JPS60138831A - Charged particle source - Google Patents
Charged particle sourceInfo
- Publication number
- JPS60138831A JPS60138831A JP25181584A JP25181584A JPS60138831A JP S60138831 A JPS60138831 A JP S60138831A JP 25181584 A JP25181584 A JP 25181584A JP 25181584 A JP25181584 A JP 25181584A JP S60138831 A JPS60138831 A JP S60138831A
- Authority
- JP
- Japan
- Prior art keywords
- positive
- ion
- negative
- source
- electric field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims description 18
- 230000005684 electric field Effects 0.000 claims abstract description 14
- 150000001875 compounds Chemical class 0.000 claims abstract description 8
- 238000000605 extraction Methods 0.000 claims description 9
- 150000002500 ions Chemical class 0.000 abstract description 40
- 238000010884 ion-beam technique Methods 0.000 abstract description 11
- 238000010894 electron beam technology Methods 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 8
- 230000001133 acceleration Effects 0.000 abstract description 5
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 229910052785 arsenic Inorganic materials 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 abstract 2
- 229910052787 antimony Inorganic materials 0.000 abstract 1
- 229910052714 tellurium Inorganic materials 0.000 abstract 1
- 238000004458 analytical method Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/08—Ion sources; Ion guns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/06—Electron sources; Electron guns
- H01J37/073—Electron guns using field emission, photo emission, or secondary emission electron sources
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Sources, Ion Sources (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明は点源を有する荷電粒子源に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a charged particle source having a point source.
最近、エレクトロエックスその他の分野において各種機
能素子の小形化とそれに伴う微小領域の物質の諸性質を
正確に把握(分析)することが重要課題になってきた。Recently, miniaturization of various functional elements and the accompanying accurate understanding (analysis) of various properties of materials in microscopic regions have become important issues in Electro-X and other fields.
本発明は微小領域の高精度分析および微小な機能素子の
製作のために利用する点状荷電粒子源の改良についての
ものである。The present invention relates to an improvement in a point-like charged particle source used for highly accurate analysis of minute regions and fabrication of minute functional devices.
二次イオン質量分析法はすぐれた微小領域分析法の一つ
であるが、現状では、次のような問題点をもっている(
微細加工の場合も同様である)。Secondary ion mass spectrometry is an excellent micro-area analysis method, but it currently has the following problems:
The same applies to microfabrication).
(1)利用しているイオン源の輝度が低く且つ微小な点
状荷電粒子源が得られず、1μm以下の微小領域の高感
度分析が困難である。(1) The brightness of the ion source used is low and a minute point-like charged particle source cannot be obtained, making it difficult to perform highly sensitive analysis of a minute area of 1 μm or less.
(2)正、負両用イオン源および電子源を同−源から取
り出せる荷電粒子源が存在しない。そのため分析適用範
囲が限定される。(2) There is no charged particle source that can extract both positive and negative ion sources and electron sources from the same source. Therefore, the scope of analysis is limited.
従来の方法では、上記(1)に示した問題は本質的な限
界を与えるものであり、この改良は従来の方法の延長で
は考えらJLない。また、上記(2)に示した問題に関
しては、それぞれ独立の荷電粒子源を準備する必要があ
り、コスト高および各々の荷電粒子源を用いた場合の位
置決めの困難性などの問題点がある。In the conventional method, the problem shown in (1) above presents an essential limit, and this improvement cannot be considered as an extension of the conventional method. Further, regarding the problem shown in (2) above, it is necessary to prepare each independent charged particle source, and there are problems such as high cost and difficulty in positioning when using each charged particle source.
第1図は従来のイオン源の構成を示す。このような構成
を示す公知例としては1例えば、特開昭52−1259
98号がある。このイオン源は加熱用のヘアピンフィラ
メント■ (種々の形式のものがあるが、ここではヘア
ピン形を示した)、フィラメント加熱電源2.チップ(
実計)3.イオン源材料4.ウェネルト電極5.バイア
ス電源6゜イオン引き出し電極7.高圧電源8.レンズ
系9゜イオンビーム10.および試料11より構成され
ている。このイオン源の動作原理は先ずフィラメントl
の股部にイオン源材料4を付着させ、これを加熱電源2
によって加熱溶融させる。次に、チップ3と引き出し電
極7との間に強電界を引加し、イオンビーム10を引き
出し、レンズ系9により集束させ試料11に照射する。FIG. 1 shows the configuration of a conventional ion source. A known example showing such a configuration is 1, for example, Japanese Patent Application Laid-Open No. 52-1259.
