014350 B1 KR 950014350B1
- Authority
- KR
- South Korea
- Prior art keywords
- powder
- alloy
- copper
- sintering
- cucl
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C28/00—Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
본 발명은 W-Cu계 합금의 제조방법에 관한 것으로, 특히 균일하그 치밀한 밀도를 갖는 저농도 C함유 W-Cu계 합금제조에 관한 새로운 방법에 관한 것이다.The present invention relates to a method for producing a W-Cu-based alloy, and more particularly to a new method for producing a low concentration C-containing W-Cu-based alloy having a uniform hag density.
강한 내화 금속인 W과 열전도 및 전기전도도가 양호한 Cu를 조합한 W-Cu 합금은 높은 강도 및 전기전도도를 동시에 갖게되므로 전기접점재로로서 널리 사용되어 왔으며, 최근에는 고출력 집적회로(IC)의 열흡수재료로서 응용가능한 것으로 나타났다. W의 높은 융점 때문에 W-Cu 합금은 분말야금법에 의해 생산되며 주로 Cu융점 이상의 온도에서 액상소결하거나, W 분말로 골격을 형성하고 이에 Cu를 융용시켜 침투시키는 용침법에 의해 제조된다. 액상소결법에 의한 종래의 W-Cu 합금의 제조방법은 Cu 분말과 W 분말을 혼합한 후 이 혼합 분말을 압력기에서 가압하여 성형한 다음, 이를 Cu의 융점 이상의 온도(>1083℃)에서 소결 열처리한다. 경우에 따라서는 소결후에 밀도를 증가시키고 잔류기공을 제거하기 위하여 재가압하기도 하며, 이후에 재소결공정이 뒤따르기도 한다. 또한, 용침법에 의한 방법은 순수한 W 분말, 혹은 소량의 Cu가 혼합된 W 분말을 압력기에서 가압하여 성형한다. 이때 성형체의 기공율을 만큼 조절하여 가압한다. 이를 소결하여 단단한 골격을 형성시킨 후 이 골격위(또는 아래)에 Cu덩어리를 위치시킨 후 Cu를 융용시켜서 모제관 현상에 의해 Cu를 성형체내로 흡수시킨다. 이후에 소둔이 뒤따르기도 한다.W-Cu alloy, which combines W, a strong refractory metal, and Cu with good thermal and electrical conductivity, has been widely used as an electrical contact material because of its high strength and electrical conductivity at the same time. It has been shown to be applicable as an absorbent material. Due to the high melting point of W, the W-Cu alloy is produced by powder metallurgy and is mainly produced by liquid sintering at temperatures above the Cu melting point, or by infiltration by forming a skeleton with W powder and fusing Cu into it. In the conventional method for producing W-Cu alloy by liquid phase sintering, after mixing Cu powder and W powder, the mixed powder is pressurized in a pressure machine and molded, and then sintered and heat-treated at a temperature above the melting point of Cu (> 1083 ° C). do. In some cases, after sintering, re-pressurization may be performed to increase the density and remove residual pores, followed by a resintering process. In addition, the method by the infiltration method forms a pure W powder or a W powder mixed with a small amount of Cu by pressing in a pressure machine. At this time, by adjusting the porosity of the molded body by pressing. After sintering to form a rigid skeleton, Cu lumps are placed on (or below) the skeleton, and then Cu is melted to absorb Cu into the molded body by a mother tube phenomenon. Annealing may be followed.
