JPS601382B2 - hard alloy - Google Patents

hard alloy

Info

Publication number
JPS601382B2
JPS601382B2 JP9623977A JP9623977A JPS601382B2 JP S601382 B2 JPS601382 B2 JP S601382B2 JP 9623977 A JP9623977 A JP 9623977A JP 9623977 A JP9623977 A JP 9623977A JP S601382 B2 JPS601382 B2 JP S601382B2
Authority
JP
Japan
Prior art keywords
carbide
alloy
phase
solid solution
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9623977A
Other languages
Japanese (ja)
Other versions
JPS5429810A (en
Inventor
雅也 三宅
稔 中野
孝春 山本
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9623977A priority Critical patent/JPS601382B2/en
Publication of JPS5429810A publication Critical patent/JPS5429810A/en
Publication of JPS601382B2 publication Critical patent/JPS601382B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 超硬合金に用いられるタングステンは地球上に少量しか
存在しないので、高価な金属であり、いわゆる戦略物質
として近年高騰をつづけている。
[Detailed Description of the Invention] Tungsten, which is used in cemented carbide, exists in only a small amount on the earth, so it is an expensive metal and has continued to rise in price in recent years as a so-called strategic material.

それ故超硬合金のタングステンを池物質で代替すること
が重要視されるようになって来た。その一つの解決方法
は超硬合金工具又はチタンを主成分とするサーメット工
具を使うことである。しかしこれらの工具は轍性が劣る
ので、超硬合金を置換できない例が多い。それ故超硬合
金の炭化タングステンを炭化モリブデンに置換できない
かが検討されるようになった。本発明は後者に関する。
Therefore, it has become important to replace tungsten in cemented carbide with pond materials. One solution is to use cemented carbide tools or titanium-based cermet tools. However, these tools have poor rutting properties, so in many cases they cannot replace cemented carbide. Therefore, it has been investigated whether tungsten carbide in cemented carbide can be replaced with molybdenum carbide. The present invention relates to the latter.

炭化タングステン(WC)を炭化モリブデン(MoC)
に置換することは過去にあまり検討されていない。
Tungsten carbide (WC) to molybdenum carbide (MoC)
There has been little consideration in the past to replace it with .

その理由は炭化モリブデンが、MoCとして常温では安
定して存在せず、Mo2Cとして存在することにある。
Mo2Cは常温硬さ(ビッカース)が1800〜150
0k9/秘しかない。これはWCの2400k9/地に
対して約2′筑茎度である。また超硬合金の原料の添加
物としてもMo2Cはあまり使われていない。これはM
o2Cが入ると超硬合金の炭化物粒度が細かくなりまた
Mo2Cの針状結晶が成長して合金強度を低下せしめる
。しかしながらモリブデンの炭化物はタングステンの炭
化物と固顔体を形成した時は単純へキサゴナル型の結晶
構造を有するモノカーバィドとして安定する。
The reason for this is that molybdenum carbide does not stably exist as MoC at room temperature, but exists as Mo2C.
Mo2C has a room temperature hardness (Vickers) of 1800 to 150
0k9/There are only secrets. This is about 2' skelet degree compared to WC's 2400k9/ground. Furthermore, Mo2C is not often used as an additive in cemented carbide raw materials. This is M
When o2C is introduced, the carbide grain size of the cemented carbide becomes finer, and acicular crystals of Mo2C grow, reducing the alloy strength. However, when molybdenum carbide forms a solid face with tungsten carbide, it becomes stable as a monocarbide having a simple hexagonal crystal structure.

