JPS60138422A - Flow rate measuring device - Google Patents

Flow rate measuring device

Info

Publication number
JPS60138422A
JPS60138422A JP58244472A JP24447283A JPS60138422A JP S60138422 A JPS60138422 A JP S60138422A JP 58244472 A JP58244472 A JP 58244472A JP 24447283 A JP24447283 A JP 24447283A JP S60138422 A JPS60138422 A JP S60138422A
Authority
JP
Japan
Prior art keywords
ultrasonic
circuit
time
flow rate
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58244472A
Other languages
Japanese (ja)
Inventor
Kaoru Machida
町田 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58244472A priority Critical patent/JPS60138422A/en
Priority to US06/686,999 priority patent/US4603589A/en
Publication of JPS60138422A publication Critical patent/JPS60138422A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters

Abstract

PURPOSE:To detect exactly a rise time of a receiving wave even in case of a medium in which a driving excess pulsating wave and the receiving wave are superposed, and to measure a flow rate with a high accuracy, by measuring an ultrasonic propagation time basing on a rise time of an ultrasonic waveform. CONSTITUTION:Envelope sampling information S1, S2 and sampling time information S3 obtained from ultrasonic transmitting and receiving circuits 1, 2 are stored successively in input control circuits 4, 5 and 6, respectively, by a control pulse signal S300. Subsequently, a calculating circuit 7 receives each sampling time information S3 from a latching circuit of the input control circuit 6, and also receives the envelope sampling information S1, S2 at each time from latching circuits of the input control circuit 4, 5, respectively. An m-order function fm is determined basing on said information, each ultrasonic propagation time T1, T2 is derived by calculating numerically the time when this m-order function fm passes through a zero point Z, and a flow velocity of a fluid and its flow rate are calculated, and outputted so as to be displayed on a display device 8.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、例えば、患者監視装置に装備された呼吸流量
を長時間監視する流量測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a flow rate measuring device that monitors respiratory flow rate over a long period of time, which is installed in, for example, a patient monitoring device.

し発明の技術的背景と背景技術の問題点]超音波を用い
た流量測定装置として、流速の変化によって超音波の伝
搬鍔間が変化づること4′1す用した超音波伝搬時間差
方式が知られている。この超音波伝搬時間差法は、流路
障害、流路抵抗、測定精度及び測定の直線性、測定の長
時間安定性等の特性が、他の測定法、例えば外ルヌーイ
の定理を応用した差圧方式等より中越しているので、近
時、多方面で実用に供されている。この方式を利用した
測量測定装置の原理は、第1図に示すように、例えば配
管における流れに対して一定の角度θを持つ軸上に、一
定距離りを隔−Cて一対の超音波振動子PZ1.PZ2
を対向配置し、この超音波振動子PZ1.PZ2を同時
に駆動した時に、超音波振動子PZ1.PZ2夫ノ?に
おGlる超音波受波時間T1.T2を測定して、その時
間差Δ丁−−r2−−rtにより、流3ivをめ、更に
流量j’vdtを紳出づるJ:うにしたものである。
[Technical background of the invention and problems with the background art] As a flow measurement device using ultrasonic waves, an ultrasonic propagation time difference method is known, which uses the fact that the distance between the ultrasonic propagation collars changes depending on the change in flow velocity. It is being This ultrasonic propagation time difference method has characteristics such as flow path obstruction, flow path resistance, measurement accuracy, measurement linearity, and long-term stability of measurement, which are different from other measurement methods, such as differential pressure applying Renoulli's theorem. Since it is more advanced than other methods, it has been put into practical use in many fields recently. The principle of a surveying and measuring device using this method is, as shown in Figure 1, for example, a pair of ultrasonic vibrations are placed at a certain distance apart on an axis that has a certain angle θ with respect to the flow in a pipe. Child PZ1. PZ2
are arranged facing each other, and this ultrasonic transducer PZ1. When PZ2 is driven at the same time, ultrasonic transducers PZ1. PZ2 husband? Ultrasonic reception time T1. T2 is measured, the flow 3iv is determined based on the time difference Δd--r2--rt, and the flow rate j'vdt is determined.

このような流量測定@置では、通常の空気呼吸下では超
音波の減衰が小さいので良好な測定が可能であるが、例
えば、高濃度炭酸ガス呼吸及び大流量呼吸の下では超音
波の減衰が大きく良好な流量測定結果は期待できない。
In this type of flow rate measurement, good measurement is possible because the attenuation of ultrasonic waves is small under normal air breathing. Large and good flow rate measurement results cannot be expected.

一般に、超音波が媒体中を伝搬りる時の振動振幅Fは、 F=F[l ext) (−<a+Jβ) x ) ・
if)と表わされ、減衰定数αは、Pを気体中での気圧
、K@媒体によって決まる定数、Jを振動周波数とする
と α=Ki2/P ・・・(2) となる。即ち、高濃度炭酸ガス呼吸下等では、媒体定数
Kが増大し、大流量呼吸下では気圧Pが減少するので、
これらいずれの場合にも超音波の減衰は増大する。
Generally, the vibration amplitude F when an ultrasonic wave propagates in a medium is F=F[ext) (-<a+Jβ) x ) ・
if), and the damping constant α is expressed as α=Ki2/P (2) where P is the atmospheric pressure in the gas, K@ is a constant determined by the medium, and J is the vibration frequency. That is, when breathing high concentration carbon dioxide, the medium constant K increases, and when breathing a large amount of gas, the atmospheric pressure P decreases.
In both of these cases, the attenuation of the ultrasound waves increases.

上記(2式から明らかなように、振動周波数fを減少さ
ぜることにより、減衰定数αの増大を抑制すれば、上記
高濃度炭酸ガス呼吸での良好な流量測定に超音波伝#1
時間差方式が適用できる。
As is clear from the above equation (2), if the increase in the damping constant α is suppressed by decreasing the vibration frequency f, ultrasonic transmission
A time difference method can be applied.