그러나, 종래의 액상소결법에 따로면 Cu 분말과 W 분말을 균열하게 혼합하기가 어려우며 Cu와 W은 상호고용도가 거의 없으므로 액상소결만으로는 고밀도의 W-Cu 합금을 제조하기 어렵다. 또한, 소결시의 액상이 고상위에서의 집착각이 작아야만 치밀화에 유리한대 W-Cu는 집착각이 매우 크다. 한편, 용침법에 따르면 초기에 형성시킨 W성형체의 기공도에 의해 Cu의 조성이 제한되어 Cu함량이 적은 조성의 W-Cu합금을 제조하기 어립다. 또한, 미세한 형상의 경우 합금제조가 불가능하다. 또한 W를 CuCl2와 같은 동염류 용액속에 넣어 이를 혼합건조시킨 후 수소로로 환원시켜서 W-Cu 합금을 제조하는 방법이 공지되어 있지만, 이러한 방법에 의하면 환원작업을 행하기 위해 많은 시간이 요구되게 되고, 또 연속적으로 환원작업을 행할 수가 없기 때문에 생산원가가 상승하고 대량생산이 어려운 등의 결함이 있다.However, according to the conventional liquid phase sintering method, it is difficult to crack and mix the Cu powder and the W powder, and since Cu and W have little interoperability, it is difficult to manufacture a high density W-Cu alloy by liquid phase sintering alone. In addition, when the liquid phase at the time of sintering has a small sticking angle in the high phase, it is advantageous for densification, and W-Cu has a large sticking angle. On the other hand, according to the infiltration method, the composition of Cu is limited by the porosity of the initially formed W-molded product, which makes it difficult to produce a W-Cu alloy having a low Cu content. In addition, it is impossible to manufacture an alloy in the case of a fine shape. In addition, a method of preparing a W-Cu alloy by adding W into a copper salt solution such as CuCl 2 , mixing and drying it, and then reducing it with hydrogen is known, but according to this method, a large amount of time is required to perform a reduction operation. In addition, since the reduction operation cannot be carried out continuously, there are defects such as an increase in production cost and difficulty in mass production.
본 발명의 목적은 상술한 종래의 방법에 의한 W-Cu 합금의 제조방법이 갖는 제반 문제점을 일소하여 고밀도의 W-Cu계 합금을 제조하는 방법에 제공하는 데 있다.An object of the present invention is to provide a method for producing a high-density W-Cu alloy by eliminating all the problems of the conventional method for producing a W-Cu alloy.
이와 같은 목적을 달성하기 위한 본 발명에 따르면 W-Cu 합금은 CuCl2분말과 W 분말을 호합시켜 이를 덩어리로 만들고, 상기 덩어리를 분쇄하여 CuCl2가 코팅된 W 분말을 만든 후 수소분위기속에서 유동상환원법(Fluidized Bed Reduction)을 이용하여 환원시킴에 의해 얻어진다.According to the present invention for achieving the above object, the W-Cu alloy combines CuCl 2 powder and W powder to form agglomerates, pulverizes the agglomerates to form a CuCl 2 coated W powder, and then flows in a hydrogen atmosphere. Obtained by reduction using Fluidized Bed Reduction.
즉, W 분말과 CuCI2ㆍ2H2O 분말을 원하는 조성으로 측량하여 이를 이온교환수에 함께 섞은 후 가열하면서 자성봉(magnetic bar)으로 교반, 건조시켜서 이온교환수를 모두 증발시키면 용깅는 금속염화물과 W분말이 혼합되어 형성된 덩어리가 남게 된다.That is, W powder and CuCI 2 ㆍ 2H 2 O powder are measured to a desired composition, mixed with ion exchanged water together, stirred and dried with a magnetic bar while heating and evaporated to remove all ion exchanged water. The lump formed by mixing with the W powder is left.
상기 덩어리를 용기로부더 분리시켜 분쇄하면 CuCl2가 코팅된 W 분말이 얻어진다. 이 분말을 다시 유동층 반응로 내에 장입하여 H2가스를 통하면, CuCl2+H2→Cu+2HCl의 반응에 의해 CuCl2가 Cu로 환원되는이른바 유동상 환원법에 의해 최종적으로 Cu가 균일하게 고팅된 W 분말이 얻어지게 된다.The mass is further separated into a container and ground to obtain a W powder coated with CuCl 2 . When through the H 2 gas charged in this powder back to the fluidized bed reaction, CuCl 2 + H 2 → final Cu is uniformly goting by a so-called fluidized-bed reduction CuCl 2 is being reduced to Cu by reaction of Cu + 2HCl The obtained W powder is obtained.
