JPS60139037A - Laser light transmitter - Google Patents

Laser light transmitter

Info

Publication number
JPS60139037A
JPS60139037A JP58245951A JP24595183A JPS60139037A JP S60139037 A JPS60139037 A JP S60139037A JP 58245951 A JP58245951 A JP 58245951A JP 24595183 A JP24595183 A JP 24595183A JP S60139037 A JPS60139037 A JP S60139037A
Authority
JP
Japan
Prior art keywords
laser
laser light
laser beam
light
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58245951A
Other languages
Japanese (ja)
Inventor
Akiyoshi Mori
森 昭義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58245951A priority Critical patent/JPS60139037A/en
Publication of JPS60139037A publication Critical patent/JPS60139037A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To stabilize the laser light in the direction of the transmitting optical axis by using a means which detects the radiating direction of the laser light and a means which can change continuously the transmitting beam direction of the laser light. CONSTITUTION:The laser light delivered from a laser oscillator 2 is made incident to an optical deflector 20 which can change continuously the direction of the light. Then the laser light is made incident to a beam splitter 21 from the deflector 20. A part of the light made incident to the splitter 21 is made incident to an angle detector 22, and the greater part of said light is sent to a target via a transmission optical system 3. Then the detector 22 detects the radiating direction of the laser light and sends the angle signal to an arithmetic controller 23. The controller 23 calculates a displacement degree from the prescribed transmission beam direction by the signal given from the detector 22. Then the deflector 20 is controlled by the displacement degree signal to set the displacement degree at zero. Thus it is possible to stabilize the laser light in the direction of the transmitting optical axis.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はレーザ光送信装置の改良に関するもので、レ
ーザ発振器から発生されたレーザ光の発射方向の変動に
かかわらず、所定の送信装置を提供するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to improvement of a laser beam transmitting device, and provides a predetermined transmitting device regardless of fluctuations in the emission direction of the laser beam generated from a laser oscillator. It is something.

〔従来技術) レーザ光送信装置の一般的な使用例としてレーザ測距装
置があげられる。レーザ測距装置はレーザ光のパルスが
目標物までを往復する時間を測定し、距離を計測するも
のである。第1図はレーザ測距装置の構成の一例を示し
たものである。
[Prior Art] A laser distance measuring device is a common example of a laser beam transmitting device. A laser distance measuring device measures distance by measuring the time it takes for a pulse of laser light to travel back and forth to a target. FIG. 1 shows an example of the configuration of a laser distance measuring device.

レーザ光送信装置(1)のレーザ発振器(21で巨大パ
ルス光を発振させ、この発振光の大部分を送信光学系(
3)Kより所定のビーム広が9角にして目標物体に向け
て発射する。また発振光の一部は光検出器(4)へ入射
し、その電気信号がスタートパルスとして計数器(5)
のカウンタのゲートを開き、カウンタはクロックパルス
発振器(6)からのクロックパルスの計数を開始する。
The laser oscillator (21) of the laser beam transmitter (1) oscillates a gigantic pulsed light, and most of this oscillated light is sent to the transmitting optical system (21).
3) From K, set a predetermined beam spread to 9 angles and fire toward the target object. In addition, a part of the oscillated light enters the photodetector (4), and the electric signal is sent to the counter (5) as a start pulse.
and the counter starts counting clock pulses from the clock pulse oscillator (6).

一方目榛物体によって反射された光は受信光学系(71
によって集められ背景光雑音等を除去するためのフィル
タ(8)を通って光検出器(9)へ橋ひ−□□□lリー
−!−φ+□−一 成形され、ストップパルスとして計数器(5)のカウン
タのケートに加えられる。スタートパルスとストップパ
ルスによるケートの開閉の時間内に計数されたクロック
パルスの数が距離に換算され、距離値が表示器(1)に
表示される。
On the other hand, the light reflected by the visible object is transmitted to the receiving optical system (71
It passes through a filter (8) for removing background light noise and the like to a photodetector (9). -φ+□- is formed and added to the counter gate of the counter (5) as a stop pulse. The number of clock pulses counted during the opening/closing time of the gate by the start pulse and stop pulse is converted into a distance, and the distance value is displayed on the display (1).

