JPS60137829A - Production of magnetic powder - Google Patents

Production of magnetic powder

Info

Publication number
JPS60137829A
JPS60137829A JP58246455A JP24645583A JPS60137829A JP S60137829 A JPS60137829 A JP S60137829A JP 58246455 A JP58246455 A JP 58246455A JP 24645583 A JP24645583 A JP 24645583A JP S60137829 A JPS60137829 A JP S60137829A
Authority
JP
Japan
Prior art keywords
ions
barium
iron
magnetic powder
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58246455A
Other languages
Japanese (ja)
Inventor
Hozumi Hirota
広田 穂積
Yoshio Enoki
榎 芳雄
Tomu Sato
佐藤 富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58246455A priority Critical patent/JPS60137829A/en
Publication of JPS60137829A publication Critical patent/JPS60137829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To produce a magnetic powder capable of forming an easily magnetizable axis in the coated film thickness direction only by coating, by coprecipitating hydroxides of iron and barium under specific conditions, and treating the resultant coprecipitates at a high temperature under a high pressure. CONSTITUTION:(i) An aqueous solution containing an iron salt, e.g. Fe(NO3)3. 9H2O and a barium salt, e.g. Ba(NO3)2 at 7.5-9.5 ratio between the iron ions and the barium ions is mixed with an aqueous solution of sodium hydroxide (at 1.1-3 ratio between the total nonmetallic ions in the iron and barium salts and the hydroxyl ions). (ii) The resultant suspension is then placed in an autoclave, kept at a temperature (T) expressed by the formula for >=1hr and naturally cooled to collect a solid material, which is then washed with water and dried to afford the aimed magnetic powder.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気記録媒体に使用される磁性粉、とくに塗布
形垂直記録用媒体に適した磁性粉の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing magnetic powder used in magnetic recording media, particularly magnetic powder suitable for coated perpendicular recording media.

従来例の構成とその問題点 磁気記録の分野においても、記録情報の高密度化は不断
の要請であり、短波長領域において原理的に回転磁化モ
ードの発生がない垂直記録方式は、高密度化を具体化す
る有力な方策の一つとして多くの人々により検討が進め
られている。
Conventional configurations and their problems In the field of magnetic recording, there is a constant need to increase the density of recorded information, and the perpendicular recording method, which in principle does not generate a rotating magnetization mode in the short wavelength region, has the ability to increase the density. Many people are considering this as one of the most promising ways to make it more concrete.

これ等に使用されている媒体は、Co−Cr zCo−
0などいわゆる連続膜が主体であって、成膜方法として
はスパッタリングやP V D (Physica工V
apour DiSpO8itiOn %例えば真空蒸
着) 、′mX7などが一般的に行われている。しかし
これらの方法は成膜速度が遅く、シたがって大量生産に
不向きであること、しかも大面積にわたって均質な特性
を得ることが難かしいなどの欠点がある。しかも磁気ヘ
ッドと摺接して使用することによる信頼性の問題、磁歪
の大きいコバルトを主なる構成成分とするために生ずる
大きいノイズの問題など多くの解決しなければならない
問題や本質的な困難がある。
The media used for these are Co-Cr zCo-
0 and other so-called continuous films are mainly used, and the film forming methods include sputtering and PVD
For example, vacuum deposition), 'mX7, etc. are commonly used. However, these methods have drawbacks such as slow film formation speed and therefore unsuitability for mass production, and furthermore, it is difficult to obtain homogeneous properties over a large area. Moreover, there are many problems and inherent difficulties that must be solved, such as reliability problems due to use in sliding contact with a magnetic head, and problems with large noise caused by using cobalt, which has a high magnetostriction, as a main component. .

これに対して永年の実績によって高い信頼性を得ている
針状のγ−Fe2O3を、配向磁界を用いて塗布膜厚さ
方向に配向塗布する考えも試みられている。しかし従来
の長手用媒体の場合と異なり、配向磁界によって磁性粉
が厚さ方向に積み重なり、極端な場合Vこは塗膜内に磁
性粉が存在しない部分が4:するなと、記録媒体として
使用し得るに十分4f表面性が得られないのが現状であ
る。
In contrast, attempts have been made to apply acicular γ-Fe2O3, which has achieved high reliability through years of experience, in an oriented manner in the thickness direction of the coating film using an oriented magnetic field. However, unlike in the case of conventional longitudinal media, the magnetic powder is piled up in the thickness direction due to the oriented magnetic field, and in extreme cases, there are areas where there is no magnetic powder in the coating film, and it is used as a recording medium. At present, it is not possible to obtain sufficient 4f surface properties.