한편, W-Cu계 합금을 제조함에 있어서 W와 Cu의 혼합 분말에다 Co 또는 Fe를 소량첨가하여 W-Cu-Co계 분말 또는 W-Cu-Fe 분말을 제조하면 W 분말에 대한 Cu의 접착성(wettability)이 크게 향상된다. 이러한 분말들을 제조하기 위해서는 2가지 방법이 이용될 수 있다.On the other hand, when preparing a W-Cu-based alloy to prepare a W-Cu-Co-based powder or W-Cu-Fe powder by adding a small amount of Co or Fe to the mixed powder of W and Cu, the adhesion of Cu to the W powder (wettability) is greatly improved. Two methods can be used to produce such powders.
첫번째 방법으로는 W 분말과 CuCl2ㆍ2H2O 분말의 혼합 분말에 CoCl2ㆍ6H2O 분말 또는 FeCl3ㆍ6H2O 분말을 Co나 Fe가 소망하는 함량이 되도록 측량하여 전술한 W-Cu 합금의 제조공정과 동일한 공정을 수행하면 중간 생성물로 CuCl2와 CoCl2가 코팅된 W 분말 또는 CuCl2와 FeCl3가 코팅된 W 분말이 얻어지고 다시 유동상 환원법에 의해 W-Cu-Co 또는 W-Cu-Fe 분말이 최종적으로 제조된다.In the first method, CoCl 2 ㆍ 6H 2 O powder or FeCl 3 ㆍ 6H 2 O powder is weighed to a desired content of Co or Fe in a mixed powder of W powder and CuCl 2 ㆍ 2H 2 O powder, and the aforementioned W-Cu Performing the same process as in the preparation of the alloy yields W powder coated with CuCl 2 and CoCl 2 or W powder coated with CuCl 2 and FeCl 3 as intermediate products and again W-Cu-Co or W by fluid phase reduction. -Cu-Fe powder is finally prepared.
두번째 방법으로는 W 분말에 Cu를 코팅하는 방법과 동일한 방법으로 우선 W 분말에 Co나 Fe를 면저코팅하여 Co나 Fe가 코팅된 W 분말을 얻은 후 다시 동일한 방법을 재차 이용하여 Cu를 코팅항으로써 최종적으로 W-Cu-Co 또는 W-Cu-Fe 분말이 얻어진다. 유동상 환원법에 의한 환원시의 환원온도에 관해서는 열역학적으로 CuCl2는 상온 이상에서 CoCl2는 600℃ 이상에서 그리고 FeCl3는 300℃ 이상에서 수소에 의해 환원반응이 일어날 수 있다. 그러나 실제로 CuCl2의 환원은 20O℃ 이상의 온도에서 일어났고 FeCl2나 CoCl2는 열역학적으로 예상된 온도에서 환원반응이 일어났다. 따라서 W-Cu 분말은 200℃ 이상에서 W-Cu-Co 분말은 600℃ 이상에서 W-Cu-Fe 분말은 300℃ 이상에서 제조가 가능하다.The second method is the same method as coating Cu on W powder. First, Co or Fe is surface-coated on W powder to obtain W powder coated with Co or Fe, and then the same method is used again to coat Cu. Finally, W-Cu-Co or W-Cu-Fe powders are obtained. Reduction temperature at the time of reduction by the fluidized bed reduction method is thermodynamically, the reduction reaction may occur by hydrogen at CuCl 2 above room temperature, CoCl 2 above 600 ° C, and FeCl 3 above 300 ° C. In practice, however, the reduction of CuCl 2 occurred at temperatures above 20 ° C and the reduction reactions of FeCl 2 and CoCl 2 occurred at thermodynamically expected temperatures. Therefore, the W-Cu powder may be prepared at 200 ° C. or higher and the W-Cu-Co powder at 600 ° C. or higher, and the W-Cu-Fe powder may be prepared at 300 ° C. or higher.