一方、呼吸気のように気体中を超音波が伝搬する場合の
超音波伝搬効率は、通常の超高波診断装置のように超音
波が生体中及び水中を伝搬する等と比較して1/100
0以下になる。このため、共振型の超音波駆動回路を用
いるが、或いは非共振型の超音波駆動回路を用いた場合
でも、電源電圧を高める必要がある。上述した、高電圧
で非共振駆動を行なうには、その超音波駆動回路に耐圧
の高い部品を用いなければならない。従ってこの種装置
に要求される小型化、安全性の諸要求に合致しないので
、非共振駆動方式では問題がある。
On the other hand, the ultrasound propagation efficiency when ultrasound propagates through a gas such as breathing air is 1/100 compared to when ultrasound propagates through a living body and water as in a normal ultrahigh wave diagnostic device.
Becomes 0 or less. Therefore, even if a resonant type ultrasonic drive circuit is used or a non-resonant type ultrasonic drive circuit is used, it is necessary to increase the power supply voltage. In order to perform non-resonant drive at high voltage as described above, components with high breakdown voltage must be used in the ultrasonic drive circuit. Therefore, the non-resonant driving method is problematic because it does not meet the requirements of miniaturization and safety required for this type of device.

従って上j!ISシたように共振型超音波駆動回路を用
い、そして振動周波数を減少させることにより、高濃度
炭酸ガス呼吸及び大流量Il?吸下等でも流mの測定が
良好に行なえる。
Therefore, above! By using a resonant ultrasonic drive circuit like IS and reducing the vibration frequency, high concentration carbon dioxide respiration and large flow rate Il? The flow m can be well measured even by suction.

しかし乍ら、この共振駆動方式においても以下に述べる
ような問題点がある。即ち、駆動電圧波形(++波バー
スト波形、即ち、 11個のパルス列)が共振回路にお
いて共振作用を生じ、駆動後にも脈波が残り、超音波伝
I11峙間Tl、T2の測定のための受波の立上り点の
認識が困難になる点である。例えば、第2図(a )’
 (b )及び第2図(0)(d )は3波バースト駆
動波形での例を示している。第2図(a > (’b 
)と第2図(C) (d )とは駆動波形幅即ち周波数
が異なり、第2図(a )及び第2図(c)は、PZl
が送信、PZ2が受信;第2図(b)及び第2図((1
)は、PZ2が送信、pziが受信であり、Wlは駆動
波形。
However, this resonance drive method also has the following problems. That is, the driving voltage waveform (++ wave burst waveform, i.e., 11 pulse train) causes a resonance effect in the resonant circuit, and a pulse wave remains even after driving, making it difficult for the receiver to measure the ultrasonic transmission I11, Tl, and T2. This is the point where it becomes difficult to recognize the rising point of the wave. For example, Fig. 2(a)'
(b) and FIGS. 2(0) and 2(d) show examples of three-wave burst drive waveforms. Figure 2 (a >('b
) and Fig. 2(C) (d) are different in drive waveform width, that is, frequency, and Fig. 2(a) and Fig. 2(c) are different from PZl.
transmits, PZ2 receives; Fig. 2 (b) and Fig. 2 ((1
), PZ2 is transmission, pzi is reception, and Wl is the drive waveform.

W2は駆動余脈波、W3は受信波形であり、送信。W2 is a driving after-pulse wave, and W3 is a received waveform, which is transmitted.

、−#≦≧、壜−r、Mml+bl−小i=m+、八−
1言1−4・田1−−7第2図(a ) (b )に示
すように第2図(a)及び第2図(b)共に、受信波形
の立上り以前に駆動余脈波が消滅しているので、超音波
伝搬時間T1.T2の測定が可能である。しかし乍ら振
動周波数の低い第2図(c ) (d )では、振動周
波数の減少により駆動余脈波が受(l波形の立上りと重
なってしまい、超音波伝搬時間T1.T2の正確な測定
が不可能となり、流量測定値は正確とはいえない。
, -#≦≧, bottle-r, Mml+bl-small i=m+, 8-
1 word 1-4・田1--7 As shown in Figure 2 (a) and (b), in both Figure 2 (a) and Figure 2 (b), the driving after-pulse wave occurs before the rising edge of the received waveform. Since the ultrasonic wave propagation time T1. It is possible to measure T2. However, in Figures 2(c) and 2(d), where the vibration frequency is low, the drive after-pulse wave overlaps with the rise of the waveform due to the decrease in the vibration frequency, making it difficult to accurately measure the ultrasonic propagation times T1 and T2. is not possible, and the measured flow rate cannot be said to be accurate.

また、上記駆動余脈波と受信波形との重なり現象を回避
する為に、送信と受信とで独立の超音波振動子を配置す
ることが考えられる。しかし乍ら、この方式では振動子
が配置される1測部分く配管等)が大型化してしまい、
更に撮動子と装置本体との間のケーブル数も増えるので
、操作性を悪くしてしまい、また送受信相互の干渉を防
くために、超音波伝搬経路径を大きくせねばならず、配
管等における振動子設置部分に許容範囲外の流れの擾乱
(乱流等)を与えることになり、特に呼吸流量測定にお
いては問題があった、 [発明の目的] 本発明は上記事情に基づいてなされたもので、その目的
とするところは、駆動系脈波と受信波とが重なりあうよ
うな媒体であっても、その流量を高精度に測定すること
が可能な超音波伝搬時間差方式の流量測定装置を提供す
ることにある。
Furthermore, in order to avoid the overlapping phenomenon of the driving after-pulse wave and the received waveform, it is conceivable to arrange separate ultrasonic transducers for transmission and reception. However, with this method, the area where the vibrator is placed (e.g. piping, etc.) becomes larger.
Furthermore, the number of cables between the camera element and the main body of the device increases, which impairs operability.Also, in order to prevent mutual interference between transmitting and receiving, the diameter of the ultrasonic propagation path must be increased, and piping, etc. [Objective of the Invention] The present invention was made based on the above circumstances. Its purpose is to create an ultrasonic propagation time difference type flow measurement device that can measure the flow rate of a medium with high precision even in a medium where the driving pulse wave and the received wave overlap. Our goal is to provide the following.