There is No. 98. This ion source consists of a hairpin filament for heating (there are various types, but the hairpin type is shown here), a filament heating power source 2. Chip (
Actual total) 3. Ion source material 4. Wehnelt electrode5. Bias power supply 6° ion extraction electrode 7. High voltage power supply 8. Lens system 9° ion beam 10. and sample 11. The operating principle of this ion source is that the filament l
The ion source material 4 is attached to the crotch of the heating power source 2.
Melt by heating. Next, a strong electric field is applied between the tip 3 and the extraction electrode 7 to extract the ion beam 10, which is focused by the lens system 9 and irradiated onto the sample 11.
この時、チップ3の先端近傍に印加される電界は高圧電
源8の極性で決り、一定である。したがって、このよう
な構成であると取り出せるイオンビームは正および負の
うちのどちらか一方のみとなり、反対のイオンビームを
得たい時には別のイオン源を使用しなければならないと
いう不都合がある。At this time, the electric field applied near the tip of the tip 3 is determined by the polarity of the high voltage power supply 8 and is constant. Therefore, with such a configuration, only one of the positive and negative ion beams can be extracted, and when it is desired to obtain the opposite ion beam, another ion source must be used, which is disadvantageous.
本発明の目的は上記したような問題点を解消した荷電粒
子源を提供することにある。An object of the present invention is to provide a charged particle source that eliminates the above-mentioned problems.
上記目的を達成するため、本発明では、加熱溶融させた
イオン結合化合物で濡らされた実開に高電界を印加して
イオン引き出す、いわゆるEND(E lectroh
ydrodynamic)イオン源において、正負両イ
オンビームおよび電子ビームの引き出しを可能にするた
め引き出し電圧源に極性切換手段を設けたことを特徴と
している。さらには、引き出したイオンビームに対して
質量分離手段を設は特定質量をもつ荷電粒子ビームを取
り出せるように構成したことも特徴としている。In order to achieve the above object, the present invention employs a so-called END (ElectroH) method in which ions are extracted by applying a high electric field to a practical solution wetted with an ion-bonding compound heated and melted.
In order to enable extraction of both positive and negative ion beams and electron beams, the ion source is characterized in that a polarity switching means is provided in the extraction voltage source. Another feature is that a mass separation means is provided for the extracted ion beam so that a charged particle beam having a specific mass can be extracted.
かかる本発明の特徴的な構成により、イオン結合化合物
として例えばハロゲン化物(CsCQなど)を用いて、
実計の先端に正または負の電界を印加すると、化合物の
陰性元素により負イオン(例えばCQ−)を、また、化
合物の陽性元素により正イオン(例えばCs ” )を
引き出せるようにできる。この時、負電界を印加した場
合には電子の放出もあり、電子ビームとしても利用でき
るため、電子ビームで試料表面を観察しながら必要個所
をイオンにより分析できるという利点が得られる。According to the characteristic configuration of the present invention, for example, a halide (such as CsCQ) is used as an ionic bonding compound,
By applying a positive or negative electric field to the tip of the actual meter, it is possible to draw out negative ions (e.g., CQ-) from the negative elements of the compound, and positive ions (e.g., Cs'') from the positive elements of the compound. At this time, , when a negative electric field is applied, electrons are emitted and can also be used as an electron beam, giving the advantage of being able to analyze the required location with ions while observing the sample surface with the electron beam.
以下、本発明による実施例を従来のイオン源と対比して
詳述する。Hereinafter, embodiments according to the present invention will be described in detail in comparison with a conventional ion source.
本発明による荷電粒子源は第2図に示したように加速電
源として正および負の高圧電源12゜13または正負両
用電源を設け、これによりチップ3の先端に正および負
の電界が独立に印加できるようにしたものである。As shown in FIG. 2, the charged particle source according to the present invention is provided with a positive and negative high voltage power source 12, 13 or a dual purpose power source as an accelerating power source, whereby positive and negative electric fields are applied independently to the tip of the chip 3. It has been made possible.