粒状形状を有する磁性粉に対する試みも本質的には用状
γ−Fe203粉に対すると同様な結果に終っている。
Attempts to use magnetic powder having a granular shape have essentially resulted in the same results as those for commercial γ-Fe203 powder.

これに対し平板状の形状を有するバリウムフェライト粉
は、その形状から、外部磁界による配向に有利であると
考えられて、多くの人々による検Δ」がなされている。
On the other hand, barium ferrite powder, which has a flat plate shape, is considered to be advantageous for orientation by an external magnetic field due to its shape, and has been tested by many people.

バリウムフェライトでも、しかし外部磁界による配向は
前記針状γ−F e203 粉の場合と本質的に異なる
ところがなく、厚さ方向に磁性粉の積み重なりがおこり
記録媒体として使用し得る塗膜表面を得ることが難しい
In the case of barium ferrite, however, the orientation caused by an external magnetic field is essentially the same as in the case of the acicular γ-F e203 powder, and the magnetic powder is piled up in the thickness direction to obtain a coating surface that can be used as a recording medium. is difficult.

これら塗膜表面の乱れは、外部磁界の印加によって塗膜
表面に同符号の磁荷が発生し、それによって生じる静磁
エネルギーの増加を粒子の移動によって下げようとする
ためで、その意味で外部磁界の印加に対して不可避なも
のと理解しなければならない。
These disturbances on the surface of the paint film are caused by the application of an external magnetic field to generate magnetic charges of the same sign on the surface of the paint film, and the resulting increase in static magnetic energy is attempted to be lowered by the movement of particles. It must be understood that this is inevitable with respect to the application of a magnetic field.

発明の目的 本発明の目的は、外部から配向のための磁界を使用しな
いで、塗工のみによって、塗布膜厚さ方向に磁化容易方
向を配向させることのできる磁性粉の製造方法を提供す
るにある。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a method for producing magnetic powder that can orient the direction of easy magnetization in the thickness direction of the coating film only by coating without using an external magnetic field for orientation. be.

発明の構成 本発明は、鉄イオンとバリウムイオンを含む水溶液に、
水酸化ナトリウムを加えて鉄とバリウムの水酸化物を共
沈させる第一の工程と、第一の工程で得られたサスペン
ションを密閉容器中で高温高圧に保持する第二の工程と
を含むバリウムフェライト粉の製造方法において、前記
バリウムイオンにMする鉄イオンの比が7.5〜95の
範囲であり、かつ第二の工程においては鉄塩およびバリ
ウム塩を構成する全非金属イオンに対する水酸イオンの
濃度比(R)が1.1〜3.0の範囲であり、かつT”
340R7’・4+30〜−40(℃)を満足して設定
された温度に少くとも1時間以上保持することを特徴と
する磁性粉の製造方法である。本発明の磁性粉を使用す
ることによって外部配向用の磁界を使用せず塗工時に磁
性粉に作用する応力のみによって、優れた塗布膜厚さ方
向の配向が達成される。しかも外部配向磁界を印加しな
いから塗布脱衣1n1の平滑性が乱されることもない。
Structure of the Invention The present invention provides an aqueous solution containing iron ions and barium ions.
Barium comprising a first step of adding sodium hydroxide to coprecipitate iron and barium hydroxide, and a second step of maintaining the suspension obtained in the first step at high temperature and high pressure in a closed container. In the method for producing ferrite powder, the ratio of iron ions to barium ions is in the range of 7.5 to 95, and in the second step, the ratio of hydroxyl to all nonmetal ions constituting the iron salt and barium salt is The ion concentration ratio (R) is in the range of 1.1 to 3.0, and T"
340R7'·4+30 to -40 (° C.) is maintained at a set temperature for at least one hour or more. By using the magnetic powder of the present invention, excellent orientation in the thickness direction of the coated film can be achieved only by stress acting on the magnetic powder during coating without using an external magnetic field for orientation. Moreover, since no external orientation magnetic field is applied, the smoothness of the coating/removal 1n1 is not disturbed.

