JPS60138401A - System and device for measuring absolute length of transmission line - Google Patents

System and device for measuring absolute length of transmission line

Info

Publication number
JPS60138401A
JPS60138401A JP24462683A JP24462683A JPS60138401A JP S60138401 A JPS60138401 A JP S60138401A JP 24462683 A JP24462683 A JP 24462683A JP 24462683 A JP24462683 A JP 24462683A JP S60138401 A JPS60138401 A JP S60138401A
Authority
JP
Japan
Prior art keywords
signal
absolute
frequency
phase
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24462683A
Other languages
Japanese (ja)
Inventor
Kouichi Tachikura
立蔵 公壱
Hitoshi Yamamoto
均 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP24462683A priority Critical patent/JPS60138401A/en
Publication of JPS60138401A publication Critical patent/JPS60138401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To obtain an exact measured value of an absolute length by deciding the polarity of an instruction of a phase measuring system for sweeping successively and displaying a modulation section which has set the upper limit and the lower limit, counting the number of times which has exceeded 2pi, and deriving an absolute phase quantity. CONSTITUTION:A modulating part A fetches a reference signal and a signal for passing through a transmission line to be measured, from a front light and a back light of a semiconductor laser. Subsequently, in a demodulating part B, a signal which has passed through an optical fiber 3 is converted to an electric signal by an optical-electric transducer 4, and thereafter, mixed with an output frequency of the second wave oscillator 10, a hybrid 11 of 3dB branch, and a directional coupler 12 by a frequency mixer 13. This intermediate frequency fIF passes through BPF5 and becomes a signal to be measured VS. Also, the reference signal is dropped as well to the intermediate frequency fIF by an optical-electric transducer 4' and a frequency mixer 13', and becomes a reference signal VR through a BPF5'. A measuring part C is constituted of a phase measuring instrument 7, and displays a phase quantity not exceeding 2pi. Also, a display of the phase measuring instrument 7 of every sweep frequency is read to a control part D.

Description

【発明の詳細な説明】 (利用分野) 本発明は伝送路の絶対長の測定方式とその測定に用いる
装置に係わり、特に位相遅延法を用いて絶対位相変化量
を本めて伝送路の絶対長を測定する方式とその装置に関
するものである。
Detailed Description of the Invention (Field of Application) The present invention relates to a method for measuring the absolute length of a transmission line and a device used for the measurement, and in particular, the present invention relates to a method for measuring the absolute length of a transmission line and a device used for the measurement. It concerns a method and device for measuring length.

(従来技術) 長距離伝送システムにおける伝送特性を知ることは、有
効的な回線使用するにあたって重要であ構築する上で極
めて重要な問題である。
(Prior Art) Knowing the transmission characteristics of a long-distance transmission system is important for effective line use and is an extremely important problem in constructing a long-distance transmission system.

ところで、従来は大まかな伝送路の絶対長を伝ス 送路のルートから想定して計算したシ、回線をループバ
ックして送信したパルス波形と帰ってきたパルス波形と
をシンクロスコープに出して位相差をめ、これを換算す
ることにより絶対長を測定していた。
By the way, in the past, the approximate absolute length of the transmission line was calculated based on the route of the transmission line. The absolute length was measured by calculating the phase difference and converting it.

しかしながら、前者の測定方法から得た絶対長の値は誤
差が大きく、正確な値をめることができなかった。一方
、後者の絶対長をめるのに位相量を測定して換算する測
定方法においては、2π以上の位相量を簡単に測定する
方法が困難なため、正確な値をめることが帷しかった。
However, the absolute length value obtained from the former measurement method had a large error, and it was not possible to obtain an accurate value. On the other hand, in the latter measurement method of measuring and converting the phase amount to calculate the absolute length, it is difficult to easily measure the phase amount of 2π or more, so it is difficult to calculate the accurate value. Ta.

すなわち、絶対位相1t(2π×整数倍+θ)がまれば
、これを電波の伝搬速度(3X 10 ’ rnS)で
割って絶対長を計算できるわけであるが、(1)絶対位
相量を一意的にめる測定方法がなく・ かつ (2)測定器系内部で生じる位相差(一定値)も含んで
しまうため、正確な絶対長をめることが困難であった。
In other words, if the absolute phase 1t (2π x integer multiple + θ) is calculated, the absolute length can be calculated by dividing it by the radio wave propagation speed (3X 10' rnS). (2) It was difficult to determine the exact absolute length because it included the phase difference (constant value) that occurred inside the measuring instrument system.

以上の説明から明らかなように、従来の測定方式では正
確な絶対長をめることは不可能に近かった。
As is clear from the above explanation, it is nearly impossible to determine the exact absolute length using conventional measurement methods.

(目 的) 本発明の目的は、前記した従来技術の欠点に鑑みなされ
たもので、変調周波数を掃引して絶対位相量をめること
(よ)、伝送路の絶対長を高精度に測定する方式とその
装置を提供するにある。
(Purpose) The purpose of the present invention was made in view of the drawbacks of the prior art described above. The purpose is to provide a method and device for doing so.

