JPS60139185A - Torque detector of ac machine - Google Patents

Torque detector of ac machine

Info

Publication number
JPS60139185A
JPS60139185A JP58250395A JP25039583A JPS60139185A JP S60139185 A JPS60139185 A JP S60139185A JP 58250395 A JP58250395 A JP 58250395A JP 25039583 A JP25039583 A JP 25039583A JP S60139185 A JPS60139185 A JP S60139185A
Authority
JP
Japan
Prior art keywords
phase
torque
transformer
magnetic flux
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58250395A
Other languages
Japanese (ja)
Other versions
JPH0222639B2 (en
Inventor
Tsugutoshi Otani
大谷 継利
Hidenori Takasaki
高崎 秀紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP58250395A priority Critical patent/JPS60139185A/en
Publication of JPS60139185A publication Critical patent/JPS60139185A/en
Publication of JPH0222639B2 publication Critical patent/JPH0222639B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To accurately detect a torque to a low frequency by relatively cancelling the phase error of a voltage detection due to a transformer by the phase compensation of a current. CONSTITUTION:A phase leading compensator 8 for compensating the phase lead having the same time constant as the phase leading characteristic of a transformer is provided in a line current detector. Thus, when the phase of current detection signal is lead in the amount (delta) that the phase is led by the frequency characteristic of an insulated transformer 4 at a magnetic flux vector phid, the relative position relationship between the current and the magnetic flux is maintained, and a torque can be calculated accurately to a low frequency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、交流電動機の電流検出信号に位相進み補償回
路を備えたトルク検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a torque detection device that includes a phase lead compensation circuit for a current detection signal of an AC motor.

〔従来技術とその問題点〕[Prior art and its problems]

従来、交流電動機の端子電圧と電流から、演算によりト
ルクを導出する方法があるが、捻出電圧の絶縁のために
用いられる変圧器の検出位相特性が低周波では悪化し、
満足なトルク検出ができないという問題があった。
Conventionally, there is a method of calculating torque from the terminal voltage and current of an AC motor, but the detection phase characteristics of the transformer used to isolate the extra voltage deteriorate at low frequencies.
There was a problem that satisfactory torque detection could not be performed.

一般に誘導電動機の発生トルクは、2次鎮交磁束とモー
タ電流のベクトル外積として表すことができる。即ち、
トルクTは、 T=K −4Xφ・・・・・・・−・・−・−・−・−
・・・−・・・・(11式ここで、 L:相電流ベクト
ル 参:2次鎖交磁束ベクトル に:定数 ・ ・ で表すことができる。従って、2相電流及び2次鎖交磁
束ベクトルを検出し、外積演算をすることにより、電気
的トルクを検出することが可能となる。・ (1)式より明らかなように、精度良くトルクを演算す
るためには、電流及び磁束の振幅及び位相差の検出精度
が要求される。 ・ ここで、従来のトルク検出器の構成例を第・1図に示す
1図において(11)は電動機、(12)は電動機制御
装置、(13)は、トルク検出器、(14)は電圧検出
用絶縁トランス、(15)は電流検出器、(16)は磁
束ベクトル演算回路、(17)は3相から2相に電流及
び磁束を変換する直交変換器である。゛ ( 第1図の中で磁束ベクトル演算回路(16)は、一般に
相電圧の積分回路及びインピーダンス降下補償回路より
構成される。
Generally, the torque generated by an induction motor can be expressed as a vector cross product of secondary magnetic flux and motor current. That is,
Torque T is T=K −4Xφ・・・・・・・−・・−・−・−・−
...-... (Formula 11, where L: Phase current vector. Secondary flux linkage vector: Constant. Therefore, the two-phase current and secondary flux linkage vector can be expressed as It is possible to detect the electrical torque by detecting the Accuracy in phase difference detection is required. - Here, an example of the configuration of a conventional torque detector is shown in Figure 1. In Figure 1, (11) is a motor, (12) is a motor control device, and (13) is a motor control device. , torque detector, (14) is an isolation transformer for voltage detection, (15) is a current detector, (16) is a magnetic flux vector calculation circuit, (17) is an orthogonal conversion that converts current and magnetic flux from three phases to two phases. (The magnetic flux vector calculation circuit (16) in FIG. 1 is generally composed of a phase voltage integration circuit and an impedance drop compensation circuit.