発明の実施例 以下本発明を実施例を用いて説明する。Examples of the invention The present invention will be explained below using examples.

実施例1 8172のBa(NO3)2 と 101.OfのFe
 (N0s)a・9H20を500酩の水に溶解する。
Example 1 Ba(NO3)2 of 8172 and 101. Of's Fe
Dissolve (NOs)a.9H20 in 500 ml of water.

これとは別に42.3fのNaOHを300−の水に溶
解、よく4畳拌しながら両者を混合する。得られたサス
ペンションをオートクレーブ炉に入れて275℃の温度
に約4時間保持した後、炉の電源を切って自然冷却し磁
性粉の合成を行った。得られた磁性粉の大きさは厚さ6
00A、直径0.3μであった。得られた磁性粉はよく
水洗した後乾燥し、X線による成分相の検定、VSMに
よる磁気測定、BET測定、電顕による観察などに供さ
れた。
Separately, 42.3 f NaOH was dissolved in 300 m water, and both were mixed while stirring well. The obtained suspension was placed in an autoclave furnace and maintained at a temperature of 275° C. for about 4 hours, and then the furnace was turned off and allowed to cool naturally to synthesize magnetic powder. The size of the obtained magnetic powder is 6 in thickness.
00A and a diameter of 0.3μ. The obtained magnetic powder was thoroughly washed with water, dried, and subjected to examination of component phases using X-rays, magnetic measurement using VSM, BET measurement, and observation using electron microscopy.

奪することによってBの値、Fe/Baの値を変化させ
ることができる。
By depriving B, the value of B and the value of Fe/Ba can be changed.

合成温度は装置の都合で320℃が上限であり、設定温
度に対して±5℃の範囲で制御できる。
The upper limit of the synthesis temperature is 320°C due to the equipment, and it can be controlled within a range of ±5°C with respect to the set temperature.

Fe (NO3)3−9 H2O、Ba(NO3)2の
配向比を変化させて作成した試オ゛Iの成分相の検定か
ら、鉄が多過ぎるとα・Fe2O3が混入し、逆に鉄が
少な過ぎると不明相が混入して磁気特性が劣化する。こ
れからye / Baの好適な範囲が 9.5≧Fe/Ba≧75 に定められる。
Fe (NO3)3-9 From the analysis of the component phase of sample OI created by changing the orientation ratio of H2O and Ba(NO3)2, it was found that if there is too much iron, α・Fe2O3 will be mixed in, and conversely, iron will be mixed. If it is too small, unknown phases will be mixed in and the magnetic properties will deteriorate. From this, a suitable range of ye/Ba is determined to be 9.5≧Fe/Ba≧75.

塗膜の配向については以下に述べる方法で6・12価し
た。すなわち塗膜の厚さ方向と塗膜面内の2つの方向に
対して履歴曲線を測定し、 の値をもって垂直配向の目安とした。
The orientation of the coating film was determined by the method described below. That is, hysteresis curves were measured in two directions, one in the thickness direction of the coating film and the other in the plane of the coating film, and the value of was used as a standard for vertical alignment.

第1の磁性塗料の実施例(以下第1磁性塗料という。) 実施例1で得られた磁性粉100部に対して塩ビ・酢ビ
−ビニルアルコール共重合体 30部(uac社製 V
AGH) ポリウレタン 10部 (日本ポリウレタン工業社製 ニラポランN 2304
)カーボン 5部 MEK(メチル−エチル−ケトン) 200都トルエン
 130部 シクロヘキサノン 30都 に少量の分散剤を加えて磁性塗料をつくり、。
Example of the first magnetic paint (hereinafter referred to as "first magnetic paint") 30 parts of vinyl chloride/vinyl acetate-vinyl alcohol copolymer (manufactured by UAC V
AGH) Polyurethane 10 parts (Nilaporan N 2304 manufactured by Nippon Polyurethane Industries Co., Ltd.)
) Carbon 5 parts MEK (methyl-ethyl-ketone) 200 parts Toluene 130 parts Cyclohexanone 30 parts and a small amount of dispersant were added to make a magnetic paint.