ところで上記受信光学系171の視野の中に目標対象に
おける送信レーザスポットをおさめることが必要であり
、さらに背景光雑音の低減をはかるためにはその視野を
送信レーザ光のビーム広が多角程度まで狭くする必要が
ある。このために上記送信光学系(3)の光軸(レーザ
光の送信ビーム方向)、受信光学系(7;の光軸及び目
標物体を照準するために用いられる照準望遠鏡03の光
軸は厳密に合致させなければならない。
By the way, it is necessary to fit the transmitting laser spot on the target object within the field of view of the receiving optical system 171, and in order to further reduce background light noise, the field of view must be narrowed to the extent that the beam of the transmitting laser light spreads at a polygonal angle. There is a need to. For this purpose, the optical axis of the transmitting optical system (3) (transmission beam direction of the laser beam), the optical axis of the receiving optical system (7;), and the optical axis of the aiming telescope 03 used for aiming at the target object are strictly Must match.

レーザ測距装置に使用されるレーザとしては到達距離及
び測距精度の点から高出力、極短パルスを発生するQス
イッチ固体レーザが通常用いられている。第2図は、こ
の場合のレーザ光送信装置の従来の一構成例を示したも
のである。図において113はレーザロッド、t14は
偏光子。
Q-switched solid-state lasers, which generate high output and extremely short pulses, are usually used as lasers for laser distance measuring devices in terms of reachability and distance measurement accuracy. FIG. 2 shows an example of a conventional configuration of a laser beam transmitter in this case. In the figure, 113 is a laser rod, and t14 is a polarizer.

asuqスイッチ素子のポッケルスセル、fl[9d7
ラツシユランプ、αnは全反射鏡、a8は出力鏡。
Pockels cell of asuq switch element, fl[9d7
The lash lamp, αn is a total reflection mirror, and a8 is an output mirror.

叫はフラッシュランプaeからの光を有効にレーザロッ
ド(13に集光する反射筒であり、これらによシレーザ
発振器(21が構成される。また高繰返しのパルスレー
ザではレーザロッド(13及びフラッシュランプaQは
液体又は気体により強制冷却されるのが通常である。
The laser beam is a reflector tube that effectively focuses the light from the flash lamp ae onto the laser rod (13), and these constitute the laser oscillator (21).In addition, in the case of a high-repetition pulse laser, the laser rod (13 and the flash lamp Usually, aQ is forcibly cooled by liquid or gas.

レーザ発振器から発射したレーザ光は送信光学系(3)
K入射し、所定のビーム広が多角に調整されて送信され
る。矢印Aは送信ビーム方向を示している。この送信光
牛深(3]としては凹レンズと凸レンズで構成される逆
ガリレオ式望遠鏡が多く用いられている。この望遠鏡の
倍率をMとしたときレーザ発振器から発射したレーザ光
のビーム広がり角θと送信光学系(3)すなわち望遠鏡
から送信されるビーム広が多角■との関係は次式で表わ
される。
The laser beam emitted from the laser oscillator is sent to the transmission optical system (3)
K is incident, the beam spread is adjusted to a predetermined polygonal angle, and the beam is transmitted. Arrow A indicates the transmit beam direction. As this transmitting light Ushibuka (3), an inverted Galilean telescope consisting of a concave lens and a convex lens is often used.If the magnification of this telescope is M, the beam spread angle θ of the laser light emitted from the laser oscillator is The relationship between the optical system (3), that is, the beam spread polygon (2) transmitted from the telescope is expressed by the following equation.

θ ■=M +I+ またレーザ発振器からのレーザ光の発射方向が角度△θ
だけ変化した場合において送信光学系(3)から送信さ
れるレーザビーム方向の変化量△0は次式のようになる
θ ■=M +I+ Also, the emission direction of the laser beam from the laser oscillator is at an angle △θ
The amount of change Δ0 in the direction of the laser beam transmitted from the transmitting optical system (3) when the direction of the laser beam is changed by Δ0 is expressed by the following equation.

Δ(1手=M (21 ところで光学的追尾装置等へ応用されるレーザ測距装置
では高繰返しレーザ発振が要求され。
Δ(1 move=M (21) By the way, a laser distance measuring device applied to an optical tracking device etc. requires high repetition rate laser oscillation.