이상과 같이 하여 얻어진 W-Cu, W-Cu-Co 또는 W-Cu-Fe 분말을 소정의 다이스(dies)에서 가압성형하여 Cu의 융점(1083℃) 이하의 온도에서 고상소결하거나 또는 그 이상의 온도에서 액상소결하여 고밀도의 W-Cu, W-Cu-Co 또는 W-Cu-Fe 합금의 소결체를 얻는다. 이 소결체는 잔류기공을 제거하거나 소정의 치수로 변형시키기 위해 재가압할 수도 있고 필요에 따라 재소결 할 수도 있다.The W-Cu, W-Cu-Co or W-Cu-Fe powders obtained as described above are press-molded in predetermined dies to solid-sinter at or below the melting point (1083 ° C) of Cu. Liquid phase sintering at gives a sintered body of high density W-Cu, W-Cu-Co or W-Cu-Fe alloy. The sintered body may be repressurized to remove residual pores or deformed to desired dimensions, or may be resintered as necessary.
[실시예 1]Example 1
75% W-25% Cu 소결체의 제조(단, %는 중량%이며 이하 모두 같다)Preparation of 75% W-25% Cu sintered body, where% is% by weight and all the same below
W 분말12.01g, CuCl2ㆍ2H2O 분말10.73g를 취한 후 물 30㎖와 유리병에서 혼합하였다. 이 혼합물을110℃로 유지하여 120분 정도 저어주면서 수분을 완전히 제거하고, 이때 얻어진 덩어리를 분쇄한 후 325 메쉬의 체를 이용하여 공급하였다. 이렇게 하여 얻어진 분말을 수직석영관에 장입하고 20㎖/min 정도의 수소를 통과시켜 수소 분위기를 형성한 다음 노의온도가 300℃에 도달하면 20㎖/min의 수소를 통과시키면서 분말을 유동시켜 금속염화물을 약 40분간 환원시켰다. 이 환원분말을 원통형 가압틀에 넣오 200MPa를 압력으로 가압성형하여 성형체를 만든다. 이 성형제를 수소 분위기에서 1200℃까지 승온시켜 소결체를 얻었으며, 그 특성을 표 1에 나타내었다.12.01 g of W powder and 10.73 g of CuCl 2 · 2H 2 O powder were taken, followed by mixing in 30 ml of water and a glass bottle. The mixture was kept at 110 ° C. and stirred for about 120 minutes to completely remove moisture, and the obtained mass was pulverized and then fed using a 325 mesh sieve. The powder thus obtained is charged into a vertical quartz tube and passed through about 20 ml / min of hydrogen to form a hydrogen atmosphere. When the furnace temperature reaches 300 ° C., the powder flows while passing through 20 ml / min of hydrogen. The chloride was reduced for about 40 minutes. The reduced powder is put in a cylindrical pressurization mold and pressurized at 200 MPa to form a molded body. The molding agent was heated to 1200 ° C. in a hydrogen atmosphere to obtain a sintered body, and the characteristics thereof are shown in Table 1.
[실시예 2]Example 2
75% W-24.5%,Cu-0.5% Co 소결체의 제조Preparation of 75% W-24.5%, Cu-0.5% Co Sintered Body
W 분말 12.0lg, CuCl2ㆍ2H2O 10.52g, CoCl2ㆍ6H2o 0.32g을 취한 것. 그리고 환원시의 노의 온도를700℃로 한 것을 제외하고는 실시예 1과 동일한 방법으로 W-Cu-Co 소결체를 얻었으며, 그 특성을 표 1에 나타내었다.W powder 12.0 lg, CuCl 2 .2H 2 O 10.52 g, CoCl 2 .6H 2 o 0.32 g. A W-Cu-Co sintered body was obtained in the same manner as in Example 1 except that the furnace temperature at reduction was 700 ° C., and the properties thereof are shown in Table 1 below.
[실시예 3]Example 3
75% W-24.5%, Cu-0 5% Fe 소결체의 제조Preparation of 75% W-24.5%, Cu-0 5% Fe Sintered Body
W 분말 12.01g, CuCl2ㆍ2H2O 10.5%, FeCl3ㆍ6H2O 039g을 취한 것, 그리고 환원시의 노의 온도를400℃로 유지한 것을 제외하고는 실시예 1과 동일한 으로 W-Cu-Fe 소결체를 얻었으며 그 특성을 표1에 나타내었다.W-Cu in the same manner as in Example 1 except that 12.01 g of W powder, 10.5% of CuCl 2 · 2H 2 O, 039 g of FeCl 3 · 6H 2 O, and the furnace temperature at the time of reduction were kept at 400 ° C. A -Fe sintered body was obtained and its properties are shown in Table 1.