このような本発明による荷電粒子源の動作原理は、イオ
ン源材料としてイオン結合化合物(ハロゲン化物)のC
5CQを用い、先ず、これを加熱溶融させる。次に、正
電界を印加し、Cs+ビームを、また、負電界を印加す
ることによりCQ−および電子ビームを取り出す。これ
により、従来のイオン源では困難であった同−源より正
負両イオンビームを独立に取り出せるようになった。The operating principle of the charged particle source according to the present invention is that carbon of an ion-bonding compound (halide) is used as the ion source material.
Using 5CQ, first, it is heated and melted. Next, a positive electric field is applied to extract the Cs+ beam, and a negative electric field is applied to extract the CQ- and electron beams. This makes it possible to extract both positive and negative ion beams independently from the same source, which was difficult with conventional ion sources.
第3図は高純度イオンまたはイオン種の選択を行うため
に第1の実施例(第2図)に示した荷電粒子源に質量分
離手段14を設けた第2の実施例を示す。FIG. 3 shows a second embodiment in which the charged particle source shown in the first embodiment (FIG. 2) is provided with mass separation means 14 in order to select high-purity ions or ion species.
本実施例は第2図に示した荷電粒子源に新しく付加した
質量分離器142分解能スリット15゜後段加速、減速
電極16.およびその電極18゜19より構成されてい
る。荷電粒子の加速は2段の加速手段により行い、質量
分離器14は両者の間に設け、特定イオンのみを後段加
速または減速空間に導入し、ここで任意のエネルギーを
得るために後段加速または減速してレンズ系9を通して
試料11に照射する。In this embodiment, a mass separator 142, a resolution slit 15°, a rear acceleration and deceleration electrode 16. and its electrodes 18° and 19. Acceleration of charged particles is performed by two-stage acceleration means, and a mass separator 14 is provided between the two to introduce only specific ions into the post-acceleration or deceleration space, where the post-acceleration or deceleration is performed to obtain arbitrary energy. and irradiates the sample 11 through the lens system 9.
このような第2の実施例により、正、負両イオンビーム
および電子ビームを独立して取り出すことが可能になり
、且つ、高純度のイオン種による細束ビームをうること
ができるものである。According to the second embodiment, both positive and negative ion beams and electron beams can be extracted independently, and a focused beam of highly pure ion species can be obtained.
かかる本発明の荷電粒子源を二次イオン質量分新法に適
用し、次のような極めて顕著な効果が得られた。When the charged particle source of the present invention was applied to a new secondary ion mass separation method, the following extremely remarkable effects were obtained.
(1) 陽性元素の正イオンを二次イオン種として利用
することにより、陰性度の高い元素、例えばP、As、
、Te、Sbなどの二次イオン化率が高くでき、分析感
度が著るしく向上した。(1) By using positive ions of positive elements as secondary ion species, highly negative elements such as P, As,
, Te, Sb, etc., and the analytical sensitivity was significantly improved.
(II) 陰性元素の負イオン(CQ−、O−など)を
−次励起イオン種として利用し、陽性元素のA I2
HS x HCr HF eなどの感度が著るしく向上
した。(II) Using negative ions of negative elements (CQ-, O-, etc.) as −th order excited ion species, A I2 of positive elements
The sensitivity of HS x HCr HF e etc. was significantly improved.
(III) 負イオンビームの利用により、従来困難で
あった絶縁物分析が可能になった。(III) The use of negative ion beams has made it possible to analyze insulators, which was previously difficult.
(IV) 負イオン利用の場合、電子ビームが重畳され
ており、イオンと電子の重畳照射が可能になった。(IV) When using negative ions, the electron beam is superimposed, making it possible to superimpose ion and electron irradiation.
以上述べた如く、本発明により同−源から正。As mentioned above, according to the present invention, it is possible to obtain original information from the same source.
負イオンおよび電子ビームを得ることが可能な荷電粒子
源を提供できるようになり、得られるメリットは極めて
大きいものである。It has become possible to provide a charged particle source that can produce negative ion and electron beams, and the benefits that can be obtained are extremely large.