上述のようにレーザ発振器(2)のレーザロッド03及
びフラッシュランプaeの強制冷却が必要となる。この
場合レーザロッド(ハ)Kおける冷却とフラッシュラン
プ翰からの光の吸収による熱の発生の関係からレーザロ
ッド+13内に温度分布が発生し、熱レンズ効果等の熱
効果が生じ、レーザビームの’JIK影響を与える。こ
れによシレーザ発振器(21からのレーザ光の発射方向
が時間的に変化する場合がある。特にレーザロッド0に
対する冷却及び励些か不均一である場合にこの現象が顕
著に発生する。また出力鏡alの傾きが変化へしレーザ
光の発射方向が壺化する場合もある上記のようにレーザ
発振器(2)からのレーザ光の発射方向が時間的に変化
する場合、レーザ測距装置においては送信ビーム方向が
受信光軸方向及び目標物体の照準方向からずれを生じる
ことKなる。したがって受信能力の低下あるいは目標物
体にレーザビームが照射されないという現象が生じ、レ
ーザ測距装置として安定な性能が得られなくなる。
As mentioned above, forced cooling of the laser rod 03 of the laser oscillator (2) and the flash lamp ae is required. In this case, due to the relationship between the cooling in the laser rod (c) K and the generation of heat due to the absorption of light from the flash lamp, a temperature distribution occurs within the laser rod +13, causing thermal effects such as a thermal lens effect, and the laser beam 'JIK influence. As a result, the emission direction of the laser beam from the laser oscillator (21) may change over time. This phenomenon occurs particularly when the cooling and excitation of the laser rod 0 are uneven. Also, the output The inclination of the mirror Al may change and the direction of laser beam emission may become concave. When the direction of emission of laser light from the laser oscillator (2) changes over time as described above, in a laser distance measuring device, The direction of the transmitting beam may deviate from the direction of the receiving optical axis and the aiming direction of the target object.Therefore, the receiving ability may be reduced or the target object may not be irradiated with the laser beam, and the stable performance of the laser ranging device may be affected. You won't be able to get it.

このように従来のレーザ光送信装置ではレーザ発振器か
ら発射されるレーザ光の発射方向が変動すれは送信装置
から送信される送信ビーム方向も変化してしまうという
欠点があった。
As described above, the conventional laser beam transmitting device has the disadvantage that if the direction of the laser beam emitted from the laser oscillator changes, the direction of the transmission beam transmitted from the transmitting device also changes.

これを改善する方法として第(2)式かられかるように
送信光学系(3)の倍率Mを大きくすることが考えられ
る。しかし第I)式で示されるように同時に送信レーザ
ビーム広がり角にも影響するため制約を受ける。さらに
送信光学系の倍率を大きくすることは、光学系の口径が
大となシ装−が大形化する欠点を生じる。
One way to improve this is to increase the magnification M of the transmission optical system (3), as shown in equation (2). However, as shown in equation I), this also affects the spread angle of the transmitted laser beam and is therefore subject to restrictions. Furthermore, increasing the magnification of the transmitting optical system has the disadvantage that the optical system has a large aperture, making the system larger.

〔発明の概要〕[Summary of the invention]

この発明はかかる欠点を改嵜する目的でなされたもので
、レーザ発振器から発射されるレーザ光の発射方向を検
出する手段と、この検出手段の出力に基づきレーザ光の
送信ビーム方向を連続的に可変制御する手段を備えて、
レーザ光の送信光軸方向を安定にしたものである。
The present invention has been made with the aim of correcting such drawbacks, and includes a means for detecting the direction of laser light emitted from a laser oscillator, and a means for continuously changing the direction of the transmitted beam of the laser light based on the output of this detection means. Equipped with means for variable control,
The direction of the transmission optical axis of the laser beam is stabilized.

〔発明の実施例〕[Embodiments of the invention]

第8図はこの発明の一実施例を示す図である。レーザ発
振器(21から発射したレーザ光は光の方向を連続的に
変化できる光偏向器(イ)に入射する。光偏向器圓から
出たレーザ光はビームスグリツタ6111に入射し、一
部は反射されて角度検出器(2)に入υ、大半は透過し
て送信光学系(3)を通して目標物体へ送信される。
FIG. 8 is a diagram showing an embodiment of the present invention. The laser beam emitted from the laser oscillator (21) enters the optical deflector (A) that can continuously change the direction of the light. The laser beam emitted from the optical deflector circle enters the beam sinter 6111, and a portion of the laser beam is It is reflected and enters the angle detector (2), and most of it is transmitted to the target object through the transmission optical system (3).

ところでレーザ発振器(2)から発射したレーザ光の発
射方向が時間的に変化する場合、その変動に追従して光
偏向器(至)の偏向角を変化させれば送信するレーザ光
のビーム方向を一定に保つことができる。
By the way, if the emission direction of the laser beam emitted from the laser oscillator (2) changes over time, the beam direction of the laser beam to be transmitted can be changed by changing the deflection angle of the optical deflector (to) in accordance with the change. can be kept constant.