이상과 같은 본 발명에 의하면 1μm 이하의 미세한 W 분말에 유동상 환원법에 의한 코팅에 의해 Cu를 첨가함으로써, 보다 미세하고 균일한 W-Cu 분말의 제조가 가능하며 이를 소결함으로써, 기존의 것보다더 높은 밀도의 W-Cu 소결체를 제조할 수 있으며 여기에 Co 또는 Fe를 소량 첨가함으로써 Cu 액상의 접착성을 향상시켜 더 빠른 시간에 더 높은 밀도를 가진 W-Cu계 합금을 제조할 수 있다.According to the present invention as described above by the addition of Cu by the coating by the fluidized phase reduction method to the fine W powder of 1μm or less, it is possible to manufacture a finer and more uniform W-Cu powder and by sintering it, A high density W-Cu sintered body can be prepared, and a small amount of Co or Fe can be added thereto to improve adhesion of the Cu liquid phase, thereby producing a W-Cu alloy having a higher density at a faster time.
표 1은 각 소결온도에서 0시간 소결하였을 때의 부피수축룰을 나타낸 것으로 W-Cu에 Co(또는 Fe)가0.5% 첨가된 소결체의 경우에는 1200℃에서 96% 정도의 상대밀도를 나타내었으며 W-Cu 소결체의 경우에도 소결밀도가 70%를 상회함을 알수 있다.Table 1 shows the volume shrinkage rule when sintered at each sintering temperature for 0 hours. In the case of sintered body in which 0.5% of Co (or Fe) was added to W-Cu, the relative density was about 96% at 1200 ° C. In the case of -Cu sintered body, it can be seen that the sintered density exceeds 70%.
[표 1]TABLE 1
소결온도에 따른 소결체의 부피수축률Volume Shrinkage Rate of Sintered Body According to Sintering Temperature
본 발명에 따른 이와 같은 실험결과는 J.S.LEE 등(Modern Development in P/M, 1985, 15, PP. 489-506)이 제시한 상대밀도 60%보다 우수하고 70% W-30% Cu 조성을 갖는 경우에 1150℃에서 1시간 소결하여도 90% 이하의 상대밀도를 가지는 것으로 후지이등(ISIJ. 1990, 76(5). PP 743-750)이 보고한 것보다 탁월하다.Such experimental results according to the present invention are superior to 60% relative density and 70% W-30% Cu composition suggested by JSLEE et al. (Modern Development in P / M, 1985, 15, PP. 489-506). It is superior to that reported by Fujii et al. (ISIJ. 1990, 76 (5) .PP 743-750) with a relative density of 90% or less even after 1 hour of sintering at 1150 ° C.
이 합금은 강도가 높으며 전도도 또한 우수하여 전기접점재료 및 집적회로칩(IC chip)의 열 흡수재(heatsink) 등, 여러 방면에 응용가능하다. 또한 본 발명에 의해 미세한 형상의 W-Cu 합금 부품제작이 가능하며 저농도의 Cu가 요구되는 W-Cu 합금 제작에 용이하게 이용될 수도 있다.Its high strength and high conductivity make it suitable for many applications, including electrical contact materials and heatsinks for IC chips. In addition, according to the present invention, it is possible to manufacture a fine-shaped W-Cu alloy parts and may be easily used for the production of W-Cu alloys requiring low concentration of Cu.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019930021668A KR950014350B1 (en) | 1993-10-19 | 1993-10-19 | Method of manufacturing alloy of w-cu system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019930021668A KR950014350B1 (en) | 1993-10-19 | 1993-10-19 | Method of manufacturing alloy of w-cu system |
Publications (2)
Publication Number | Publication Date |
---|---|
KR950011016A KR950011016A (en) | 1995-05-15 |
KR950014350B1 true KR950014350B1 (en) | 1995-11-25 |
Family
ID=19366104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019930021668A KR950014350B1 (en) | 1993-10-19 | 1993-10-19 | Method of manufacturing alloy of w-cu system |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR950014350B1 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011071908A3 (en) * | 2009-12-08 | 2011-11-17 | Baker Hughes Incorporated | Method of making a nanomatrix powder metal compact |
US8714268B2 (en) | 2009-12-08 | 2014-05-06 | Baker Hughes Incorporated | Method of making and using multi-component disappearing tripping ball |
US8776884B2 (en) | 2010-08-09 | 2014-07-15 | Baker Hughes Incorporated | Formation treatment system and method |
US8783365B2 (en) | 2011-07-28 | 2014-07-22 | Baker Hughes Incorporated | Selective hydraulic fracturing tool and method thereof |