第1図で示される従来のトルク婢出器(13)の欠点は
、低周波では検出精度が低下することである。その理由
は、モータ電圧の絶縁のため用いているトランス(14
)の周波数特性が低周波では悪化するためである。トラ
ンスは等価的に第2図(a)で表!ことができる。2次
側に負荷電流をほとんど流さない(2次開放)時の入力
電圧五1に対すここで、Tt −Lt /Rs ()ラ
ンス1次時定数)であり、トランスの電圧比は1:1と
する。(Ls =L2 ) となり(第2図(b)参照)、ボード線図より明らかな
ように低周波になると入力電圧L1に対し、検出電圧百
2の位相が進む。このため、演算磁束、 べ多トルが、
真の磁束ベクトルに対し位相進みの誤差が生じることと
なり、検出電流と検出磁束の位相差に誤iが生じ、+1
1式より分かるように演算□ トルク誤差となる。
A drawback of the conventional torque enhancer (13) shown in FIG. 1 is that the detection accuracy is reduced at low frequencies. The reason for this is the transformer (14
This is because the frequency characteristics of ) deteriorate at low frequencies. The transformer is equivalently shown in Figure 2 (a)! be able to. Here, for the input voltage 51 when almost no load current flows in the secondary side (secondary open circuit), Tt - Lt /Rs (lance primary time constant), and the voltage ratio of the transformer is 1:1. shall be. (Ls = L2) (see FIG. 2(b)), and as is clear from the Bode diagram, when the frequency becomes low, the phase of the detected voltage 102 advances with respect to the input voltage L1. Therefore, the calculated magnetic flux, Betator, is
An error in phase lead will occur with respect to the true magnetic flux vector, and an error i will occur in the phase difference between the detected current and the detected magnetic flux, resulting in +1
As can be seen from equation 1, calculation □ results in torque error.

第3図はこの演算トルク誤差をベクトル図で表したもの
であり、;tは真の2次鎮交磁束、tdは電流検出信号
(=真の電流−Lt)であって、真のドルクリ3図のA
で示されるようにt、dを対角線とする長方形の面積と
して表されるのに対し、絶縁トランス(14)の位相誤
差δにより現実に検出され乞誘起電圧信号(絶縁トラン
ス(14)の2次側)adは、真の誘起電圧etよりも
δだけ進: んだものとなり、磁束べ□クト′ル演算回
路(13)で演算された検出トルクは第3図のBのよう
に、検りトル積に応じた面積となり、Aの面積と比べて
誤差が大きくなる。
Figure 3 shows this calculated torque error in a vector diagram; t is the true secondary magnetic flux, td is the current detection signal (=true current - Lt), and the true torque error is 3. A in the diagram
As shown in , it is expressed as the area of a rectangle with diagonals t and d, whereas the induced voltage signal (the secondary voltage signal of the isolation transformer (14) side) ad is advanced by δ from the true induced voltage et, and the detected torque calculated by the magnetic flux vector calculation circuit (13) is detected as shown in B in Fig. 3. The area corresponds to the Torr product, and the error is larger than the area of A.

〔発明の目的〕[Purpose of the invention]

本発明は、このような従来の問題点を解消し、電流検出
信号に位相補償を行なって、低周波まで精度良くトルク
を検出することを目的とするものである。
It is an object of the present invention to solve these conventional problems and perform phase compensation on a current detection signal to detect torque with high accuracy even at low frequencies.

〔発明の構成〕[Structure of the invention]

本発明のトルク検出装置は、線路電流検出信号に、前記
トランスの位相進み特性と同等の時定数を持つ位相進み
補償を行なって2次鎖交磁束を演算する構成としたこと
を特徴とするものである。
The torque detection device of the present invention is characterized in that it is configured to calculate a secondary magnetic flux linkage by performing phase lead compensation on the line current detection signal with a time constant equivalent to the phase lead characteristic of the transformer. It is.