この(Mox・Wy)Cからなるタングステンとモリブ
デンの固溶炭化物を超硬合金の原料とすれば、硬さはW
Cと同じ炭化物となり、またMoC中にWCが固溶して
、MoCがMo2Cと炭素に分解するのを防止するので
非常に好ましい結果を示す。したがって(Mox・Wy
)Cの安定した炭化物が容易に製造しうるなら、タング
ステンのモリブデン置換は可能と考えられる。これをよ
り具体化するために(Mo・W)Cの安定した製法の開
発も進められている。(特開昭51−146306)と
ころで麓硬合金等の硬質材料に要求される特性は硬さの
みならず、靭性も重要な要素となっている。今まで報告
されている研究結果ではWCをMoCに置換した時に勤
性をいかに向上させるかが追求されていない。何故なら
、MoCとWCを固溶体として安定化させるので「その
炭化物は必らすしも均一なものにならす、また欠陥を多
く有するものになりやすい。これに対して一般に工業的
に用いられるWCの純度は非常に高く、その結合炭素量
も化学量論組成の理論値に達しているので、容易に結晶
強度の強いWC粉末は作りうるが、上述の如くの製造法
では均一化が難しい。このように(MooW)Cの固熔
体に置き換えるに当っては鞠性低下をいかに防止するか
が重要な問題となる。本発明者らは、WC粉末を(Mo
・W)C粉末に置き換え、その特性を減ずることなく、
むしろ特性を向上させるべく、種々検討を加えた。
If this solid solution carbide of tungsten and molybdenum consisting of (Mox・Wy)C is used as a raw material for cemented carbide, the hardness is W
It becomes a carbide similar to C, and WC forms a solid solution in MoC, which prevents MoC from decomposing into Mo2C and carbon, giving very favorable results. Therefore (Mox・Wy
) If a stable carbide of C can be easily produced, it is considered possible to replace tungsten with molybdenum. In order to make this more concrete, development of a stable manufacturing method for (Mo.W)C is also underway. (Japanese Unexamined Patent Publication No. 51-146306) By the way, not only hardness but also toughness is an important characteristic required of hard materials such as Fumoto hard alloys. The research results reported so far have not investigated how to improve work efficiency when replacing WC with MoC. This is because MoC and WC are stabilized as a solid solution, so the carbide is necessarily uniform and tends to have many defects.In contrast, the purity of WC, which is generally used industrially, is is very high, and the amount of bonded carbon has reached the theoretical value of the stoichiometric composition, so it is easy to make WC powder with strong crystal strength, but it is difficult to make it uniform with the manufacturing method described above. When replacing WC powder with a solid melt of (MooW)C, an important issue is how to prevent a decrease in ballistic properties.
・W) Replaced with C powder without reducing its properties,
Rather, various studies were conducted to improve the characteristics.

その結果固溶体の組成であるMo/W比の異なる2種以
上の単純へキサゴナル相を有する炭化物の組み合せで、
靭性が向上することを見し、出した。この級性が向上す
る理由については詳細不明であるが、(Mo・W)Cが
2相に分離すると、両相の固熔歪が低下して1相の場合
よりも轍性が高くなるものと思われた。少なくとも合金
中でWCの特性に近い(Mox・Wy)C(Y>×)か
らなる相とMoCの特性に近い(Mox・Wy)C(×
>Y)の相により構成される合金はWCの轍性とMoC
の耐熱変形特性の2つの特性を有するので、(Mo・W
)C一相の炭化物を使用するよりも有利である。本発明
において最も効果を出すのはWCもしくはWCにMoC
が若干固溶した固溶体とMoCにWCを固浴した組成の
固熔体で構成されるのがよい。
As a result, a combination of carbides having two or more simple hexagonal phases with different Mo/W ratios, which are solid solution compositions,
We saw that the toughness improved and released it. Although the details of the reason for this improvement in grade property are unknown, when (Mo/W)C separates into two phases, the solid melt strain of both phases decreases, resulting in higher rutting properties than in the case of one phase. So I thought. At least in the alloy, there is a phase consisting of (Mox・Wy)C(Y>×) close to the properties of WC and a phase consisting of (Mox・Wy)C(X) close to the properties of MoC.
The alloy composed of the phase >Y) has the rutting property of WC and the
Since it has two properties of heat deformation resistance, (Mo・W
)C is advantageous over using a single phase carbide. In the present invention, the most effective one is WC or MoC in WC.
It is preferable to be composed of a solid solution having a slight solid solution of MoC and a solid melt having a composition of MoC in a solid bath of WC.

これはX線回折において(1リ3)面のピークが2つに
分離された時に対応する。したがって本発明において(
IQ3)面のピークが図1に示す如く(Mo・W)Cの
WCに近い固綾体ではC雌の線によるX線回折線のピー
クの位置が28で121o近辺にある(1一a)。
This corresponds to when the peak of the (1-3) plane is separated into two in X-ray diffraction. Therefore, in the present invention (
As shown in Figure 1, the peak of the IQ3) plane is close to the WC of (Mo/W)C, and the peak position of the X-ray diffraction line due to the C female line is 28, which is near 121o (11a). .