[発明の概要] 本発明では、流体の流れ方向又は逆方向に対し一定の角
度を持つ軸上に対向して配置された超音波駆動用夫々か
ら送信した超音波を上記夫々の超音波振動子で受信し、
その超音波伝搬時間を測定】ることにより上記流体の′
a量を測定づる装置において、上記各振動子からの受信
波形の正及び負の少なくとも一方の包絡線波形を検出す
る第1の手段と、上記正及び負の少なくとも一方の包絡
線波形から専用された近似式に基づいて上記正及び負の
少なくとも一方の包絡線波形の立上り時刻を検出する第
2の手段とを備え、上記立上り時刻に基づい−C上記超
音波伝搬時間を測定するように構成して、駆動系脈波と
受信波とが重なりあうような媒体であっても、受信波の
立上り時刻を正確に検出するようにしたことを特徴とし
ている。
[Summary of the Invention] In the present invention, ultrasonic waves transmitted from the respective ultrasonic drive units disposed facing each other on axes having a certain angle with respect to the fluid flow direction or the opposite direction are transmitted to the respective ultrasonic transducers described above. received at
By measuring the ultrasonic propagation time, the
In the apparatus for measuring the amount of a, a first means for detecting at least one of positive and negative envelope waveforms of the received waveform from each of the vibrators; and a second means for detecting a rise time of at least one of the positive and negative envelope waveforms based on an approximate expression, and configured to measure the -C ultrasonic propagation time based on the rise time. The present invention is characterized in that even in a medium where the driving pulse wave and the received wave overlap, the rising time of the received wave can be accurately detected.

[発明の実施例] 以下本発明の流量測定装置を第3図に示す一実施例に従
い説明する。
[Embodiment of the Invention] The flow rate measuring device of the present invention will be described below according to an embodiment shown in FIG.

第3図において1及び2は、対向する超音波振動子PZ
1.PZ2を駆動、受信し、さらに受信信号の包絡線を
め、この包絡線信号をアナログ−ディジタル変換(以下
A /′D変換と称(る)する超音波送信受信回路であ
る。この送受信回路1゜2において、11.21は共振
型超音波駆動回路、12.22は駆動回路11.21か
ら超音波振動子PZ1.PZ2までを結、′5−シール
ド線、13゜23は振動子PZI、PZ2により受1ε
された超音波受信信号用のリミッタ回路、14.24は
その増幅回路、15.25は増幅回ill!14.24
の出力信号の片側(例えば正極側)の包絡線を検出する
検波回路、16.26は検波回路15.25の出力信号
をディジタル量に変換づるA/′D変挽回路である。
In FIG. 3, 1 and 2 are opposed ultrasonic transducers PZ.
1. This is an ultrasonic transmitting/receiving circuit that drives and receives the PZ2, calculates the envelope of the received signal, and converts this envelope signal from analog to digital (hereinafter referred to as A/'D conversion).This transmitting/receiving circuit 1 In ゜2, 11.21 is a resonance type ultrasonic drive circuit, 12.22 is a connection from the drive circuit 11.21 to ultrasonic transducer PZ1.PZ2, '5-shielded wire, 13゜23 is a transducer PZI, Uke 1ε by PZ2
14.24 is the amplification circuit, and 15.25 is the amplification circuit ill! 14.24
16.26 is an A/'D conversion circuit that converts the output signal of the detection circuit 15.25 into a digital quantity.

3は所定の制御パルスを出力する時間制御回路であり、
この時間制御回路3は上記超音波送受信回路1,2に対
し、超音波駆動タイミングをちえると共に所定の変換タ
イミングを上記A/D変挽回路16.26に与え、更に
後述する入力制御回路(4,5,6>に、上記A / 
D変換回路16゜26の出力ディジタル情報及び自らが
出力する時刻情報夫々を順次格納するようになっている
。この時間制御回路3において、31は超音波撮動子P
ZI、PZ2の超音波駆動タイミングを決定づると共に
n波バースト信号(駆動信号)S100を出ノjする超
音波駆動用のタイミング回路、32はタイミング回路3
1に基づき、後述する発振回路33を駆動制御するゲー
ト回路、33はゲート回路32の出力により起動され超
音波伝搬時間TI、T2の測定におけるサンプリング時
刻を与える発振回路、34は発振回路33の出力パルス
列3200を入力し後述する入力制御回路4,5゜6に
制御パルス830’、Oを与えるシフl−レジスタ回路
、35は発振回路33の出力パルス列5200を順次計
数することにより、後述づる入力制御回路6にサンプリ
ング時刻情報S3を出力するカウンタ回路である。
3 is a time control circuit that outputs a predetermined control pulse;
This time control circuit 3 controls the ultrasonic drive timing for the ultrasonic transmitting/receiving circuits 1 and 2, and also provides a predetermined conversion timing to the A/D conversion circuits 16 and 26, and furthermore, the input control circuit (to be described later) 4, 5, 6>, the above A/
The output digital information of the D conversion circuit 16.26 and the time information outputted by itself are sequentially stored. In this time control circuit 3, 31 is an ultrasound imager P
32 is a timing circuit 3 for ultrasonic drive which determines the ultrasonic drive timing of ZI and PZ2 and outputs an n-wave burst signal (drive signal) S100;
1, a gate circuit drives and controls an oscillation circuit 33, which will be described later. 33 is an oscillation circuit activated by the output of the gate circuit 32 and provides sampling times for measuring the ultrasonic propagation times TI and T2. 34 is an output of the oscillation circuit 33. A shift register circuit 35 inputs the pulse train 3200 and provides control pulses 830' and O to the input control circuits 4 and 5.6, which will be described later.A shift register circuit 35 performs input control, which will be described later, by sequentially counting the output pulse train 5200 of the oscillation circuit 33. This is a counter circuit that outputs sampling time information S3 to the circuit 6.

4は一方の超音波送受信回路1の△、2D変換回路1G
の出力情報S1を、その内部に有したラッチ回路41.
42.・・・、41Nに順次格納する人力制御回路であ
る。
4 is △ of one ultrasonic transmitter/receiver circuit 1, 2D conversion circuit 1G
The latch circuit 41. has the output information S1 therein.
42. . . , 41N is a human control circuit that sequentially stores the data.

5は、他方の超音波送受信口11i 2内のA 、−’
 D変換回路26の出力情ff1s2を上記と同様に格
納覆る入力制御回路である。
5 is A in the other ultrasonic transmitting/receiving port 11i2, -'
This is an input control circuit that stores and overwrites the output information ff1s2 of the D conversion circuit 26 in the same manner as above.