50μmギャップのブレードを用い、約30メ一トル/
分の移動速度で75μm厚のポリエステルフィルムに塗
布した。乾燥後の磁性層の厚さは約4μmで、これから
6 an X 6 m+aの試料を切り出し、振動試料
型の磁力計を用いて履歴曲線を測定したところ P:2
.04 Hc=8340e Ms=7、64 X 10
 emuであった。また表面粗さは0.12μmであっ
た。
Approximately 30 m/cm using a blade with a 50 μm gap
It was coated on a 75 μm thick polyester film at a transfer speed of 10 min. The thickness of the magnetic layer after drying was approximately 4 μm, and a sample of 6 an x 6 m+a was cut out from it, and the history curve was measured using a vibrating sample type magnetometer. P: 2
.. 04 Hc=8340e Ms=7, 64 X 10
It was emu. Moreover, the surface roughness was 0.12 μm.

第1図は合成温度(T)とHの値を種々変化して得た試
料の測定結果を T−R平面上に記述したもので、枠の
中央にP値が、左下に保磁力が、右上に103X’Ms
がそれぞれ示しである。
Figure 1 shows the measurement results of samples obtained by varying the synthesis temperature (T) and H values on the T-R plane, with the P value in the center of the frame and the coercive force in the lower left. 103X'Ms on the top right
are shown respectively.

この図から良好な配向を示すR値域と合成温度域が請求
の範囲の如くに定められる。またこの図からRを固定し
た場合、最良の配向を与える合成湿度が存在すること、
各P値に対応するP値の極大値を結んだ曲線は I’=340R■°4 で良く表現されることなどがわかる。丁(値および/今
るいは合成温度が望ましい領域から外れると垂直方向の
配向がわるくなることがわかる。
From this figure, the R value range and synthesis temperature range that exhibit good orientation are determined as shown in the claims. Also, from this figure, when R is fixed, there is a synthetic humidity that gives the best orientation.
It can be seen that the curve connecting the maximum values of the P values corresponding to each P value is well expressed by I'=340R■°4. It can be seen that the vertical orientation deteriorates as the value and/or synthesis temperature deviate from the desired range.

第2の磁性塗料実施例 実施例1のBa (No3)2 とFe(NO3)3 
・9H20を他の塩すなわちB a cA2とFec、
83・6 H20に変えた以外は実施例1と同様な方法
で磁性粉と合成した。
Second Magnetic Paint Example Example 1 Ba (No3)2 and Fe(NO3)3
・9H20 with other salts, namely B a cA2 and Fec,
Magnetic powder was synthesized in the same manner as in Example 1 except that 83.6 H20 was used.

得られた粉末を第1磁性塗料実施例と同様な方法で磁性
塗料とし、同様に磁気測定を行ったところ p= 2,
75 Hc=8040e Ms=8.14X ] 0 
” emuで表向粗さは014μmであった。
The obtained powder was made into a magnetic paint in the same manner as in the first magnetic paint example, and magnetism was measured in the same manner. p = 2,
75 Hc=8040e Ms=8.14X ] 0
The surface roughness was 0.14 μm in emu.

第3の磁性塗料実施例 ブチラール樹脂(積木化学製 エスレツクBLS)ポリ
エステル樹脂(東洋紡製 バイロン200)ポリウレタ
ン樹脂(武田薬品工業製 タケラックに550A)ニト
ロセルロール(旭化成工業製 5L−1)7 /’ !
J Oニトリルブタジェン共重合体(E1本ゼオン N
1pol 1432J )エポキシ樹脂(シェル化学製
 エピコート)を用いて第1磁性塗料と同様な方法で磁
性塗料を作成しP値を測定したところ、いずれも第1磁
性塗眉の場合と本質的に相違ない高い配向性を示し/c
Third magnetic paint example Butyral resin (Eslec BLS manufactured by Block Chemical) Polyester resin (Vylon 200 manufactured by Toyobo) Polyurethane resin (550A manufactured by Takeda Pharmaceutical Co., Ltd.) Nitrocellulose (5L-1 manufactured by Asahi Kasei Industries) 7/'!
J O nitrile butadiene copolymer (E1 Zeon N
1pol 1432J) Using epoxy resin (Epicoat manufactured by Shell Chemical Co., Ltd.), a magnetic paint was prepared in the same manner as the first magnetic paint, and the P value was measured. Shows high orientation/c
.