角度検出器−はこのレーザ発振器(2)から発射された
レーザ光の発射方向を検出し、その角度信号を演算制御
器(ハ)へ送る。演算制御器(ハ)は角度検出器(2)
からの信号から所定の送信ビーム方向からの変位量を演
算し、その変位量信号に基づき光偏向器(イ)を制御し
この変位量がゼロになるようにする。
The angle detector detects the direction of the laser beam emitted from the laser oscillator (2) and sends the angle signal to the arithmetic controller (c). Arithmetic controller (c) is angle detector (2)
The amount of displacement from a predetermined transmission beam direction is calculated from the signal from , and the optical deflector (a) is controlled based on the displacement amount signal so that this amount of displacement becomes zero.

第4図は角度検出器(2)の−例を示したものである。FIG. 4 shows an example of the angle detector (2).

第4図においてビームスプリッタt2Dで反射された少
量の光は集光レンズC241に入射する。集光レンズ+
241の焦点面上に光点位置検出器cl!9を設置する
。光点位置検出器としてはシリコンフォトダイオードを
応用した半導体装置検出器等が市販されている。集光レ
ンズ(至)に入射するレージビームの角度変位が光点位
置検出器(2)上の光点位置の変位として計測できる。
In FIG. 4, a small amount of light reflected by the beam splitter t2D enters the condenser lens C241. Condensing lens +
A light spot position detector cl! is placed on the focal plane of 241. Install 9. As a light spot position detector, a semiconductor device detector using a silicon photodiode is commercially available. The angular displacement of the laser beam incident on the condenser lens (to) can be measured as the displacement of the light spot position on the light spot position detector (2).

この変位量の信号すなわちレーザ光の発射方向の角度変
位信号を演算制御器@へ送る。
A signal of this displacement amount, that is, an angular displacement signal in the emission direction of the laser beam is sent to the arithmetic controller@.

また第5図は光偏向器(イ)の一実施例を示(、たもの
である。レーザ発振器(2)から出たレーザツとは反射
鏡(1)及びもう一つの反射鏡(2)で反射されて送出
される。ここで反射鏡(ハ)は電歪素子−で連続的に傾
きを変えられ、レーザ光を垂直方向に偏向する。また反
射鏡面は電歪素子(2)で連続的に傾きを変えられ、レ
ーザ光を水平方向処偏向する。演算制御器@からの信号
に従って偏向制御器(7)で反射鏡(イ)及び反射鏡面
のそれぞれの傾きが制御され、レーザ光を所定の方向に
送信する。
Fig. 5 shows an embodiment of the optical deflector (A).The laser beam emitted from the laser oscillator (2) consists of a reflecting mirror (1) and another reflecting mirror (2). The reflection mirror (C) is continuously tilted by an electrostrictive element (2) to deflect the laser beam in the vertical direction. The tilt is changed to horizontally deflect the laser beam.According to the signal from the arithmetic controller @, the deflection controller (7) controls the tilt of each of the reflecting mirror (A) and the reflecting mirror surface, and the laser beam is deflected to a predetermined direction. Send in the direction of.

なお、上記説明ではQスイッチ固体レーザを例にあけて
述べたがガスレーザ、半導体レーザ等信のレーザ光の送
信装置に用いてもよい。
In the above description, a Q-switched solid-state laser was used as an example, but the present invention may also be used in a laser beam transmitting device such as a gas laser or a semiconductor laser.

〔発明の効果〕 以上のようにこの発明にかかわるレーザ光送信装置では
レーザ光の発射方向を検出する手段とレーザ光の送信ビ
ーム方向を連続的に変化できる手段を備えることによっ
てレーザ発振器から発射したレーザ光の発射方向が種々
の原因によって変動しても所定の送信ビーム方向にレー
ザ光を送信することができ、送信ビームの安定
[Effects of the Invention] As described above, the laser beam transmitting device according to the present invention is equipped with a means for detecting the direction of laser beam emission and a means for continuously changing the direction of the transmitted beam of the laser beam. Even if the laser beam emission direction fluctuates due to various causes, the laser beam can be transmitted in a predetermined transmission beam direction, and the transmission beam remains stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザ測距装置の構成例を示す図。 第2図は従来のレーザ光送信装置の構成図、第8図はこ
の発明の一実施例を示す図、第4図は角度検出器の実施
例を示す図、第5図は光偏向器の実施例を示す図である
。 図中(11はレーザ光送信装置、(21けレーザ発振器
、(3)は送信光学系、(1)は光偏向器、 C1l+
はビームスグリツタ、(至)は角度検出器、(ハ)は演
算制御器である。 なお1図中同一あるいは相当部分には同一符号を付して
示してを・る。 代理人 大岩増雄 第3図 第4図 2/
FIG. 1 is a diagram showing an example of the configuration of a laser distance measuring device. FIG. 2 is a block diagram of a conventional laser beam transmitter, FIG. 8 is a diagram showing an embodiment of the present invention, FIG. 4 is a diagram showing an embodiment of an angle detector, and FIG. 5 is a diagram of an optical deflector. It is a figure showing an example. In the figure (11 is a laser beam transmitter, (21 laser oscillators, (3) is a transmission optical system, (1) is an optical deflector, C1l+
is a beam sinter, (to) is an angle detector, and (c) is an arithmetic controller. In addition, the same or corresponding parts in each figure are indicated by the same reference numerals. Agent Masuo Oiwa Figure 3 Figure 4 Figure 2/