これに対して(Moo.則Wo.5。)Cでは(ローa
)と(D−b)のピークの2相に分れている。この0−
aのピークは12r近辺であり、WCのピークを示し、
またローbのピークは(Mox・Wy)Cの固溶体のピ
ークを示す。この(10「 3)面の測定により相分離
を検出しうる。また本発明において(Mox・Wy)C
の単純へキサゴナル相が2相以上あるか否かについては
赤皿塩アルカリ液による腐食の后に光学顕微鏡で観察し
ても判るが、XMA観察にて組成観察しても判る。
On the other hand, (Moo. Rule Wo.5.) In C, (low a
) and (D-b) peaks. This 0-
The peak of a is near 12r, indicating the peak of WC,
Moreover, the peak of low b indicates the peak of a solid solution of (Mox·Wy)C. Phase separation can be detected by measuring this (10"3) plane. Also, in the present invention, (Mox・Wy)C
Whether or not there are two or more simple hexagonal phases can be determined by observing with an optical microscope after corrosion with red dish salt alkali solution, or by observing the composition using XMA observation.

第2図にその結果を示す。ここで白く観察されるのはW
Cに近い組成の(Mo・W)Cであり、灰色に観察され
るのはMoを多く含む固溶体を示している。勿論これら
の炭化物の一部をTi、Zr、Hf、V、Nb、Ta、
Crを含むBI型複炭化物で置換した場合にも基本的な
関係には変化はない。
Figure 2 shows the results. What is observed as white here is W
(Mo.W)C has a composition close to that of C, and the gray color observed indicates a solid solution containing a large amount of Mo. Of course, some of these carbides are Ti, Zr, Hf, V, Nb, Ta,
There is no change in the basic relationship even when replacing with a BI type double carbide containing Cr.

すなわちWC型シンプルヘキサゴナル相としては均一な
一相よりも組成の異なる2相以上とする方が轍性の高い
合金が得られる。上記置換量はMo、Wの炭化物の20
原子%以下が靭性の点で望ましい。
That is, as for the WC type simple hexagonal phase, an alloy with higher rutting properties can be obtained by having two or more phases having different compositions than by having one uniform phase. The above substitution amount is 20% of the carbide of Mo and W.
A content of atomic percent or less is desirable from the viewpoint of toughness.

なお炭化物中のCの一部を窒素又は酸素で置換した合金
についても同様な関係は成立する。
Note that the same relationship holds true for alloys in which a portion of C in the carbide is replaced with nitrogen or oxygen.

この場合合金の焼絹性を阻害しないためには酸素量は次
の式で規制される。W原子% 酸素原子
%〈INaVaMa族金属原子%)(NんV熱川a族金
属原子%)≦Qo5また、含有窒素量に関してはやはり
焼絹性の観点から酸素含有量の原子%の1び音もしくは
WaVa族原子%の合計の0.3音のいずれかのうち大
き方よりも少ないことが望ましい。
In this case, the amount of oxygen is regulated by the following formula in order not to impede the sinterability of the alloy. W atomic% Oxygen atomic% (INaVaMa group metal atomic%) (N-V Atagawa group a metal atomic%) It is desirable that the amount is less than the greater of either the sound or 0.3 sound of the total WaVa group atomic %.

なお結合金属としては鉄属金属を主成分として、これが
組成物の3〜5の重量%を占めることが望ましい。
It is preferable that the binding metal is mainly composed of ferrous metals, and accounts for 3 to 5% by weight of the composition.

3%以下であると脆すぎ、5増重量%を越えると高温特
性が悪化するからである。
If it is less than 3%, it will be too brittle, and if it exceeds 5% by weight, the high temperature properties will deteriorate.

なお本鉄属金属は結合相となったときWaVaのa族金
属を固溶することは当然であるし、山、Si、Ca、A
ま等のこれらと固総度をもつ元素の添加によっても、本
発明の効果は失われるものではない。本発明において2
相もし〈はそれ以上の相からなる(Mo・W)Cの単純
へキサゴナルタィプの固溶体を組み合せとする合金の製
造法は合金中で2相以上の圃熔体を混合してもよいが、
これよりも出発原料であるWC粒度を大きくして固溶炭
化物生成時に完全反応させることなく炭化反応させるこ
とにより2相に分離した固溶体を作る方がよい。
It is natural that this ferrous metal forms a solid solution with group a metals of WaVa when it becomes a binder phase, and also contains iron, Si, Ca, and A.
The effects of the present invention will not be lost even if an element having a hardness equivalent to that of these elements is added. In the present invention, 2
The method for producing an alloy that combines a simple hexagonal type solid solution of (Mo/W)C consisting of more than one phase may involve mixing field melts of two or more phases in the alloy.
Rather than this, it is better to make a solid solution separated into two phases by increasing the particle size of the WC as a starting material and allowing the carbonization reaction to occur without complete reaction during formation of the solid solution carbide.