(概 ′4り 本発明の特徴は、変調周波数の上限と下限を設定し、該
変調区間を順次掃引することくより表示する位相測定系
の指示を極性判定して、2πを越えた回数をカウントす
ることによシ絶対位相員をめて絶対長を測定するように
した点にある。
(Generally, the feature of the present invention is that the upper and lower limits of the modulation frequency are set, and the polarity of the indication of the phase measurement system displayed by sequentially sweeping the modulation section is determined, and the number of times the frequency exceeds 2π is calculated. The point is that the absolute phase member is determined by counting and the absolute length is measured.

また、本発明の他の特徴は、第1図に示されているよう
に、変調部Aと、基準信号vRと被測定信号■、をIF
信号に−すための復調部Bと、該両信号の位相差を測定
する測定部Cと、前記変調部Aと復調部Bの周波数を制
御する手段り、と前記測定部Cの指示を極性判定する手
段D2と絶対位相量をめる手段り、と該絶対位相量から
絶対長をめる手段D4とからなる制御部りとを具備した
点にある。
Another feature of the present invention is that, as shown in FIG.
a demodulating section B for converting the signal into a signal; a measuring section C for measuring the phase difference between the two signals; a means for controlling the frequencies of the modulating section A and the demodulating section B; The present invention is characterized in that it is equipped with a control section consisting of means D2 for determining, means for calculating an absolute phase amount, and means D4 for calculating an absolute length from the absolute phase amount.

(実施例) ここでは、光ファイバの絶対長の測定方式において、特
に変調周波数が高く絶対位相量(2πX整数倍十〇)(
ただし、θは位相変化量を2πX整数倍で割った余り)
も大きくなって測定しにくくなった場合を例にとv、’
M下図面を用いて・本発明の詳細な説明する。
(Example) Here, in the method of measuring the absolute length of an optical fiber, the modulation frequency is particularly high and the absolute phase amount (2πX integer times 10) (
However, θ is the remainder when the amount of phase change is divided by an integer multiple of 2πX)
For example, when v becomes large and difficult to measure, v,'
The present invention will be explained in detail using the drawings below.

第2図は本発明の基本原理を説明するためのブロック図
である。図において、lは変調周波数fを発振するため
の第1の正弦波発振器、2は半導体レーザ、3は被測定
伝送路の光ファイバ、4は光電気変換器、5はバンドパ
スフィルタ(以下、B、P、F、と略す) v、 ハ被
測定イ6号、7は位相測定器、vRは基準信号である。
FIG. 2 is a block diagram for explaining the basic principle of the present invention. In the figure, l is a first sine wave oscillator for oscillating modulation frequency f, 2 is a semiconductor laser, 3 is an optical fiber of the transmission line to be measured, 4 is a photoelectric converter, and 5 is a bandpass filter (hereinafter referred to as (Abbreviated as B, P, F) v, C Measured A No. 6 and 7 are phase measuring devices, and vR is a reference signal.

同図において、Δθは基準信号■8と正弦波発振器1→
半導体レーザ2→光ファイバ3→光電気変換器4→B、
P、F 5を経由した被測定信号v8 との位相差(絶
対位相Il)を意味し、(1)式のようになる。
In the figure, Δθ is the reference signal ■8 and the sine wave oscillator 1→
Semiconductor laser 2 → optical fiber 3 → photoelectric converter 4 → B,
This means the phase difference (absolute phase Il) with the signal under test v8 that has passed through P and F5, and is expressed as equation (1).

(1)式で、第1項の(Δθ。) conet は被測
定伝送路の光ファイバ3がない場合でも生じる測定器系
内部の誤差であシ・Cは真空中での光速、fは変調周波
数、Nは被測定ファイバに印加される応力(主く、張力
)の状態にょシ決まる定数(N=>1.46〜1.47
)、Lは光ファイバ3の光ファイバ長である。
In equation (1), the first term (Δθ.) conet is an error within the measuring instrument system that occurs even when there is no optical fiber 3 in the transmission line to be measured. C is the speed of light in vacuum, and f is the modulation The frequency, N, is a constant determined by the state of stress (mainly tension) applied to the fiber under test (N => 1.46 to 1.47
), L is the optical fiber length of the optical fiber 3.

次に、変調周波数fをf′に変えた時の位相差Δθ′は
(2)式のようになる。
Next, when the modulation frequency f is changed to f', the phase difference Δθ' is expressed by equation (2).

したがって、ΔθとΔθ′との差δθ、は(3)式で与
えられる。
Therefore, the difference δθ between Δθ and Δθ' is given by equation (3).

(3)式から明らかなように、光ファイバの絶対長しは
相異なる2つの周波数の位相差をめることによシ測定で
き、測定器系内部等で生じる誤差もなくすことができる
とともに周波数差1−1′で長さに対する測定分解能も
任意に設定できる。
As is clear from equation (3), the absolute length of an optical fiber can be measured by calculating the phase difference between two different frequencies. The measurement resolution for length can also be set arbitrarily with a difference of 1-1'.