第1図は従来のイオン源の基本構成図、第2図は本発明
による荷電粒子源の基本構成図、第3図 。
は本発明によるもう1つの実施例の基本構成図である。
1°゛ヘアピンフイラメント、2・・・フィラメント加
熱電源、3・・・チップ(実計)、4・・・イオン源材
料、5−ウェネルト電極、6・・・バイアス電源、7・
・・イオン引出電極、8,12,13・・・高圧電源、
9・・・レンズ系、10・・・イオンビーム、11 ・
試料、14・・・質量分離器、15・・・分解能スリッ
ト。
I6・・・後段加速、減速電極、18.19・・・電源
。FIG. 1 is a basic configuration diagram of a conventional ion source, FIG. 2 is a basic configuration diagram of a charged particle source according to the present invention, and FIG. is a basic configuration diagram of another embodiment according to the present invention. 1. Hairpin filament, 2. Filament heating power source, 3. Chip (actual total), 4. Ion source material, 5. Wehnelt electrode, 6. Bias power source, 7.
...Ion extraction electrode, 8, 12, 13...High voltage power supply,
9... Lens system, 10... Ion beam, 11 ・
Sample, 14... Mass separator, 15... Resolution slit. I6...Late stage acceleration, deceleration electrode, 18.19...Power supply.
Claims (1)
を有する電極と、上記イオン結合化合物によって濡らさ
オした上記実計に電界を与えて上記実計から荷電粒子を
引き出す引出電極と、上記電界を発生させるため上記電
極と上記引出電極との間に設けられた引出電圧源と、上
記電界を正または負の電界とするため上記引出電圧源に
設けられた極性切換手段とを備えてなることを特徴とす
る荷電粒子源。(2) an electrode that holds a melted ionic bonding compound and has an actual opening, an extraction electrode that applies an electric field to the actual meter wetted with the ionic bonding compound to draw out charged particles from the actual meter; an extraction voltage source provided between the electrode and the extraction electrode to generate the voltage, and a polarity switching means provided on the extraction voltage source to make the electric field a positive or negative electric field. A charged particle source featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25181584A JPS60138831A (en) | 1984-11-30 | 1984-11-30 | Charged particle source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25181584A JPS60138831A (en) | 1984-11-30 | 1984-11-30 | Charged particle source |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60138831A true JPS60138831A (en) | 1985-07-23 |
Family
ID=17228328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25181584A Pending JPS60138831A (en) | 1984-11-30 | 1984-11-30 | Charged particle source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60138831A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6353844A (en) * | 1986-08-22 | 1988-03-08 | Hitachi Ltd | Charged particle optical system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52125998A (en) * | 1976-04-13 | 1977-10-22 | Atomic Energy Authority Uk | Ion source |
JPS5339512U (en) * | 1976-09-10 | 1978-04-06 |
-
1984
- 1984-11-30 JP JP25181584A patent/JPS60138831A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52125998A (en) * | 1976-04-13 | 1977-10-22 | Atomic Energy Authority Uk | Ion source |
JPS5339512U (en) * | 1976-09-10 | 1978-04-06 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6353844A (en) * | 1986-08-22 | 1988-03-08 | Hitachi Ltd | Charged particle optical system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4649316A (en) | Ion beam species filter and blanker | |
Liebl | Ion microprobe analysers | |
WO2006098086A1 (en) | Time-of-flight mass spectrometer | |
US8314404B2 (en) | Distributed ion source acceleration column | |
JPH0286036A (en) | Ion micro-analyzer | |
JPS5958749A (en) | Composite objective and radiation lens | |
US4841143A (en) | Charged particle beam apparatus | |
JPS60138831A (en) | Charged particle source | |
JPH0378739B2 (en) | ||
JPS5812978B2 (en) | ion beam device | |
US4500787A (en) | Method and a device for furnishing an ion stream | |
JPS58158844A (en) | Ion gun | |
Tsuno | Optical design of electron microscope lenses and energy filters | |
JPH0782119B2 (en) | Ion beam irradiation method | |
JPS6224545A (en) | Charged particle optical system | |
JP2607573B2 (en) | Ion micro analyzer | |
JPS5832200Y2 (en) | ion source device | |
JPS61114453A (en) | Charged particle ray device | |
JPS595551A (en) | Charged corpuscular ray apparatus | |
Seki et al. | A lithium liquid metal ion source with a sealed-cone-type reservoir | |
JPS5927383B2 (en) | Ion beam thin film production equipment | |
Rush | Extreme Ultraviolet Laser Ionization Mass Spectrometry: Probing Materials at the Micro and Nano Scales | |
Folluo | Improved Control of Ion Transmission Via Planar Ion Funnel for Reactivity Studies of Catalytic Species | |
JPH0539555Y2 (en) | ||
JPS60185351A (en) | Charged particle beam control method |