この理由は炭化物の中心にWC結晶が存在し、その外周
に(Mo・W)Cが形成させる方が、各炭化物粒子その
ものの強度が上ると考えられるからである。実施例 1
風6仏のWC粉末に2AのMo2C及び炭素を加えて最
終炭化物の組成が(Moo.5Wo.5)Cとなるよう
に配合し「 ボールミルで3独特間混合した該混合粉を
日2気流中200000で1時間反応させた。
The reason for this is that it is thought that the strength of each carbide particle itself increases when a WC crystal exists at the center of the carbide and (Mo.W)C is formed around the periphery. Example 1
Add 2A of Mo2C and carbon to Kaze 6 Buddha's WC powder and blend it so that the final carbide composition becomes (Moo.5Wo.5)C. 200,000 for 1 hour.

該炭化物の炭素量はT.C.7.81%F.C.0.0
3%であり、結合炭素は(Moo.5Wo.5)Cの理
論値に近かし、炭化物であった。X線回折で調べたとこ
ろMo2Cのピークは完全に消え、すべて(Mo・W)
Cのピークであった。しかしながら粉末断面を調べると
粉末内部は有芯構造を有していた。X線の高角度側ピー
クを調べて見ると第1図に示す如く2相に分離していた
。この粉末を凶とする。これに対して1仏のWC粉末と
2山のMo2C及び炭素をやはり(Moo.5Wo.5
)Cの組成になる如く配合し、また拡散助剤としてCo
を0.5%加えて混合した。該混合粉を日2気流中で2
000ooにて1時間、加熱した後、1400qoの温
度まで下げ1現時間保持した。この粉末の炭素量を調べ
るとT.C7.71%F.CO.05%Coo.5%で
あり、やはり理論炭素量に近かし、値を示した。
The carbon content of the carbide is T. C. 7.81%F. C. 0.0
3%, the bonded carbon was close to the theoretical value of (Moo.5Wo.5)C, and was a carbide. When examined by X-ray diffraction, the Mo2C peak completely disappeared, and all (Mo/W)
It was the peak of C. However, when the cross section of the powder was examined, the inside of the powder had a cored structure. When the high-angle peak of the X-rays was examined, it was found to be separated into two phases as shown in FIG. This powder is considered evil. On the other hand, one WC powder and two mountains of Mo2C and carbon (Moo.5Wo.5
)C and Co as a diffusion aid.
0.5% was added and mixed. The mixed powder was heated twice a day in an air stream.
After heating at 000000 for 1 hour, the temperature was lowered to 1400000 and maintained for 1 hour. When examining the carbon content of this powder, T. C7.71%F. C.O. 05%Coo. 5%, which is close to the theoretical carbon content.

X線回折で調べて見ると第1図の如く2相分離は検出さ
れず、完全に一相となっていた。この粉末を(B}とす
る。風、佃の方法による炭化物を用いて合金を作成した
。配合組成が(Mo・W)C−15重量%Coとなるよ
うに秤量し、有機溶媒中で湿式混合した後、乾燥型押行
程を経て、真空中1400qoで焼結した。得られた合
金の特性は次の如くであった。表1 本発明の方法■は靭性が高かく、従来のWC−Co系超
硬合金なみの特性を示した。
When examined by X-ray diffraction, no two-phase separation was detected as shown in Figure 1, and it was found to be completely one phase. This powder is referred to as (B}. An alloy was prepared using carbide by Kaze and Tsukuda's method. It was weighed so that the blended composition was (Mo.W)C-15% by weight Co, and wet-processed in an organic solvent. After mixing, the process of dry stamping was performed and sintered at 1400 qo in vacuum.The properties of the obtained alloy were as follows. It exhibited properties comparable to Co-based cemented carbide.