上記の基本原理から、相異なる2周波数の絶対位相差を
めれば絶対長を測定することは可能であるが、通常の位
相測定器7では(2π×整数培+θ)の位相差はθとし
か表示されず絶対位相差を測定できない。したがって 
周波数差f −f’を非常に小さくすれば位相差 δθ
Lを2π内に押えられるが、測定分解能が悪くなり正確
な絶対長りを測定できなくなってしまう。
Based on the above basic principle, it is possible to measure the absolute length by measuring the absolute phase difference between two different frequencies, but with a normal phase measuring device 7, the phase difference of (2π × integer multiplier + θ) is calculated from θ. only is displayed and the absolute phase difference cannot be measured. therefore
If the frequency difference f - f' is made very small, the phase difference δθ
Although L can be kept within 2π, the measurement resolution deteriorates, making it impossible to accurately measure the absolute length.

よって、高精度な絶対長を測定するには測定分解能が良
く、かつ絶対位相差(2π×n+θ)(ただし、nは整
数)をめることが必要であり、その測定方法の原理につ
いて第3図を用いて説明する。
Therefore, in order to measure the absolute length with high precision, it is necessary to have good measurement resolution and to include the absolute phase difference (2π × n + θ) (where n is an integer). This will be explained using figures.

第3図において、横軸は変調周波数f、縦軸は変調周波
数fmin における位相差Δθを基準にした時の変調
周波数fにおける位相差変位δθ1の場合の位相測定器
の指示δθ′を表わしている。しかし、前述したように
位相測定器の指示δrは±π内の値であり、δθ′はδ
θ、を2πで割った余りの値である。
In FIG. 3, the horizontal axis represents the modulation frequency f, and the vertical axis represents the indication δθ' of the phase measuring instrument when the phase difference displacement δθ1 at the modulation frequency f is based on the phase difference Δθ at the modulation frequency fmin. . However, as mentioned above, the indication δr of the phase measuring instrument is a value within ±π, and δθ′ is δ
It is the value of the remainder when θ is divided by 2π.

したがって、光ファイバの絶対長測定において所望の測
定分解能を満足するだけの周波数Δf=fmax −f
min を選定した場合、同図のごとく、fminと’
max との間にm個の変調周波数fk(k=1.2.
・・・・・・・・・・・、m)を設定し、δθk(k=
1.2.・・・・・、m+3)を連続的に測定してその
結果を各々加算して行けば絶対位相差δθLをめること
ができる。
Therefore, the frequency Δf=fmax −f that satisfies the desired measurement resolution in measuring the absolute length of the optical fiber is
When min is selected, as shown in the figure, fmin and '
m modulation frequencies fk (k=1.2...
........., m), and δθk (k=
1.2. .

′ すなわち、δθ1=2π” max ’min )
 NL/C=2π(f、 −fm、、) NL/C+ 
2π(f2− f、)NL/C+ ・・・・・・・・・
 + 2 π (fk−f、1)NL/C十・・・曲−
・・・・ +2゛π(frrlax−fm)NL/c=
δθ1+δθ2+ ・−、、、、聞・+δθに+・・・
・・・・・・+60m+1となり、2周波数 fmlL
Xとfmi nの間で周波数fを掃引すれば絶対位相差
δ九を一!仰にめることができ、δθ、を換算すること
によシ光ファイバの絶対長りを測定できる。
′, that is, δθ1=2π” max 'min)
NL/C=2π(f, -fm,,) NL/C+
2π(f2- f,)NL/C+ ・・・・・・・・・
+ 2 π (fk-f, 1) NL/C 10...song -
...+2゛π(frrlax-fm)NL/c=
δθ1+δθ2+ ・−、、、、、++δθ+・・・
・・・・・・+60m+1, 2 frequencies fmlL
If you sweep the frequency f between X and fmin, the absolute phase difference δ9 will be 1! It can be placed on one's back, and by converting δθ, the absolute length of the optical fiber can be measured.

ただ、上述した方法で個々の位相差変位δθ□を加算し
て絶対位相差δθ、をめたのでは、各測定値の測定誤着
を蓄積し正確な絶対位相差δθ。
However, if the absolute phase difference δθ is determined by adding up the individual phase difference displacements δθ□ using the method described above, measurement errors of each measurement value will be accumulated and the accurate absolute phase difference δθ will be calculated.

が測定できない可能性がある。したがって、変調周波数
fk(k=1 、2 、・・・・・・・・・r m )
は位相測定系の指示δdの極性判定(プラスか又はマイ
ナス)に使用して、極性の変化の回数から2πの回数n
を決定するのに用いる。
may not be measurable. Therefore, the modulation frequency fk (k=1, 2, . . . r m )
is used to determine the polarity (positive or negative) of the indication δd of the phase measurement system, and the number n of 2π is calculated from the number of polarity changes.
used to determine.