6は時間制御回路3内のカウンタ回路35の出力サンプ
リング時刻情報S3を格納りる入力制御回路である。な
お、上記において入力制御回路5はA/D変換回路26
の出力情報S2を順次格納するラッチ回路51.52.
・・・、511を有している。また入力制御回路6はサ
ンプリング時刻情報S3を順次格納するラッチ回路61
.62.・・・。
Reference numeral 6 denotes an input control circuit that stores the output sampling time information S3 of the counter circuit 35 in the time control circuit 3. Note that in the above, the input control circuit 5 is the A/D conversion circuit 26.
Latch circuits 51, 52, . . . which sequentially store output information S2 of .
..., 511. The input control circuit 6 also includes a latch circuit 61 that sequentially stores the sampling time information S3.
.. 62. ....

6nを有している。It has 6n.

7は入力制御回路4.5.6 (夫々のラッチ回路)に
格納されていた情報を受け、それら情報に基づき駆動余
脈波が無い場合に現われるノ\さ受信波の立上り時刻を
算出し、更にタイミング回路31が駆動回路11.21
を駆動し始めた時刻から、受信波の立上り時刻までの超
音波伝搬時間TI、T2を綽出し、この篩用結果により
流速をめ、この流速の時間積分を行なうことにより流量
を篩用する針筒回路である。
7 receives the information stored in the input control circuit 4.5.6 (each latch circuit), and based on that information calculates the rise time of the noise reception wave that appears when there is no driving after-pulse wave, Further, the timing circuit 31 is connected to the drive circuit 11.21.
The ultrasonic propagation time TI, T2 from the time when the drive starts to the rising time of the received wave is calculated, the flow velocity is calculated based on the sieving result, and the flow rate is determined by integrating the flow velocity over time. It is a cylindrical circuit.

8は上記81韓結果を所定の書式で表示出力する表示装
置である。
Reference numeral 8 denotes a display device for displaying the above-mentioned 81 Korean results in a predetermined format.

次に上記のように偶成された本実施例の動作を第4図を
参照して説明する。先づ、時間制御回路3内のタイミン
グ回路31が作動し、第4図(a )に示すロジックレ
ベルの3波バ一スト信号5100を、超音波送受信回路
1,2内の共振型超音波駆動回路1′m21に転送する
と共に、発振回路33を起動させるべきゲート回路32
を、その出力が第4図(1〕)に示す波形となるように
セラ1〜する。
Next, the operation of this embodiment constructed as described above will be explained with reference to FIG. First, the timing circuit 31 in the time control circuit 3 is activated, and the logic level three-wave burst signal 5100 shown in FIG. The gate circuit 32 that should transfer data to the circuit 1'm21 and start the oscillation circuit 33
are applied to the cellar 1 so that the output has the waveform shown in FIG. 4 (1).

これ以降発振回路33は発振を継続し、第4図(C)に
示すパルス信@5100をシフトレジスタ回路34及び
カウンタ回路35にhえる。−h、上記ろ波バースト信
号8100は超音波送受信回路1.2に入力される。こ
こで超音波送受信回路1では、超音波駆動回路11が第
4図((1)に示すパルス(駆動波形W1)をシールド
線12を介して超音波振動子に与え、超音波を発生させ
る。
After this, the oscillation circuit 33 continues to oscillate and sends the pulse signal @5100 shown in FIG. 4(C) to the shift register circuit 34 and the counter circuit 35. -h, the filtered burst signal 8100 is input to the ultrasonic transceiver circuit 1.2. In the ultrasonic transmitter/receiver circuit 1, the ultrasonic drive circuit 11 applies a pulse (drive waveform W1) shown in FIG. 4 ((1)) to the ultrasonic transducer via the shield wire 12 to generate an ultrasonic wave.

そして超音波振動子PZ1から光せられた超音波は、対
向する超音波振動子PZ2で受信され、電気信号に変換
された後、リミッタ回路23、増幅回路24を経て第4
図(d )に示すような受信波形W3となる(W2は駆
動余脈波)。次に上記受信波形W3を検波回路25によ
り、第4図(e)に示すような正極側の包絡mepを作
り、さらに発振器33の出力パス列5200を変換コマ
ン1〜信号とするA/D変換回路26により、この出力
パルス列$200の各パルスに対応した時刻での包絡線
サンプリング情報S1を得る。
The ultrasonic waves emitted from the ultrasonic transducer PZ1 are received by the opposing ultrasonic transducer PZ2, converted into electrical signals, and then passed through the limiter circuit 23 and the amplifier circuit 24 to the fourth
The received waveform W3 is as shown in Figure (d) (W2 is a driving after-pulse wave). Next, the received waveform W3 is used to create a positive envelope mep as shown in FIG. The circuit 26 obtains envelope sampling information S1 at a time corresponding to each pulse of this output pulse train $200.

同様に超音波送受信回路2では、上記ろ波バースト信号
5100によって駆動される超音波駆動回路21がシー
ルド線22を介して超音波振動子PZ2を振動させ、こ
れにより発生した超音波は、超音波振動子PZ1により
受信し、その受信波形は電気信号に変換され、リミッタ
回路13、増幅回路14、検波回路15(包絡線e11
を得る)及びA/D変挽回路16によって包絡綿サンプ
リング情報S2を得る。
Similarly, in the ultrasonic transmitter/receiver circuit 2, the ultrasonic drive circuit 21 driven by the filtered burst signal 5100 vibrates the ultrasonic transducer PZ2 via the shield wire 22, and the ultrasonic wave generated thereby is an ultrasonic wave. It is received by the vibrator PZ1, and the received waveform is converted into an electric signal, and the limiter circuit 13, amplifier circuit 14, and detection circuit 15 (envelope e11
) and the A/D conversion circuit 16 to obtain the envelope sampling information S2.

これら包絡線サンプリング情報S1.82及び前記サン
プリング時刻情報S3は、シフ1へレジスタ回路34か
ら出力される制御パルス信Q3300によって、入力制
御回路4,5.6 (内部のラッチ回路に)に夫々順次
格納される。そして、31算回路7は、入力制御回路6
のラッチ回路61゜62、・・・、61)から各サンプ
リング時刻情報S3を受け、また夫々の時刻での包絡線
サンプリング情報81.S2を入力制御回路4,5のラ
ッチ回路41,42.・・・、41)及び51.52.
・・・。
These envelope sampling information S1.82 and the sampling time information S3 are sequentially sent to the input control circuits 4, 5.6 (to the internal latch circuit) by the control pulse signal Q3300 outputted from the register circuit 34 to shift 1. Stored. The input control circuit 6
It receives each sampling time information S3 from the latch circuits 61, 62, . . . , 61), and also receives envelope sampling information 81 at each time. S2 is input to the latch circuits 41, 42 . ..., 41) and 51.52.
....