一方従来の公知の方法‘B}では均一固溶体であるが、
合金にした時は靭性が不足していた。実施例 2 実施例1で(Mo・W)Cの一相からなる合金よりも2
相に分離した炭化物の方が高かし・鞠性を示すことがわ
かったので、あらかじめ目的とする相を作り、これを混
合時に混合すれば、同じ効果が期待されると考えられた
On the other hand, in the conventional known method 'B', a homogeneous solid solution is obtained, but
When it was made into an alloy, it lacked toughness. Example 2 Compared to the alloy consisting of a single phase of (Mo/W)C in Example 1,
It was found that carbide separated into phases exhibits higher strength and ballability, so it was thought that the same effect could be expected if the desired phase was prepared in advance and mixed during mixing.

2ムのWCと2仏のMo2C及び炭素に拡散助剤として
Coを加えて、2つの固溶炭化物■(Mom、Wo.3
)Cと皿(Moo.3、WM)Cを試作した。
By adding Co as a diffusion aid to 2 mm of WC, 2 mm of Mo2C and carbon, two solid solution carbides (Mom, Wo.3
)C and plate (Moo.3, WM)C were prototyped.

これらの炭化物の特性は第2表の如くであった。第2表 炭化物‘C}、皿共に理論炭素に達する結合炭素量を持
ち、かつX線で調べた結果、完全に一相であった。
The properties of these carbides are shown in Table 2. Both the second table carbide 'C} and the plate had a bonded carbon content that reached the theoretical carbon level, and as a result of X-ray examination, they were completely one-phase.

よって該【C}と皿の炭化物を組み合わせて(Moo.
5W岬)C−にo合金を作成した。同時にはじめから一
相とした‘B}(Moo.5Wo.5)Cを用いた合金
も比較のために試作した。この時の合金特性を表3に示
した。表3 やはり2つ以上の単純へキサゴナルタイプの組み合わせ
を行ったほうが、一つの相からなる合金よりも級性が高
かいという事実が明らかになつた。
Therefore, by combining the [C} and the carbide of the plate (Moo.
5W Misaki) O alloy was created in C-. At the same time, an alloy using 'B}(Moo.5Wo.5)C, which had a single phase from the beginning, was also prototyped for comparison. The alloy properties at this time are shown in Table 3. Table 3 It has become clear that a combination of two or more simple hexagonal types has a higher quality than an alloy consisting of one phase.

実施例 3 実施例1と同様な方法でA、B原料を用いて(Moo.
5Wo.5)C−30重量%(Tio.7Moo.3)
C−10重量%Co合金を作成した。
Example 3 Using raw materials A and B in the same manner as in Example 1 (Moo.
5Wo. 5) C-30% by weight (Tio.7 Moo.3)
A C-10% by weight Co alloy was created.

■原料を用いた合金はX線回折結果(Mo・W)C相に
2相分離が認められ、{B}原料を用いた場合には1相
であった。本合金を用いて一部溝付きのSCM鏡童の鋼
材を切削速度150m′mh送り0.4肋/rev切込
み0.2帆で切削したところ、【B}原料を用いた合金
は15分で欠損したが汎原料を用いた合金は15分で欠
損せず、まだ切削可能でそのときの摩耗量は{B)原料
を用いた合金の摩耗量とほ)、同じであった。実施例
4 実施例3と同様の方法で表4に示す合金を作成し、実施
例3と同じテスト方法によって合金を評価し表に示す如
く良い結果を得た。
(2) X-ray diffraction results (Mo/W) of the alloy using the raw material showed two-phase separation in the C phase, whereas when the raw material {B} was used, it was one phase. When this alloy was used to cut a partially grooved SCM Kyodo steel material at a cutting speed of 150 m'mh, a feed of 0.4 ribs/rev, and a depth of cut of 0.2 sails, the alloy using raw material [B] was cut in 15 minutes. However, the alloy made from a general-purpose raw material did not break after 15 minutes, was still machinable, and the amount of wear at that time was the same as {B) the amount of wear for the alloy made from the raw material. Example
4 The alloys shown in Table 4 were prepared in the same manner as in Example 3, and the alloys were evaluated by the same test method as in Example 3, and good results were obtained as shown in the table.