例えば、第3図に示されているように、πの変化内K例
えば3つの周波数を設定し、位相測定系の指示δθ′の
符号が+から−に変化した時に2πを1回越えたものと
判断し、変調周波数f まmax での2πの回数nを測定する。
For example, as shown in Fig. 3, K within a change of π, for example, three frequencies are set, and when the sign of the phase measurement system indication δθ' changes from + to -, 2π is exceeded once. Then, the number of times n of 2π at the modulation frequency fmax is measured.

また、2πの回数nは、次のようにしてめてもよい、す
なわち、πの変化内に3つの周波数を設定し、r−、+
、−、士、士、士、Jの符号が来たら位相差変位が2π
を越えたものと判断し、変調周波数fmaxまでの2π
の回数nを測定する。
Also, the number n of 2π may be determined as follows, that is, by setting three frequencies within the change of π, r-, +
, −, shi, shi, shi, when the sign of J comes, the phase difference displacement is 2π
2π up to the modulation frequency fmax.
Measure the number of times n.

よって、絶対位相差δθ1は、下記の(4)式でられる
Therefore, the absolute phase difference δθ1 is expressed by the following equation (4).

δθ、 −(2π×n+θ) ・・・・ ・・・・・・
・・・・・・・・・・・+41(ただし、θは位相測定
器の7it終指示値)また、伝送路の絶対長しは、次式
から正確にめられる。
δθ, −(2π×n+θ) ・・・・・・・・・・・・
......+41 (where θ is the 7it final indication value of the phase measuring device) Also, the absolute length of the transmission path can be accurately determined from the following equation.

L=δθ、 X C/2πXN×(frllaX−fm
in) 曲面・・・・・・(5)このように、本発明で
は、変調周波数幅Δf=’max−fmin を設定し
、この間を変調周波数fkで掃引することにより高分解
能で光ファイバの絶対長りを測定できる。
L=δθ, X C/2πXN×(frllaX−fm
in) Curved surface (5) In this way, in the present invention, by setting the modulation frequency width Δf='max-fmin and sweeping the range with the modulation frequency fk, the absolute value of the optical fiber can be determined with high resolution. Can measure length.

次に、本発明による絶対長測定方法の原理を用いた絶対
長測定装#tについて説明する。
Next, an absolute length measuring device #t using the principle of the absolute length measuring method according to the present invention will be explained.

第4図は本発明による光ファイバの絶対長測定装置の一
実施例である。
FIG. 4 shows an embodiment of an optical fiber absolute length measuring device according to the present invention.

同図において、Aは変調部、Bは復調部、Cは測定部、
Dは制御部、Eは被測定伝送媒体の光ファイバ3であり
、本実施例の装置はA−Dの4つの部から構成されてい
る。なお、15は出力端末装置(例えば、ディジタルプ
リンタ又はディスプレイ)iHll。
In the figure, A is a modulation section, B is a demodulation section, C is a measurement section,
D is a control section, E is an optical fiber 3 as a transmission medium to be measured, and the apparatus of this embodiment is composed of four sections A to D. Note that 15 is an output terminal device (for example, a digital printer or display) iHll.

Aの変!11部は、周波数を’minから ’maxま
で可変可能な第1の正弦波発振器1と、該発振器1によ
って出力光を変調される半導体レーザ2とで構成されて
いる。該変調部Aは半導体レーザの温度特性による測定
誤差を無くすために、基準信号と被測定伝送路を通る信
号とをひとつの半導体レーザの前方光と後方光から取り
出し、半導体レーザの温度変化の影響を相殺している。
A's strange! Part 11 is composed of a first sine wave oscillator 1 whose frequency can be varied from 'min' to 'max, and a semiconductor laser 2 whose output light is modulated by the oscillator 1. In order to eliminate measurement errors due to the temperature characteristics of the semiconductor laser, the modulation section A extracts the reference signal and the signal passing through the transmission line to be measured from the front light and rear light of one semiconductor laser, and eliminates the influence of temperature changes on the semiconductor laser. are offsetting.

なお、ひとつの半導体レーザから2つの出力光を取シ出
す方法として、ビームスプリッタを用いても良い。
Note that a beam splitter may be used as a method of extracting two output lights from one semiconductor laser.

次にBの復調部は基準信号の復調部と被測定伝送路を通
ってきた信号の復調部とに大別できるが、装置の構成が
同一なので被測定伝送路側の復調部について説明する。
Next, the demodulation section B can be roughly divided into a demodulation section for the reference signal and a demodulation section for the signal that has passed through the transmission line under test, but since the configuration of the apparatus is the same, the demodulation section on the transmission line under test side will be explained.