5 nから夫々受ける。5 Receive each from n.

そしC駆動全脈波の影響が比較的少なく且つ駆動余脈波
が無い受信波に基づく包絡線サンプリング情報S1又は
S2を用い、この受信波の立上り時刻を推定するためm
次関数へのフィッティングを実行する。即ち、上記包絡
線サンプリング情報S1.82の最大値、及びその負荷
のサンプリング点合計(m+1)IIIを用いることが
フィッティングするには望ましく、また最も正確である
。そしてフィッティングされた上記その関数の零点が上
記立上り時刻を示すことになる。
Then, using the envelope sampling information S1 or S2 based on the received wave that is relatively less influenced by the C drive total pulse wave and has no drive after-pulse wave, m is used to estimate the rise time of this received wave.
Perform fitting to the next function. That is, it is desirable and most accurate for fitting to use the maximum value of the envelope sampling information S1.82 and the sum of sampling points of its load (m+1)III. The zero point of the fitted function indicates the rise time.

上記において(m+1)個のサンプリング情報81.8
2及びそれらの時刻情報S3に基づき、第4図(e )
 (f )の破線で示す■次関数fmを決定し、このm
次関数fIllが零点Zを通過する時刻を数値計篩する
ことにより各超音波法mTeI間T I 、 ’T 2
をめることが出来る。そして、口の超音波伝搬時間T1
.72により流体の流速、さらに流量が計算でき、所定
の書式で表示装置8に表示出力できる。
In the above, (m+1) pieces of sampling information 81.8
2 and their time information S3, FIG. 4(e)
Determine the ■order function fm shown by the broken line in (f), and determine this m
By numerically measuring the time when the next function fIll passes the zero point Z, T I , 'T 2 between each ultrasonic method mTeI
It is possible to put And the ultrasound propagation time T1 in the mouth
.. 72, the fluid flow velocity and further the flow rate can be calculated and displayed on the display device 8 in a predetermined format.

上記において計篩回路7におけるm次関数へのフィッテ
ィング処理について、例えば2次関数を例にとり第5図
を参照して説明する。即ち、スデップS1で動作が始ま
り、結合子Aを杼でステンブS2でサンブリンク時刻情
報、包絡線サンプリング情報51i−82iを入力し、
ステップS3で1回前の包絡線ザンブリング情報S 1
 i−s 。
In the above, the fitting process to the m-th order function in the meter sieve circuit 7 will be explained with reference to FIG. 5, taking a quadratic function as an example. That is, the operation starts at step S1, and inputs sample link time information and envelope sampling information 51i-82i at step S2 using connector A, and
In step S3, the previous envelope zumbling information S1
i-s.

S 2 i−1より大きいか否かが判定され、大きい場
合は結合子Aに戻り、小さい場合はステップS41\進
む。ステップS4では、1回前及び2,3回前のg+ 
3回のυンブリング時刻情報53i−1゜53i−2,
33+−3、包絡線サンプリング情報51i−1,5l
i−2,31i −a 、S2i −1。
It is determined whether or not it is larger than S 2 i-1. If it is larger, the process returns to the connector A, and if it is smaller, the process proceeds to step S41\. In step S4, g+ of the previous one and two or three times
Three times of υ combining time information 53i-1゜53i-2,
33+-3, envelope sampling information 51i-1, 5l
i-2,31i-a, S2i-1.

52i−2,32i−3を夫々検索し、ステップS5に
進む。ステップS5では2次関数x =at2+l+t
+Cの×へ包絡綿サンプリング情報81.82を代入し
、tl\ザンブリング時刻情報S3を代入してa 、 
b 、 cを算出づる。そしてステップS6でat2+
bj+C=Qのtに最も近いサンプリング時刻を決定す
るために全サンプル点で×(t)を61紳する。ステッ
プS7でlx (t ) lが最小となるt=tjを決
定し、ステップs8で1jを超音波伝搬時間とづる。
52i-2 and 32i-3, respectively, and the process proceeds to step S5. In step S5, the quadratic function x = at2 + l + t
Substitute the enveloping cotton sampling information 81.82 into × of +C, substitute tl\Zambling time information S3, and obtain a.
Calculate b and c. Then, in step S6, at2+
In order to determine the sampling time closest to t of bj+C=Q, x(t) is calculated by 61 at all sample points. In step S7, t=tj is determined to minimize lx (t)l, and in step s8, 1j is defined as the ultrasonic propagation time.

上述した処理及び他チャンネルの超音波伝搬時間とを合
わせてステップSっで流速、流m算出し、ステップ81
0で終りとなる。
The flow velocity and flow m are calculated in step S by combining the above processing and the ultrasonic propagation time of other channels, and step 81
It ends at 0.

なお、第3図において前記検波回路15.25でのFR
間遅れが、測定精度に影響を与える場合には、検波回2
1i15,25の積分定数に基つき各サンプリング時刻
情報S3に補正を加えることができる。
In addition, in FIG. 3, the FR in the detection circuit 15.25
If the delay affects the measurement accuracy, the detection time 2
Based on the integral constants of 1i15 and 25, each sampling time information S3 can be corrected.

以上述べたように本実施例によれば、受信波形の正又は
負の包格線から多量数式を紳出し、この多量数式の零点
により超音波伝搬時間TI、T2をめるようにしたので
、従来この種の超音波伝搬時間差法では困難であった、
駆動系脈波が受信波形と重なった場合の受信波形の立上
り時刻が篩用可能となり、もって超音波伝搬時間差TI
As described above, according to this embodiment, a large number of equations are derived from the positive or negative envelope of the received waveform, and the ultrasonic propagation times TI and T2 are determined by the zero point of this large number of equations. Conventionally, this type of ultrasonic propagation time difference method was difficult to
When the drive system pulse wave overlaps with the received waveform, the rise time of the received waveform can be used as a sieve, and the ultrasonic propagation time difference TI
.