US9022107B2 (en) | 2009-12-08 | 2015-05-05 | Baker Hughes Incorporated | Dissolvable tool |
US9033055B2 (en) | 2011-08-17 | 2015-05-19 | Baker Hughes Incorporated | Selectively degradable passage restriction and method |
US9057242B2 (en) | 2011-08-05 | 2015-06-16 | Baker Hughes Incorporated | Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate |
US9068428B2 (en) | 2012-02-13 | 2015-06-30 | Baker Hughes Incorporated | Selectively corrodible downhole article and method of use |
US9080098B2 (en) | 2011-04-28 | 2015-07-14 | Baker Hughes Incorporated | Functionally gradient composite article |
US9090956B2 (en) | 2011-08-30 | 2015-07-28 | Baker Hughes Incorporated | Aluminum alloy powder metal compact |
US9090955B2 (en) | 2010-10-27 | 2015-07-28 | Baker Hughes Incorporated | Nanomatrix powder metal composite |
US9101978B2 (en) | 2002-12-08 | 2015-08-11 | Baker Hughes Incorporated | Nanomatrix powder metal compact |
US9109429B2 (en) | 2002-12-08 | 2015-08-18 | Baker Hughes Incorporated | Engineered powder compact composite material |
US9109269B2 (en) | 2011-08-30 | 2015-08-18 | Baker Hughes Incorporated | Magnesium alloy powder metal compact |
US9127515B2 (en) | 2010-10-27 | 2015-09-08 | Baker Hughes Incorporated | Nanomatrix carbon composite |
US9133695B2 (en) | 2011-09-03 | 2015-09-15 | Baker Hughes Incorporated | Degradable shaped charge and perforating gun system |
US9139928B2 (en) | 2011-06-17 | 2015-09-22 | Baker Hughes Incorporated | Corrodible downhole article and method of removing the article from downhole environment |
US9187990B2 (en) | 2011-09-03 | 2015-11-17 | Baker Hughes Incorporated | Method of using a degradable shaped charge and perforating gun system |
US9227243B2 (en) | 2009-12-08 | 2016-01-05 | Baker Hughes Incorporated | Method of making a powder metal compact |
US9243475B2 (en) | 2009-12-08 | 2016-01-26 | Baker Hughes Incorporated | Extruded powder metal compact |
US9267347B2 (en) | 2009-12-08 | 2016-02-23 | Baker Huges Incorporated | Dissolvable tool |
US9347119B2 (en) | 2011-09-03 | 2016-05-24 | Baker Hughes Incorporated | Degradable high shock impedance material |
US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9856547B2 (en) | 2011-08-30 | 2018-01-02 | Bakers Hughes, A Ge Company, Llc | Nanostructured powder metal compact |
US9910026B2 (en) | 2015-01-21 | 2018-03-06 | Baker Hughes, A Ge Company, Llc | High temperature tracers for downhole detection of produced water |
US9926766B2 (en) | 2012-01-25 | 2018-03-27 | Baker Hughes, A Ge Company, Llc | Seat for a tubular treating system |
US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
US10092953B2 (en) | 2011-07-29 | 2018-10-09 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
US10335858B2 (en) | 2011-04-28 | 2019-07-02 | Baker Hughes, A Ge Company, Llc | Method of making and using a functionally gradient composite tool |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100446985B1 (en) * | 2001-11-20 | 2004-09-01 | 학교법인 한양학원 | A PREPARATION OF W-Cu COMPOSITE POWDER |
-
1993
- 1993-10-19 KR KR1019930021668A patent/KR950014350B1/en not_active IP Right Cessation
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9101978B2 (en) | 2002-12-08 | 2015-08-11 | Baker Hughes Incorporated | Nanomatrix powder metal compact |
US9109429B2 (en) | 2002-12-08 | 2015-08-18 | Baker Hughes Incorporated | Engineered powder compact composite material |
US9227243B2 (en) | 2009-12-08 | 2016-01-05 | Baker Hughes Incorporated | Method of making a powder metal compact |
US8714268B2 (en) | 2009-12-08 | 2014-05-06 | Baker Hughes Incorporated | Method of making and using multi-component disappearing tripping ball |