まず、被測定伝送路である光ファイバ3を通ってきた信
号は光電気変換器4により電気信号に変換される。その
後、該電気信号(周波数f、 )は、RF傷信号IF(
1号におとすために設けられた可変可能な第2の正弦波
発振器 10.3dB分岐のハイブリッド11及び方向
性結合器12の出力周波数f、と周波数混合器13によ
り混合され、中間周波数’IF ”” l ’! に変
換される。この中間周波数 ’IFはB、P、F、5を
通って被測定信号V となる。なお・被測定信号V の
周波数はfIF であるが光ファイバを伝搬した時に生
じた位相推移2πf、NL/Cは変化しないことは言う
までもない。
First, a signal that has passed through the optical fiber 3, which is the transmission line to be measured, is converted into an electrical signal by the opto-electrical converter 4. Thereafter, the electrical signal (frequency f, ) is converted into an RF flaw signal IF (
The output frequency f of the 10.3 dB branched hybrid 11 and the directional coupler 12 is mixed by the frequency mixer 13 to produce an intermediate frequency 'IF''. "l'! is converted to This intermediate frequency 'IF passes through B, P, F, and 5 to become the signal under test V. Although the frequency of the signal to be measured V is fIF, it goes without saying that the phase shift 2πf, NL/C that occurs when propagating through the optical fiber does not change.

また、基準信号も同様に光電気変換器4′で電気信号に
変換された後周波数混合器13′により中間周波数 1
1F におとされる。その後、B 、 P 、 F。
Similarly, the reference signal is converted into an electrical signal by the opto-electrical converter 4', and then converted to an intermediate frequency 1 by the frequency mixer 13'.
You will be taken down to the 1st floor. Then B, P, F.

5′を通って、基準信号vRとなる。5' and becomes the reference signal vR.

ここで、中間周波数fIF に周波数をおとしてから測
定する理由について説明する。
Here, the reason for measuring after lowering the frequency to the intermediate frequency fIF will be explained.

通常、位相測定器7は受信信号の帯域が決まっており、
1つの同調帯域のみでは本発明のようにfmin から
fm&工まで掃引する場合に掃引周波数幅を全てカバー
することができない。もう1つの理由は、RF傷信号そ
のままB、P、F、5.5’に通すよりも、IF倍信号
狭帯域B、I)、F、5゜5′ に通した方が帯域雑音
を除去でき、S/N比を大きくとることができる。
Usually, the phase measuring device 7 has a fixed band for the received signal.
With only one tuning band, it is not possible to cover the entire sweep frequency width when sweeping from fmin to fm&min as in the present invention. Another reason is that it is better to pass the IF multiplied signal through the narrow band B, I), F, 5°5' to remove band noise, rather than passing the RF flawed signal as it is through B, P, F, 5.5'. It is possible to obtain a large S/N ratio.

したがって、本実施例のように周波数変換してから位相
測定器7に入力すると信号の変調周波数を数M Hzか
ら数百M I(zまで可変しても、手動で位相測定器7
の同調帯域をその都度変える必要もなく自動測定が可能
となる。また、1言号の受信レベルが低くてもS/N比
を改善できるメリットがある。
Therefore, if the frequency is converted and then input to the phase measuring device 7 as in this embodiment, even if the modulation frequency of the signal is varied from several MHz to several hundred M
Automatic measurement becomes possible without the need to change the tuning band each time. Furthermore, there is an advantage that the S/N ratio can be improved even if the reception level of one word is low.

Cの測定部は位相61す足温7で(1q成されており、
2π以内の位相量を表示するものである。上述したよう
に、変調周波数f、Ic関係す<一定の中間周波数1 
に変換された信号V、 、 VRが入力F 信号となるので、1つの同P1帯域で全て測定可能であ
る。また、掃引周波数ごとの位相測定器7の表示は次に
述べる制御部りに読み込まれる。
The measurement part of C is made up of (1q) with phase 61 and foot temperature 7,
It displays the phase amount within 2π. As mentioned above, the relationship between modulation frequency f and Ic < constant intermediate frequency 1
Since the signals V, , and VR converted into are the input F signals, all can be measured in one P1 band. Further, the display of the phase measuring device 7 for each sweep frequency is read into the control section described below.

最後に、Dの制御部はマイコン等を用いた制御回路14
である。
Finally, the control section of D is a control circuit 14 using a microcomputer or the like.
It is.

この制御回路140機能を第5図に示すフローチャート
で説明する。
The function of this control circuit 140 will be explained with reference to the flowchart shown in FIG.

ステップS1・・・制御回路14に光ファイバの肝油折
率M、ファイバの概略長りのデータがインプットされる
Step S1: Data on the liver oil refraction index M of the optical fiber and the approximate length of the fiber are input to the control circuit 14.

ステップS2・・・位相測定器7をリモートセットし、
該測定器7のマニュアル動作を解除する。そして、該測
定器7を制御回路14と接続する。
Step S2... Set the phase measuring device 7 remotely,
The manual operation of the measuring instrument 7 is canceled. Then, the measuring device 7 is connected to the control circuit 14.