T2を所望の精度で胴枠可能になり、例えは、高濃度呼
気炭酸呼吸ガス下や大流吊呼吸下ての流速。
It is now possible to measure T2 with the desired accuracy, for example, the flow rate under high concentration exhaled carbon dioxide breathing gas or under large flow hanging breathing.

流量の測定が可能となる。It becomes possible to measure the flow rate.

次に第6図を参照して本発明の他の実施例について説明
する。
Next, another embodiment of the present invention will be described with reference to FIG.

上記第3図に示す実施例では検波回路15゜25では、
増幅回路14.24の正極側のみの包絡線を出力づ゛る
構成であったが、これ以外に正負両極の包絡線を検出し
、各々のチ亀・ネルにおいで正負夫々の包絡線から受信
波の立上り時刻をKl mし、相加平均等の演界を施す
ことにより、測定精度の一層の向上を引ることが出来る
。即ち、第5図は上述した実施例を示しており、図中、
Ml。
In the embodiment shown in FIG. 3 above, in the detection circuit 15°25,
Although the amplifier circuit 14.24 was configured to output only the envelope of the positive side, it also detected envelopes of both positive and negative polarities, and received signals from the positive and negative envelopes in each channel. The measurement accuracy can be further improved by adding Kl m to the rise time of the wave and applying a field such as an arithmetic mean. That is, FIG. 5 shows the above-mentioned embodiment, and in the figure,
Ml.

M2は夫々第3図の超音波送受信回路1,2に、第4図
(f)に示すような負極側の包絡線を作る検波回路tv
115.M25、及び負極側包格線サンプリング情報M
S1.MS2を出力するためのA/D変挽回路M16.
M26を追加構成している。
M2 is a detection circuit tv that creates an envelope on the negative side as shown in FIG. 4(f) for the ultrasonic transmitting/receiving circuits 1 and 2 shown in FIG. 3, respectively.
115. M25, and negative side envelope sampling information M
S1. A/D conversion circuit M16 for outputting MS2.
M26 is additionally configured.

また、M4.M5は負極側台$8線サンプリング情報M
S1.MS2を、前記入力制御回路4.5゜6の動作タ
イミングと同様に夫々のラッチ回路M41.M42.・
・・、 M411 、 tv151 、 tv152゜
・・・、M5nに入力する入力制御回路である。
Also, M4. M5 is the negative side stand $8 wire sampling information M
S1. MS2 is connected to each latch circuit M41.MS2 at the same operation timing as the input control circuit 4.5.6. M42.・
..., M411, tv151, tv152°..., this is an input control circuit that inputs to M5n.

ここで、計算回路7は第3図シこ示プ実施例で述べた動
作の池に、負極側包格線サンプリング情報に基づく多量
数式のツイツチインク処理と、零点通過時刻の篩用、を
行ない、各超音波伝搬時間MT1.MT2をめる。そし
て、例えば、上記T1とMTIT2とM T 2どの相
加平均を轟1粋すれば流速、流量の測定精度は向上させ
ることが可能となる。
Here, the calculation circuit 7 performs the twitch ink processing of a large number of mathematical expressions based on the negative electrode side envelope sampling information and the sieving of the zero point passing time in the operation described in the embodiment shown in FIG. Each ultrasound propagation time MT1. Install MT2. For example, by adjusting the arithmetic mean of T1, MTIT2, and MT2, it is possible to improve the measurement accuracy of the flow velocity and flow rate.

本発明は上記の実施例に限定されるらのではなく、本発
明の要旨を逸脱しない範囲で神々変形して実施できる。
The present invention is not limited to the above-described embodiments, but may be modified and implemented without departing from the gist of the present invention.