US9022107B2 (en) | 2009-12-08 | 2015-05-05 | Baker Hughes Incorporated | Dissolvable tool |
US10669797B2 (en) | 2009-12-08 | 2020-06-02 | Baker Hughes, A Ge Company, Llc | Tool configured to dissolve in a selected subsurface environment |
US9243475B2 (en) | 2009-12-08 | 2016-01-26 | Baker Hughes Incorporated | Extruded powder metal compact |
US9267347B2 (en) | 2009-12-08 | 2016-02-23 | Baker Huges Incorporated | Dissolvable tool |
CN102648064A (en) * | 2009-12-08 | 2012-08-22 | 贝克休斯公司 | Method of making a nanomatrix powder metal compact |
US9079246B2 (en) | 2009-12-08 | 2015-07-14 | Baker Hughes Incorporated | Method of making a nanomatrix powder metal compact |
WO2011071908A3 (en) * | 2009-12-08 | 2011-11-17 | Baker Hughes Incorporated | Method of making a nanomatrix powder metal compact |
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
US8776884B2 (en) | 2010-08-09 | 2014-07-15 | Baker Hughes Incorporated | Formation treatment system and method |
US9090955B2 (en) | 2010-10-27 | 2015-07-28 | Baker Hughes Incorporated | Nanomatrix powder metal composite |
US9127515B2 (en) | 2010-10-27 | 2015-09-08 | Baker Hughes Incorporated | Nanomatrix carbon composite |
US9080098B2 (en) | 2011-04-28 | 2015-07-14 | Baker Hughes Incorporated | Functionally gradient composite article |
US9631138B2 (en) | 2011-04-28 | 2017-04-25 | Baker Hughes Incorporated | Functionally gradient composite article |
US10335858B2 (en) | 2011-04-28 | 2019-07-02 | Baker Hughes, A Ge Company, Llc | Method of making and using a functionally gradient composite tool |
US9926763B2 (en) | 2011-06-17 | 2018-03-27 | Baker Hughes, A Ge Company, Llc | Corrodible downhole article and method of removing the article from downhole environment |
US9139928B2 (en) | 2011-06-17 | 2015-09-22 | Baker Hughes Incorporated | Corrodible downhole article and method of removing the article from downhole environment |
US10697266B2 (en) | 2011-07-22 | 2020-06-30 | Baker Hughes, A Ge Company, Llc | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
US8783365B2 (en) | 2011-07-28 | 2014-07-22 | Baker Hughes Incorporated | Selective hydraulic fracturing tool and method thereof |
US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US10092953B2 (en) | 2011-07-29 | 2018-10-09 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9057242B2 (en) | 2011-08-05 | 2015-06-16 | Baker Hughes Incorporated | Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate |
US10301909B2 (en) | 2011-08-17 | 2019-05-28 | Baker Hughes, A Ge Company, Llc | Selectively degradable passage restriction |
US9033055B2 (en) | 2011-08-17 | 2015-05-19 | Baker Hughes Incorporated | Selectively degradable passage restriction and method |
US11090719B2 (en) | 2011-08-30 | 2021-08-17 | Baker Hughes, A Ge Company, Llc | Aluminum alloy powder metal compact |
US9802250B2 (en) | 2011-08-30 | 2017-10-31 | Baker Hughes | Magnesium alloy powder metal compact |
US9856547B2 (en) | 2011-08-30 | 2018-01-02 | Bakers Hughes, A Ge Company, Llc | Nanostructured powder metal compact |
US10737321B2 (en) | 2011-08-30 | 2020-08-11 | Baker Hughes, A Ge Company, Llc | Magnesium alloy powder metal compact |
US9925589B2 (en) | 2011-08-30 | 2018-03-27 | Baker Hughes, A Ge Company, Llc | Aluminum alloy powder metal compact |
US9090956B2 (en) | 2011-08-30 | 2015-07-28 | Baker Hughes Incorporated | Aluminum alloy powder metal compact |
US9109269B2 (en) | 2011-08-30 | 2015-08-18 | Baker Hughes Incorporated | Magnesium alloy powder metal compact |
US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