ステップS3・・・正弦波発振器lの最大周波数F8を
、ファイバの概略長りで割ることによって最大変調周波
aFmをめる。また、測定n度から決められる定数Aを
、ファイバの概略長りと最大掃引回数Nの積で除するこ
とにより、掃引間隔ΔFをめる請求められた最大周波数
Fmと掃引間隔ΔFを、制御回路14内に設定する。
Step S3...The maximum modulation frequency aFm is determined by dividing the maximum frequency F8 of the sine wave oscillator l by the approximate length of the fiber. In addition, by dividing a constant A determined from n degrees of measurement by the product of the approximate length of the fiber and the maximum number of sweeps N, the maximum frequency Fm and the required sweep interval ΔF can be controlled to calculate the sweep interval ΔF. It is set in the circuit 14.

ステップS4・・・2πの回数nをOにリセットする。Step S4...The number n of 2π is reset to O.

ステップS5・・・現在の掃引回数1が最大掃引回数N
に等しいか否かの判断を行なう。ノーであれば、ステッ
プS6へ進み、イエスであればステップ815へ進む。
Step S5...The current number of sweeps 1 is the maximum number of sweeps N
Make a judgment as to whether it is equal to or not. If no, proceed to step S6; if yes, proceed to step S815.

ステップS6・・・可変可能な第2の正弦波発振器10
0周波数(局部発振局波数)f2および第1の正弦波発
振器1の発振周波数f1を設定する。なお、これらの発
振局波数り詔よびflは、次式によシ決定される。
Step S6... variable second sine wave oscillator 10
0 frequency (local oscillation local wave number) f2 and the oscillation frequency f1 of the first sine wave oscillator 1 are set. The oscillation station wave number and fl are determined by the following equation.

f、=F、−(N−I)ΔF fI =’! +’IF ただし、fIFは中間周波aを麦ず。f,=F,-(N-I)ΔF fI=’! +’IF However, fIF does not include intermediate frequency a.

ステップS7・・・位相測定器7によって測定された現
在の位相差S1を読込む。
Step S7: Read the current phase difference S1 measured by the phase measuring device 7.

ステップ8B・・・前回測定した位相差S2と今回の位
相差S1との差の絶対値が予め定められた角度θ。より
大きいか否かの判断がなされる。ノーであれば、ステッ
プS9へ進み、イエスであれば、ステップS 11へ進
む。なお、角度θ。とじては、600. Zoo。
Step 8B: An angle θ at which the absolute value of the difference between the previously measured phase difference S2 and the current phase difference S1 is determined in advance. A determination is made as to whether the value is greater than or not. If no, proceed to step S9; if yes, proceed to step S11. Note that the angle θ. The final cost is 600. Zoo.

等が好適である。etc. are suitable.

ステップS9・・・111回の位相差s2を今回の位相
差S1に更新する。
Step S9: The 111th phase difference s2 is updated to the current phase difference S1.

ステップ810・・・掃引回数工に1を加算する。Step 810: Add 1 to the number of sweeps.

ステップ811,812・・・位相差81の符号が正か
ら負に七倦毬未変ったか、負から正に不逢続来変ったか
、それとも、これら二つの変化がなかったかの判断がな
される。
Steps 811, 812...A determination is made as to whether the sign of the phase difference 81 has changed from positive to negative, continuously changed from negative to positive, or whether these two changes have not occurred.

位相差S1の符号が正から負に不壊−鮪変った時にはス
テップS13へ進み【負から正に変った時にはステップ
S14へ進む。
When the sign of the phase difference S1 changes from positive to negative, the process proceeds to step S13; when the sign changes from negative to positive, the process proceeds to step S14.

またこれらのいずれでもないときは、ステップS9へ進
む。
Moreover, when it is neither of these, it progresses to step S9.

ステップS13・・・2πの回数nに1加算する。Step S13: Add 1 to the number n of 2π.

ステップ814・・・2πの回数nから1を減算する。Step 814: Subtract 1 from the number n of 2π.

ステップ85〜814の処理が、ステップS5でイエス
になるまで行なわれる。これによって、第1の正弦波発
振器1の発振周波数11をFm−(N−1)ΔF十f1
F(=frnln)からFm−ΔF” ’IF (=i
m!LX )まで変化させた時の2πの回数nがまる。
The processes of steps 85 to 814 are performed until the answer is YES in step S5. As a result, the oscillation frequency 11 of the first sine wave oscillator 1 is changed to Fm-(N-1)ΔF+f1
F(=frnln) to Fm-ΔF” 'IF (=i
m! The number of times n of 2π when changing up to LX ) is rounded.

ステップS15・・・2πの回数nと位相測定器7の測
定値θとから絶対位相差δθ、をめ、前記(5)式から
光ファイバ長L (1)演jを行う。
Step S15... Determine the absolute phase difference δθ from the number n of 2π and the measured value θ of the phase measuring device 7, and calculate the optical fiber length L (1) j from the above equation (5).

なお、この時、δθL=2πnトθとなる。Note that at this time, δθL=2πntoθ.

ステップ816・・・ステップS15でめられた結果を
出力端末装置15に出力させる。
Step 816...The output terminal device 15 is made to output the result determined in step S15.