〔実施例〕 □ 以下、本発明を図面に示す実施例に基づいて説明する。[Example] □ Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

第4図は本発明のトルク検出器の構成を示すブロック図
であり、(1)は電動機、(2)は電動機制御装置、(
3)はトルク検出器、(4)は絶縁トランス、(5)は
電流検出器、(6)は磁束ベクトル演算回路、(7)は
直交変換回路、(8)は位相進み補償回路である。
FIG. 4 is a block diagram showing the configuration of the torque detector of the present invention, in which (1) is the electric motor, (2) is the electric motor control device, (
3) is a torque detector, (4) is an isolation transformer, (5) is a current detector, (6) is a magnetic flux vector calculation circuit, (7) is an orthogonal conversion circuit, and (8) is a phase lead compensation circuit.

ここで、位相進み補償回路(8)は、低周波時にも磁束
検出信号と、電流検出信号の相対位相関係を正しく保つ
役割を果たす。即ち、第5図のベクトル図に示すように
、磁束ベクトルJdが絶縁トランスの周波数特性により
、位相が進む分δだけ電流検出信号の位相を進めれば、
電流と磁束の相対位相関係が保たれ、正しくトルクを演
算することができる。即ち、・第5図においてδ=δ′
、(δ′は位相進み補償回路(8)による位相差)とす
れば、A部の面積で表される検出トルクとB部で表され
る真のトルクとは等しくなる。
Here, the phase lead compensation circuit (8) plays the role of maintaining a correct relative phase relationship between the magnetic flux detection signal and the current detection signal even at low frequencies. That is, as shown in the vector diagram of FIG. 5, if the magnetic flux vector Jd advances the phase of the current detection signal by the amount δ that the phase advances due to the frequency characteristics of the isolation transformer, then
The relative phase relationship between current and magnetic flux is maintained, and torque can be calculated correctly. That is, δ=δ' in Figure 5
, (δ' is the phase difference caused by the phase lead compensation circuit (8)), then the detected torque represented by the area of section A and the true torque represented by section B are equal.

以上より、トランスの1次巻線時定数をTtとするとき
、位相進み補償回路の入出力伝達関数を、sTt / 
(1+sTt ) とすることにより、δ=δ′となり、低周波まで精度良
く演算することができる。
From the above, when the primary winding time constant of the transformer is Tt, the input/output transfer function of the phase lead compensation circuit is sTt /
By setting (1+sTt), δ=δ', and calculations can be made with high accuracy up to low frequencies.

この位相進み補償器は直流分を通さないため、電流検出
器(ホール素子を用いたCT等)のオフセットをカット
する効果もある。
Since this phase lead compensator does not pass a DC component, it also has the effect of cutting off the offset of a current detector (such as a CT using a Hall element).