US9187990B2 (en) | 2011-09-03 | 2015-11-17 | Baker Hughes Incorporated | Method of using a degradable shaped charge and perforating gun system |
US9347119B2 (en) | 2011-09-03 | 2016-05-24 | Baker Hughes Incorporated | Degradable high shock impedance material |
US9133695B2 (en) | 2011-09-03 | 2015-09-15 | Baker Hughes Incorporated | Degradable shaped charge and perforating gun system |
US9926766B2 (en) | 2012-01-25 | 2018-03-27 | Baker Hughes, A Ge Company, Llc | Seat for a tubular treating system |
US9068428B2 (en) | 2012-02-13 | 2015-06-30 | Baker Hughes Incorporated | Selectively corrodible downhole article and method of use |
US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
US10612659B2 (en) | 2012-05-08 | 2020-04-07 | Baker Hughes Oilfield Operations, Llc | Disintegrable and conformable metallic seal, and method of making the same |
US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
US9910026B2 (en) | 2015-01-21 | 2018-03-06 | Baker Hughes, A Ge Company, Llc | High temperature tracers for downhole detection of produced water |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
Also Published As
Publication number | Publication date |
---|---|
KR950011016A (en) | 1995-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950014350B1 (en) | Method of manufacturing alloy of w-cu system | |
EP1138420B1 (en) | Molybdenum-copper composite powder and production and processing thereof to form a pseudoalloy | |
KR100543834B1 (en) | Sinter-Active Metal and Alloy Powders for Powder Metallurgy Applications and Methods for Their Production and Their Use | |
US3974245A (en) | Process for producing free flowing powder and product | |
FI83935C (en) | Ways to process and produce materials | |
JP2002518589A (en) | Method for preparing compressible powder of transition metal carbide, iron group metal or mixture thereof | |
US3671228A (en) | Method of making high-density sintered metal | |
CN106756376A (en) | tungsten-copper alloy and its processing method and application | |
JP2000501786A (en) | Prealloyed powder and its use in the production of diamond tools | |
WO1996022401A1 (en) | Copper-tungsten alloys and process for producing the same | |
US3663667A (en) | Process for producing metal powders | |
JP2002501440A (en) | Prealloyed copper-containing powder and its use in the production of diamond tools | |
JPH03166335A (en) | Dispersively reinforcing material | |
Saida et al. | Preparation of ultra-fine amorphous powders by the chemical reduction method and the properties of their sintered products | |
CN109128143A (en) | A kind of fine/nano tungsten-copper raw powder's production technology with core-shell structure | |
JP3640432B2 (en) | Method for producing fluid tungsten / copper composite powder | |
FI87895C (en) | FOERFARANDE FOER FRAMSTAELLNING AV METALLPULVER | |
EP1666420A2 (en) | Method of making a CuMoO4-based composite oxide powder | |
Guo et al. | Field-assisted solid phase sintering of W-20 wt.% Cu nanocomposites prepared by co-precipitation method | |
KR970001558B1 (en) | Method for composite powder | |
JPS62243726A (en) | Cu-tib2 composite sintered material | |
KR100421722B1 (en) | A manufacturing method of partial diffusion prealloy by ionic dispersion process | |
US3383198A (en) | High green strength-low density copper powder and method for preparing same | |
DE69523036T2 (en) | Process for the production of flowable tungsten / copper composite powder | |
Kim et al. | Metal injection molding of W-Cu powders prepared by low energy ball milling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20071126 Year of fee payment: 13 |
|
LAPS | Lapse due to unpaid annual fee |