Claims (1)

【特許請求の範囲】[Claims] レーザ発振器と、とのレーザ発振器から発生するレーザ
光を所定のビーム広が9角で目標体へ送信する光学系と
を備えたレーザ光送信装置において、上記レーザ発振器
から発生されたレーザ光の一部を導入してその発射方向
を検出する手段と、この検出手段の出力に基づきレーザ
光の送信ビーム方向を連続的に可変制御する手段とを設
けて上記レーザ発振器から発生されるレーザ光の発射方
向の変動を補償するようにしたこと′ft%徴とするレ
ーザ光送信装置。
In a laser beam transmitting device comprising a laser oscillator and an optical system that transmits the laser beam generated from the laser oscillator to a target object with a predetermined beam spread of 9 angles, one of the laser beams generated from the laser oscillator is emitting the laser beam generated from the laser oscillator, the laser beam is emitted from the laser oscillator. A laser beam transmitting device characterized by compensating for directional fluctuations.
JP58245951A 1983-12-27 1983-12-27 Laser light transmitter Pending JPS60139037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58245951A JPS60139037A (en) 1983-12-27 1983-12-27 Laser light transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58245951A JPS60139037A (en) 1983-12-27 1983-12-27 Laser light transmitter

Publications (1)

Publication Number Publication Date
JPS60139037A true JPS60139037A (en) 1985-07-23

Family

ID=17141277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58245951A Pending JPS60139037A (en) 1983-12-27 1983-12-27 Laser light transmitter

Country Status (1)

Country Link
JP (1) JPS60139037A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175035A (en) * 1986-01-28 1987-07-31 Sharp Corp Wireless mike for utilizing infrared ray
US4697422A (en) * 1985-01-24 1987-10-06 Nissan Motor Co., Ltd. Method of and apparatus for controlling supercharge pressure for a turbocharger
US4698972A (en) * 1984-12-07 1987-10-13 Nissan Motor Co., Ltd. Method of and apparatus for controlling supercharge pressure for a turbocharger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698972A (en) * 1984-12-07 1987-10-13 Nissan Motor Co., Ltd. Method of and apparatus for controlling supercharge pressure for a turbocharger
US4697422A (en) * 1985-01-24 1987-10-06 Nissan Motor Co., Ltd. Method of and apparatus for controlling supercharge pressure for a turbocharger
JPS62175035A (en) * 1986-01-28 1987-07-31 Sharp Corp Wireless mike for utilizing infrared ray

Similar Documents

Publication Publication Date Title
US10932350B2 (en) Extreme ultraviolet light generation system
JP4166083B2 (en) Ranging device
JP6952844B2 (en) Target expansion rate control in extreme ultraviolet light sources
US20160316551A1 (en) Laser device and extreme ultraviolet light generation system
JPH10501067A (en) Fluid velocity measurement device
JP4868485B2 (en) Method and apparatus for optically measuring distance or velocity
CN112771999A (en) Laser system for target metrology and modification in EUV light sources
US20220026207A1 (en) Surveying Instrument
JPS60139037A (en) Laser light transmitter
US6753951B2 (en) Focusing type distance measurement apparatus
KR20200028601A (en) Laser system and method for maintaining laser path
CN112649595B (en) System and method based on single-pulse laser-induced photoinduced breakdown controllable jet flow
JP4067167B2 (en) Beam axis deviation detecting device and beam axis position control device for laser resonator
US10663296B2 (en) Surveying instrument
JP2022022744A (en) Laser power measurement device
JP2006053055A (en) Laser measuring apparatus
EP3957951B1 (en) Surveying instrument
JP2004140265A (en) Narrow-band laser apparatus
JP2002340554A (en) Distance-measuring optical system for surveying instrument
JPH02158182A (en) Solid-state laser device
Lublin et al. High-performance beam stabilization for next-generation ArF beam delivery systems
JP2572235B2 (en) Wavelength control device
CN118068390A (en) Apparatus and method for detecting atomic beam
TW202344141A (en) Euv light source target metrology
JPH07159534A (en) Laser range-finding device