ステップ817・・・位相測定器7がローカルセットさ
れ、マニュアルで位相差を測定できるように、tk位相
測定器7を復帰する。
Step 817: The phase measuring device 7 is set locally, and the tk phase measuring device 7 is restored so that the phase difference can be measured manually.

(効 果) 以上のように、本発明の方式によれば、絶対位相量 δ
九を正確にめることができるので、有線伝送路の絶対長
りを正確にめることができる。
(Effect) As described above, according to the method of the present invention, the absolute phase amount δ
Since it is possible to accurately calculate the absolute length of the wired transmission line.

また、本発明の装置は、所望の測定分解能を満足する変
調周波数幅Δf(−f −f・ )を選maX mln 定する手段、および基準信号と被測定信号を周波数変換
して位相測定器の同調帯域に合わせるための手段を有し
ているので位相測定器の同調帯域をその都度変えること
なく、2π以上の絶対位相量をも高分解能でかつ高精度
に自動測定することが可能である。
The apparatus of the present invention also includes a means for selecting a modulation frequency width Δf (-f −f・ ) that satisfies a desired measurement resolution, and a means for converting the frequency of the reference signal and the signal under test for use in a phase measuring instrument. Since it has means for adjusting to the tuning band, it is possible to automatically measure the absolute phase amount of 2π or more with high resolution and precision without changing the tuning band of the phase measuring device each time.

なお、ここでは変調周波数が高く絶対位相量は2π以上
になシやぐい光ファイバの測定装置を例にとり説明した
が、同軸ケーブル等地の伝送媒体にも応用可能であり、
かつ絶対位相量から絶対長を測定するだけでなく遅延特
性をめる装置にも転用可能である。
Although the explanation here uses an example of an optical fiber measurement device with a high modulation frequency and an absolute phase amount of 2π or more, it can also be applied to ground transmission media such as coaxial cables.
Moreover, it can be applied to a device that not only measures the absolute length from the absolute phase amount but also measures delay characteristics.

このように、本発明では正碇でかつ容易に絶対位相量を
測定することができるので、伝送路特性を知る上で極め
て重要である。また、この結果、有線伝送路の保守およ
び′a理がし易くなり、その効果も大きい。
As described above, in the present invention, the absolute phase amount can be measured accurately and easily, which is extremely important for understanding transmission path characteristics. Moreover, as a result, maintenance and cleaning of the wired transmission line becomes easier, which has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の全体構成図、第2図は本発明の原理図
、第3図は本発明の詳細な説明するための図、第4図は
本発明の一実施例のブロック図、第5図は第4図の制御
部の機能を説明するためのフローチャートを示す。 1・・・第1の正弦波発振器、2・・半導体レーザ、3
・被測定光ファイバ、4,4′・光電気変換器、5.5
′・・バンドパスフィルタ、7・・・位相測定器、 9
・・・第2の正弦波発振:娼、 11・・・ハイブリッ
ド、12 ・・・方向性結合器、13・周波数混合器、
14 ・・・制御装置、 A・・変調部、 B・・・腹
調部、 C・・測定部、 D・・・制阿部 代理人弁理士 平 木 道 人 外1名 才 1 [ネ1 牙2(!1 1・3図 才4図
FIG. 1 is an overall configuration diagram of the present invention, FIG. 2 is a principle diagram of the present invention, FIG. 3 is a diagram for explaining the present invention in detail, and FIG. 4 is a block diagram of an embodiment of the present invention. FIG. 5 shows a flowchart for explaining the functions of the control section in FIG. 4. 1... First sine wave oscillator, 2... Semiconductor laser, 3
・Optical fiber to be measured, 4,4'・Optoelectric converter, 5.5
'... Bandpass filter, 7... Phase measuring device, 9
...Second sine wave oscillation: 11.Hybrid, 12.Directional coupler, 13.Frequency mixer,
14...control device, A...modulation section, B...abdominal tone section, C...measuring section, D...patent attorney representing Abe Michi Hiraki 1 non-human talent 1 [Ne1 Fang 2 (! 1 1/3 Figures 4 Figures

Claims (2)