[発明の効果コ 以上述べたように本発明は、流体の流れ方向又は逆方向
に対し一定の角度を持つ軸上に対向して配置された超音
波振動子犬々から送信した超音波を上記夫々の超音波振
動子で受信し、モの超音波伝搬時間を測定することによ
り上記流体の流量を測定する装置において、上記各振動
子からの受信波形の正及び負の少なくとも一方の包絡線
波形を検出する第1の手段と、上記正及び負の少なくと
も一方の包絡線波形から算出された近似式に基づいて上
記正及び負の少なくとも一方の包絡線波形の立上り時刻
を検出する第2の手段とを備え、上肥立上りIti刻に
基づいて上記MA音波伝搬時間を測定するように構成し
て、駆動金脈波と受信波とが重なりあうような媒体であ
っても、受信波の立上り時刻を正確に検出するようにし
たので、流量を高精度に測定することが可能な流量測定
装置が提供できる。
[Effects of the Invention] As described above, the present invention has the advantage of transmitting ultrasonic waves transmitted from ultrasonic vibrating elements disposed facing each other on an axis having a certain angle with respect to the fluid flow direction or the opposite direction. In the apparatus for measuring the flow rate of the fluid by receiving the ultrasonic wave with the ultrasonic transducer and measuring the propagation time of the ultrasonic wave, a first means for detecting; and a second means for detecting a rise time of at least one of the positive and negative envelope waveforms based on an approximate expression calculated from the at least one of the positive and negative envelope waveforms. is configured to measure the propagation time of the MA sound wave based on the top rise time, so that even in a medium where the driving pulse wave and the received wave overlap, the rise time of the received wave can be accurately determined. Therefore, it is possible to provide a flow rate measuring device that can measure the flow rate with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波伝m峙間差り式による流量測定装置の原
理を説明するための図、第2図(a )(b ) (c
 ) (d )は夫々各ヂt・ネルでの超音波駆動波形
及び受信波形を示す波形図、第3図は本発明による?7
itl測定装置の一実施例を示すブロック図、第4図(
a)乃至(f)は夫々同実施例の動作を説明するための
波形図、第5図は晶1n回路における2次関数近似を説
明づるための流れ図、第6図は本発明の他の実施例を示
づブロック図である。 1.2.Ml、〜12・・・超音波送受信回路、3・・
・時間制御回路、4.5.6.M4.M5・・・入力制
御回路、7・・・計痒回路、8・・・表示装置、11゜
21・・・共振型超音波駆動回路、12.22・・・シ
ールド線、P Z 1 、 P Z 2−ffl音波1
1子、13゜23・・・リミッタ回路、14.24・・
・増幅回路、15.25.Ml5.〜125・・・検波
回路、16゜26、Ml 6.M26・・・A/D変挽
回路、31・・・タイミング回路、32・・・グー1−
回路、33・・・発振回路、34・・・シフトレジスタ
回路、35・・・カウンタ回路、41.42.・・・、
40,51,52.・・・。 5n 、61,62.−.6n 、M41.M42゜・
・・、M4+1、M51.M52.・・・、1y15+
+・・・ラッチ回路。 出願人代理人 弁理士 鈴江武彦 昭和 年 月 日 特許庁長壜 志 賀 学 殿 1、事件の表示 特願昭58−244472+j4 2、発明のり称 流量測定装置 3、補11ミをする者 事件との関係 持前出願人 (3(17) 株式会社 東芝 4、代理人 5、自発補正 6 袖正により減少する発明の数 1 8袖正の内容 (1)特許請求の範囲を別紙の通り旧市する。 (2)明細書第17狗第2行「これり外に」を「受信技
形W3は正側と9側とで平すイクル分だけズレが生じて
いるので、そのズレ分の補正を図るべく」と1正する。 2特許請求の範囲 (1) 流体の流れ方向又は逆方向に対し一定の角曳を
持つ軸上に対向して配高された超音波振動子犬々から送
信した超音波を上記夫々の超音波振動子で受信し、その
超音波伝搬肋間を測定することにより上記流体のsr、
 −)d、 ’l測定する装置において、上記各]l1
vilt11子からのダ伯波形の包絡線波形を検出する
ψ7]の手段と、上記包結線波形から算出さft−1L
辺−似式に徨づいて上記包結線波形のA“7.」ニリ時
刻を検出する第2の手段とt倫え、上記立上り時刻に琴
づいて上記起:音波伝搬時間を測定すン・ように構成し
たこと01徴とする’l7Ii…測定装い。 121年2の手段は、上記?141の手段からの止の包
絡線波ノ16.負の包結線波形の一力からシ出されだ辺
似式に基づいて上記正の包結線波形。 負の包絡線波形の一方の立上り時刻!検出する棉成とし
たこと?特徴とする特許請求の範囲第。 (])項記載の流量測定装置。 (3) 第2の手段は、上記第1の手段からの正の包絡
線波形と負の包結線波形とから夫々jヤn″。 された近似式に基ついて十記止の包結線aQ J+’;
と負の包絡線波形とのN1上り時刻を夫々(φ出する梧
成としたことをIPニー徴とする心1誼求の掴」門弟(
11頂記載の流星測′Ak装島。
Figure 1 is a diagram for explaining the principle of a flow rate measuring device using an ultrasonic transmission m-direction type, and Figure 2 (a), (b), and (c).
) (d) is a waveform diagram showing the ultrasonic drive waveform and reception waveform at each channel, respectively, and FIG. 3 is according to the present invention. 7
A block diagram showing one embodiment of the itl measuring device, FIG.
a) to (f) are waveform diagrams for explaining the operation of the same embodiment, FIG. 5 is a flowchart for explaining quadratic function approximation in a crystal 1n circuit, and FIG. 6 is another embodiment of the present invention. FIG. 2 is a block diagram illustrating an example. 1.2. Ml, ~12... Ultrasonic transmitting/receiving circuit, 3...
・Time control circuit, 4.5.6. M4. M5... Input control circuit, 7... Pruritus circuit, 8... Display device, 11゜21... Resonance type ultrasonic drive circuit, 12.22... Shield wire, P Z 1 , P Z 2-ffl sound wave 1
1 child, 13°23...Limiter circuit, 14.24...
・Amplification circuit, 15.25. Ml5. ~125...Detection circuit, 16°26, Ml 6. M26... A/D conversion circuit, 31... Timing circuit, 32... Goo 1-
Circuit, 33... Oscillation circuit, 34... Shift register circuit, 35... Counter circuit, 41.42. ...,
40, 51, 52. .... 5n, 61, 62. −. 6n, M41. M42゜・
..., M4+1, M51. M52. ..., 1y15+
+...Latch circuit. Applicant's representative Patent attorney Takehiko Suzue Manabu Shiga, Director of the Japan Patent Office, 1996-244472+J4 2, Invention No. Flow Measuring Device 3, Supplementary 11th Case Related: Patented applicant (3 (17) Toshiba Corporation 4, agent 5, voluntary amendment 6 Number of inventions reduced by sleeve correction 1 Contents of 8 sleeve correction (1) The scope of claims is revised as shown in the attached sheet (2) In the specification No. 17, line 2, ``Korerigai ni'' is changed to ``Reception skill W3 has a difference of equal to one cycle between the positive side and the 9th side, so the correction for that difference is made. 2. Claims (1) Ultrasonic waves transmitted from ultrasonic vibrator arrays facing each other on an axis having a constant angular force with respect to the flow direction of the fluid or the opposite direction. The sr of the fluid is determined by receiving sound waves with each of the ultrasonic transducers and measuring the intercostal space of the ultrasound propagation.
-) d, 'lIn the measuring device, each of the above ]l1
ψ7] for detecting the envelope waveform of the dot waveform from the vilt11 child, and ft-1L calculated from the above envelope waveform.
In line with the second means of detecting the A "7." time of the envelope waveform by following the side-like equation, the above-mentioned wave propagation time is measured based on the rise time. 'l7Ii...Measurement equipment. Is the means for 121 years 2 mentioned above? 16. Envelope wave of stop from means of 141. The above positive enveloping line waveform is derived from the negative enclosing line waveform based on the edge approximation. One rise time of the negative envelope waveform! What did you do to detect it? Characterizing Claim No. Flow rate measuring device described in ( ). (3) The second means calculates the envelope line aQ J+ based on the approximation formulas obtained from the positive envelope waveform and the negative envelope waveform from the first means. ';
The N1 rising time of the negative envelope waveform and the negative envelope waveform are determined respectively (
Meteor survey 'Ak Sojima, which is mentioned in the 11th summit.