表4Table 4

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(Moo.o5Wo.95)Cの炭化物及び(
Moo.5oW低o)Cの炭化物をCuKの線によるX
線回折にて28=120〜1260の間を拡大して調べ
た結果を示す図表である。 第2図は(Mo・W)C−Co合金をX線マイクロアナ
ライザーにて、組成像を調べた結果を示す顕微鏡写真で
ある。尚、第1図中、イは(Moo.o5Wo.95)
C、口は(M公W5)Cを示す。外2図 ズー図
Figure 1 shows (Moo.o5Wo.95)C carbide and (
Moo. 5oW low o)C carbide by CuK line
It is a chart showing the results of an enlarged examination of the range between 28=120 and 1260 using line diffraction. FIG. 2 is a micrograph showing the composition image of a (Mo.W)C-Co alloy examined using an X-ray microanalyzer. In addition, in Figure 1, I is (Moo.o5Wo.95)
C, mouth indicates (M public W5) C. Outside 2 Zoo Diagram

Claims (1)

【特許請求の範囲】 1 タングステンとモリブデンの複合炭化物でシンプル
・ヘキサゴナル型の結晶構造を有するMo/W比の異な
る2相以上の硬質相を有し、結合相が鉄族金属で3〜5
0重量%を占めることを特徴とする硬質合金。 2 タングステンとモリブデンの複合炭化物でシンプル
・ヘキサゴナル型の結晶構造を有するMo/W比の異な
る2相以上の硬質相で、かつ該複合炭化物中の20原子
%以下をTi、Zr、HfV、Nb、Ta、Crから選
ばれたB1型硬質炭化物の1種または2種以上で置換さ
れた硬質と、結合相が鉄族金属で3〜50重量%からな
ることを特徴とする硬質合金。
[Claims] 1 A composite carbide of tungsten and molybdenum having a simple hexagonal crystal structure and having two or more hard phases with different Mo/W ratios, the binder phase being an iron group metal of 3 to 5
A hard alloy characterized in that it accounts for 0% by weight. 2 A composite carbide of tungsten and molybdenum having a simple hexagonal crystal structure and two or more hard phases with different Mo/W ratios, and 20 at% or less of the composite carbide is composed of Ti, Zr, HfV, Nb, A hard alloy characterized in that the hard material is substituted with one or more B1 type hard carbides selected from Ta and Cr, and the binder phase is comprised of 3 to 50% by weight of an iron group metal.
JP9623977A 1977-08-10 1977-08-10 hard alloy Expired JPS601382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9623977A JPS601382B2 (en) 1977-08-10 1977-08-10 hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9623977A JPS601382B2 (en) 1977-08-10 1977-08-10 hard alloy

Publications (2)

Publication Number Publication Date
JPS5429810A JPS5429810A (en) 1979-03-06
JPS601382B2 true JPS601382B2 (en) 1985-01-14

Family

ID=14159669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9623977A Expired JPS601382B2 (en) 1977-08-10 1977-08-10 hard alloy

Country Status (1)

Country Link
JP (1) JPS601382B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796766B2 (en) * 1990-09-10 1995-10-18 住友大阪セメント株式会社 Interlocking block

Also Published As

Publication number Publication date
JPS5429810A (en) 1979-03-06

Similar Documents

Publication Publication Date Title
US4049876A (en) Cemented carbonitride alloys
US4139374A (en) Cemented carbides containing hexagonal molybdenum
KR100436327B1 (en) Sintered hard alloy
JPH08508066A (en) Cermet and its manufacturing method
US5330553A (en) Sintered carbonitride alloy with highly alloyed binder phase
JPH055152A (en) Hard heat resisting sintered alloy
US20040079191A1 (en) Hard alloy and W-based composite carbide powder used as starting material
US3737289A (en) Carbide alloy
IL132548A (en) Pre-alloyed copper containing powder and its use in the manufacture of diamond tools
US4131450A (en) Process for manufacturing cobalt-base reduced powder
CN108425058A (en) One kind (WMo) C base cemented carbide materials and preparation method thereof
JP2004142993A (en) Hexagonal composite carbide, and production method therefor
JPS601382B2 (en) hard alloy
JP4282298B2 (en) Super fine cemented carbide
US4417922A (en) Sintered hard metals
JPH07278719A (en) Particulate plate crystal cemented carbide containing wc and its production
JP2802596B2 (en) Method for producing plate-shaped WC-containing cemented carbide
JP2502322B2 (en) High toughness cermet
JP2802587B2 (en) Manufacturing method of plate-shaped WC-containing cemented carbide
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP2004263251A (en) Group 7a element-containing cemented carbide
JP2978052B2 (en) Composition for powder metallurgy and method for producing the same
CN102965559A (en) Material containing sheet-shaped wolfram carbide grain and preparation method thereof as well as method for using same to prepare alloy
JPS594499B2 (en) Hard alloys and manufacturing methods
JP3107701B2 (en) High hardness cemented carbide