【特許請求の範囲】[Claims] (1)変調周波数の上限と下限を設定し、該変調区間を
順次掃引することによシ表示する位相測定系の指示を極
性判定して、2πを越えた回数をカウントすることによ
り絶対位相量をめて絶対長を測定するようにしたことを
特徴とする伝送路の絶対長測定方式。
(1) Set the upper and lower limits of the modulation frequency, and determine the polarity of the indication of the phase measurement system displayed by sequentially sweeping the modulation section, and determine the absolute phase amount by counting the number of times it exceeds 2π. A method for measuring the absolute length of a transmission line, characterized in that the absolute length is measured by
(2)変調された信号を出力する第1の発振器と該第1
の発振器から出力された信号を2分岐する手段とを有す
る変調部と、該第2の発振器を有し、2分岐された信号
をIF倍信号おとずための復調部と、前記2分岐された
信号の位相差を測定する測定部と、該変調部と復調部の
周波数を制御する手段と該測定部の指示を極性判定する
手段と絶対位相量をめる手段と該絶対位相量から絶対長
をめる手段を有する制御部とからなり、前記2分岐され
た信号の一方を被測定伝送路に入力し、該被測定伝送路
の出力を前記復調部に導くようにしたことを特徴とする
伝送路の絶対長測定装置。
(2) a first oscillator that outputs a modulated signal;
a modulating section having means for splitting the signal output from the second oscillator into two; a demodulating section having the second oscillator and for converting the split signal into an IF multiplied signal; a measuring section for measuring the phase difference of the signal, a means for controlling the frequency of the modulating section and the demodulating section, a means for determining the polarity of the instruction of the measuring section, a means for calculating the absolute phase amount, and a means for determining the absolute phase amount from the absolute phase amount. and a control section having means for increasing the length, inputting one of the two branched signals to the transmission line under test, and guiding the output of the transmission line under test to the demodulation section. A device for measuring the absolute length of a transmission line.
JP24462683A 1983-12-27 1983-12-27 System and device for measuring absolute length of transmission line Pending JPS60138401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24462683A JPS60138401A (en) 1983-12-27 1983-12-27 System and device for measuring absolute length of transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24462683A JPS60138401A (en) 1983-12-27 1983-12-27 System and device for measuring absolute length of transmission line

Publications (1)

Publication Number Publication Date
JPS60138401A true JPS60138401A (en) 1985-07-23

Family

ID=17121545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24462683A Pending JPS60138401A (en) 1983-12-27 1983-12-27 System and device for measuring absolute length of transmission line

Country Status (1)

Country Link
JP (1) JPS60138401A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391504A (en) * 1986-10-06 1988-04-22 Radio Res Lab Method and apparatus for measuring electric length of transmission line with high accuracy
JPH0259852A (en) * 1988-08-25 1990-02-28 Canon Inc Electronic equipment
US5440611A (en) * 1992-08-07 1995-08-08 Telefonaktiebolaget Lm Ericsson Method of determining the physical length of a telephone line
EP2194355A1 (en) * 2008-12-03 2010-06-09 ABB Research Ltd. Method and system for powerline length measurement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391504A (en) * 1986-10-06 1988-04-22 Radio Res Lab Method and apparatus for measuring electric length of transmission line with high accuracy
JPH0259852A (en) * 1988-08-25 1990-02-28 Canon Inc Electronic equipment
US5440611A (en) * 1992-08-07 1995-08-08 Telefonaktiebolaget Lm Ericsson Method of determining the physical length of a telephone line
EP2194355A1 (en) * 2008-12-03 2010-06-09 ABB Research Ltd. Method and system for powerline length measurement
WO2010063577A1 (en) * 2008-12-03 2010-06-10 Abb Research Ltd Method and system for powerline length measurement
CN102308180A (en) * 2008-12-03 2012-01-04 Abb研究有限公司 Method and system for powerline length measurement
RU2485530C2 (en) * 2008-12-03 2013-06-20 Абб Рисерч Лтд Method and system for measurement of power transmission lines length

Similar Documents

Publication Publication Date Title
EP0147251B1 (en) Method and apparatus for measuring chromatic dispersion coefficient
US6323950B1 (en) Chromatic dispersion measurement for optical components
EP1191321A1 (en) Determination of properties of an optical device
CN110715796B (en) Optical device time delay measuring method and device based on phase-subtraction method
US3243812A (en) Radio ranging device
CN108267636A (en) Fm microwave signal parameter measuring method and device based on photon technology
US4179217A (en) Dynamic photoelasticimeter with rotating birefringent element
JPS60138401A (en) System and device for measuring absolute length of transmission line
CN109541621A (en) A kind of method for compensating vibration of frequency scanning interference Models of Absolute Distance Measurement Based system
US4768880A (en) System and method for accurate loop length determination in fiber-optic sensors and signal processors
GB2048603A (en) Equipment for fault location in an optical fibre transmission system
JP3144692B2 (en) How to measure chromatic dispersion
JPH0354292B2 (en)
JP3243774B2 (en) Optical frequency domain reflection measurement method and measurement circuit
US7106427B2 (en) Apparatus and method for measuring chromatic dispersion by variable wavelength
CN114189281B (en) Optical time delay measuring method and device based on frequency domain and phase combination
JPS60138413A (en) Elongation measuring system of wire transmission line
US3838336A (en) Apparatus for measuring the group propagation time in a quadripole
SU1652936A1 (en) Device for obtaining calibrated values of frequency deviation and determinating harmonic factor
Beatty Automatic Measurement of Network Parameters: A Survey
CN112033567A (en) OPGW overhead ground wire temperature and vibration separation measurement optical fiber sensing system
SU1016844A1 (en) Method of monitoring two-dimensional signals
CN115225147A (en) High-resolution large-measurement-range optical delay measurement system and method
JPS59157524A (en) Measuring method of coefficiency of wavelength dispersion of optical fiber
SU1018105A1 (en) Group lag time non-uniformity meter