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば1.トランスによる電圧
検出の位相誤差を電流の位相補償によって相対的に打ち
消すことができ、低周波まで精度よくトルクを検出する
ことができるという効果を奏するものである。
As described above, according to the present invention, 1. This has the effect that phase errors in voltage detection by the transformer can be relatively canceled out by phase compensation of the current, and torque can be detected with high accuracy up to low frequencies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のトルク検出器の構成を示すブロック図、
第2図は絶縁トランスの等価回路及び伝達関数を示す説
明図、第3図は低周波における真のトルクと検出トルク
の関係を示す説明図、第4図は本発明のトルク検出器の
構成を示すブロック図、第5図は本発明による真のトル
クと検出トルクとの関係を示す説明図である。 (l):電動機 (2):電動機制御装置(31:)ル
ク検出器 (4):絶縁トランス(5):電流検出器 
(6):磁束ベクトル演算回路(7):直交変換回路 
(8):位相進み補償回路特許出願人 株式会社 安川
電機製作所代理人 小堀 益(ほか2名) 第2図 Tt”L1/R1 第3図
Figure 1 is a block diagram showing the configuration of a conventional torque detector.
Fig. 2 is an explanatory diagram showing the equivalent circuit and transfer function of an isolation transformer, Fig. 3 is an explanatory diagram showing the relationship between true torque and detected torque at low frequencies, and Fig. 4 is an explanatory diagram showing the configuration of the torque detector of the present invention. The block diagram shown in FIG. 5 is an explanatory diagram showing the relationship between true torque and detected torque according to the present invention. (l): Electric motor (2): Motor control device (31:) Lux detector (4): Insulation transformer (5): Current detector
(6): Magnetic flux vector calculation circuit (7): Orthogonal transformation circuit
(8): Phase lead compensation circuit patent applicant Yaskawa Electric Co., Ltd. Agent Masu Kobori (and 2 others) Figure 2 Tt”L1/R1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、トランスを介して検出した交流機の電圧ベクトルと
、同交流機の線路電流からめた2次鎖交磁束ベクトルと
に基づいて交流機の+ルクを検出する装置において、前
記線路電流検出信号にζ前記トランスの位相進み特性と
同等の時定数を持つ位相進み補償を行なって2次鎮交磁
束を演算する構成としたことを特徴とする交流機のトル
ク検出装置。
1. In a device that detects the +lux of an alternating current machine based on the voltage vector of the alternating current machine detected via a transformer and the secondary linkage magnetic flux vector obtained from the line current of the alternating current machine, the line current detection signal is ζ A torque detection device for an alternating current machine, characterized in that it is configured to calculate a secondary cross-interrupting magnetic flux by performing phase lead compensation having a time constant equivalent to the phase lead characteristic of the transformer.
JP58250395A 1983-12-23 1983-12-23 Torque detector of ac machine Granted JPS60139185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58250395A JPS60139185A (en) 1983-12-23 1983-12-23 Torque detector of ac machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58250395A JPS60139185A (en) 1983-12-23 1983-12-23 Torque detector of ac machine

Publications (2)

Publication Number Publication Date
JPS60139185A true JPS60139185A (en) 1985-07-23
JPH0222639B2 JPH0222639B2 (en) 1990-05-21

Family

ID=17207273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58250395A Granted JPS60139185A (en) 1983-12-23 1983-12-23 Torque detector of ac machine

Country Status (1)

Country Link
JP (1) JPS60139185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146663A1 (en) * 2009-06-16 2010-12-23 東芝三菱電機産業システム株式会社 Synchronous machine starting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113964A1 (en) 2009-04-03 2010-10-07 三菱瓦斯化学株式会社 Method for producing α-hydroxycarboxylic acid ester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146663A1 (en) * 2009-06-16 2010-12-23 東芝三菱電機産業システム株式会社 Synchronous machine starting device

Also Published As

Publication number Publication date
JPH0222639B2 (en) 1990-05-21

Similar Documents

Publication Publication Date Title
EP0637870B1 (en) Vector control apparatus for induction motor
US6064191A (en) Current transducer and current-monitoring method
WO2002065609A1 (en) Overload current protection device using magnetic impedance element
JPS60139185A (en) Torque detector of ac machine
US7218494B2 (en) Overload current protection device using magnetic impedance element
US20040239335A1 (en) Current measurement in electrical machines
JPS589595A (en) Operating state amount calculating device
US6897758B1 (en) Method for reproducing direct currents and a direct current transformer for carrying out said method
KR0129561B1 (en) Induction motor vector control
JPS58165058A (en) Insulation type current detector
JPH08289521A (en) Method and apparatus for detecting fault of winding-type rotation detector
JPH0328804B2 (en)
JPH11337591A (en) Direct current detecting device
KR0128218Y1 (en) A flux detection circuit of an induction motor
JPH0798337A (en) Current detector
JP2730017B2 (en) Inverter device
JPH0329865A (en) Exciting current detector of transformer
US4758770A (en) Servosystem for controlling the voltage in X-ray generators
JPH0574769B2 (en)
JPH03195009A (en) Current transformer device of error compensation type
JPH08149884A (en) Control method for inverter having constant measuring and setting function
JPH08126341A (en) System interconnection inverter and its leakage current detecting device
JPS637349B2 (en)
JP3227824B2 (en) Output voltage control method of voltage source inverter
JP2617325B2 (en) Insulation resistance measurement method