Claims (1)

【特許請求の範囲】[Claims] (1) 流体の流れ方向又は逆方向に対し一定の角度を
持つ軸上に対向して配置された超音波振動子犬々から送
信した超音波を上記夫々の超音波振動子で受信し、その
超音波伝搬時間を測定することにより上記流体の流量を
測定する装置において、上記各振動子からの受信波形の
正又は負の包絡線波形を検出する第1の手段と、上記正
又は負の包絡線波形から棹出された近似式に基づいて上
記正又は負の包絡線波形の立上り時刻を検出する第2の
手段とを備え、上記立上り時刻に基づいて上記超音波伝
搬時間を測定するように構成したことを特徴とする流量
測定装置。 (21流体の流れ方向又は逆方向に対し一定の角度を持
つ軸上に対向して配置された超音波振動子犬々から送信
した超音波を上記夫々の超音波振動子で受信し、その超
音波伝搬時間を測定することにより上記流体の流量を測
定する装置において、上記各振動子からの受信波形の正
及び負の包絡線波形を検出する第1の手段と、上記正及
び負の包絡線波形から算出された近似式に基づいて上記
正及び負の包絡線波形の立上り時刻を検出する第2の手
段とを備え、上記立上り時刻に基づいて上記超音波伝搬
時間を測定するように構成したことを特徴とする流量測
定装置。
(1) The ultrasonic transducers receive the ultrasonic waves transmitted from the ultrasonic vibrating elements placed facing each other on an axis having a certain angle with respect to the fluid flow direction or the opposite direction, and In the device for measuring the flow rate of the fluid by measuring the propagation time of the sound wave, the device includes: a first means for detecting a positive or negative envelope waveform of a received waveform from each of the vibrators; a second means for detecting a rising time of the positive or negative envelope waveform based on an approximate expression derived from the waveform, and configured to measure the ultrasonic propagation time based on the rising time. A flow rate measuring device characterized by: (21) Each of the ultrasonic transducers receives the ultrasonic waves transmitted from the ultrasonic vibrating elements placed opposite to each other on an axis having a certain angle with respect to the flow direction of the fluid or the opposite direction, and The apparatus for measuring the flow rate of the fluid by measuring the propagation time includes a first means for detecting positive and negative envelope waveforms of received waveforms from each of the vibrators, and the positive and negative envelope waveforms. and a second means for detecting rise times of the positive and negative envelope waveforms based on approximate expressions calculated from the above, and configured to measure the ultrasonic propagation time based on the rise times. A flow rate measuring device featuring:
JP58244472A 1983-12-27 1983-12-27 Flow rate measuring device Pending JPS60138422A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58244472A JPS60138422A (en) 1983-12-27 1983-12-27 Flow rate measuring device
US06/686,999 US4603589A (en) 1983-12-27 1984-12-27 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58244472A JPS60138422A (en) 1983-12-27 1983-12-27 Flow rate measuring device

Publications (1)

Publication Number Publication Date
JPS60138422A true JPS60138422A (en) 1985-07-23

Family

ID=17119162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58244472A Pending JPS60138422A (en) 1983-12-27 1983-12-27 Flow rate measuring device

Country Status (1)

Country Link
JP (1) JPS60138422A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2366981A1 (en) 2003-04-21 2011-09-21 Teijin Pharma Limited Oxygen concentration system for generating oxygen-enriched gas
WO2019216027A1 (en) * 2018-05-10 2019-11-14 三菱重工サーマルシステムズ株式会社 Position estimation device, air conditioning system, position estimation method, and program
EP3696540A4 (en) * 2017-10-04 2021-02-24 Ueda Japan Radio Co., Ltd. Propagation time measurement machine, gas concentration measurement device, propagation time measurement program, and propagation time measurement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2366981A1 (en) 2003-04-21 2011-09-21 Teijin Pharma Limited Oxygen concentration system for generating oxygen-enriched gas
EP3696540A4 (en) * 2017-10-04 2021-02-24 Ueda Japan Radio Co., Ltd. Propagation time measurement machine, gas concentration measurement device, propagation time measurement program, and propagation time measurement method
US11054397B2 (en) 2017-10-04 2021-07-06 Ueda Japan Radio Co., Ltd. Propagation time measurement machine, gas concentration measurement device, propagation time measurement program, and propagation time measurement method
WO2019216027A1 (en) * 2018-05-10 2019-11-14 三菱重工サーマルシステムズ株式会社 Position estimation device, air conditioning system, position estimation method, and program
JP2019196999A (en) * 2018-05-10 2019-11-14 三菱重工サーマルシステムズ株式会社 Position estimation device, air-conditioning system, position estimation method, and program

Similar Documents

Publication Publication Date Title
CN108369242B (en) Improved beamformed acoustic signal travel time flow meter
CN1725019B (en) Clamp type doppler ultrasonic flow rate distribution instrument
US10031011B2 (en) Ultrasonic flow meter including a single transmitting transducer and a pair of receiving transducers
US6595071B1 (en) Estimation of error angle in ultrasound flow measurement
US7124621B2 (en) Acoustic flowmeter calibration method
WO2013065231A1 (en) Ultrasonic sensor and ultrasonic flowmeter using same
JP5447561B2 (en) Ultrasonic measuring instrument
RU2660011C1 (en) Method and device for ultrasonic flow method measurement and layout device for controlling ultrasonic flow measurements by practical method
JPS60138422A (en) Flow rate measuring device
JP2007051913A (en) Correction method for ultrasonic flowmeter
JP2005172556A (en) Ultrasonic flowmeter
JP2017187310A (en) Ultrasonic flowmeter
JP3590900B2 (en) Ultrasonic flow meter
JP3136002B2 (en) Ultrasonic flow meter
CN101228416A (en) Method for determining and monitoring a process parameter
JP7151311B2 (en) ultrasonic flow meter
JP6187343B2 (en) Ultrasonic measuring instrument
JPS60115810A (en) Ultrasonic flowmeter
EP3940345A1 (en) Flow rate measurement device
JPS61132823A (en) Ultrasonic flowmeter
JP2005300244A (en) Ultrasonic flow meter
US20060243065A1 (en) Method and apparatus for measuring flow rate of fluid
JPS61100616A (en) Apparatus for measuring flow amount
JP3646875B2 (en) Ultrasonic flow meter
JP2007064792A (en) Ultrasonic flow measuring instrument