発明の効果 ・ 以上の説明から明らかなように、本発明による磁性粉は
、一般的に実用されている有機結着剤を用いて塗料とし
た場合、厚さ600λ、直径0.3μの形状を有するの
で、外部配向用磁界の使用なしに、塗工のみによって良
好な垂直配向を示す。しかも外部配向用磁界を使用しな
いために塗膜表面の乱れがなく、良好な表面平滑性が得
られるなど垂直記録媒体としてその実用性は大きい。
Effects of the invention - As is clear from the above explanation, the magnetic powder according to the present invention has a shape of 600λ in thickness and 0.3μ in diameter when made into a paint using a commonly used organic binder. Therefore, it exhibits good vertical alignment by coating alone, without the use of an external alignment magnetic field. Moreover, since no external alignment magnetic field is used, there is no disturbance of the coating film surface, and good surface smoothness can be obtained, making it highly practical as a perpendicular recording medium.

【図面の簡単な説明】[Brief explanation of the drawing]

図は磁性粉の合成東件と磁気特性を示す図である。 #’7” ! ’7 f l 特許出願人 松下電器産業株式会社 代理人弁理士 阿 部 功 The figure shows the synthesis properties and magnetic properties of magnetic powder. #’7”!’7 f l Patent applicant: Matsushita Electric Industrial Co., Ltd. Representative Patent Attorney Isao Abe

Claims (1)

【特許請求の範囲】 鉄イオンとバリウムイオンとを含む水溶液に、水酸化ナ
トリウムを加えて鉄とバリウムの水酸化物を共沈させる
第寸の工程と、第一の工程で得られたサスペンションを
密閉容器中で高温高圧に保持する第二の工程とを含むバ
リウムフェライト粉の製造方法において、前記バリウム
イオンに対する鉄イオンの比(Feイオン/バリウムイ
オン)が75〜95の範囲であり、かっ鉄塩およびバリ
ウム塩を構成する全非金属イオンに対する水酸イオンの
濃度比(R=〔水酸イオン〕/〔全非金属イオン〕)が
11〜30の範囲であり、かつ第二の工程においては次
式 T=34OR+30℃〜−40℃を満足して設定さ
れた温度(T)に少くとも1時間保持することを特徴と
する磁気記録媒体用磁性粉の製造方法。
[Claims] A second step of adding sodium hydroxide to an aqueous solution containing iron ions and barium ions to coprecipitate iron and barium hydroxides, and a suspension obtained in the first step. and a second step of holding the powder at high temperature and high pressure in a closed container, wherein the ratio of iron ions to barium ions (Fe ions/barium ions) is in the range of 75 to 95, The concentration ratio of hydroxide ions to all nonmetal ions constituting the salt and barium salt (R = [hydroxide ions]/[total nonmetal ions]) is in the range of 11 to 30, and in the second step A method for producing magnetic powder for magnetic recording media, characterized by holding the temperature (T) at a temperature (T) that satisfies the following formula T=34OR+30°C to -40°C for at least 1 hour.
JP58246455A 1983-12-26 1983-12-26 Production of magnetic powder Pending JPS60137829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58246455A JPS60137829A (en) 1983-12-26 1983-12-26 Production of magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58246455A JPS60137829A (en) 1983-12-26 1983-12-26 Production of magnetic powder

Publications (1)

Publication Number Publication Date
JPS60137829A true JPS60137829A (en) 1985-07-22

Family

ID=17148683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58246455A Pending JPS60137829A (en) 1983-12-26 1983-12-26 Production of magnetic powder

Country Status (1)

Country Link
JP (1) JPS60137829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302421A (en) * 1993-04-19 1994-10-28 Nissan Chem Ind Ltd Manufacture of barium ferrite fine particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302421A (en) * 1993-04-19 1994-10-28 Nissan Chem Ind Ltd Manufacture of barium ferrite fine particle

Similar Documents

Publication Publication Date Title
US5585032A (en) Ferromagnetic fine powder for magnetic recording
JP5058889B2 (en) Magnetic recording medium
EP0290263B1 (en) Platelike magnetic powder and its manufacturing method and a recording medium which use the platelike magnetic powder
JPH0212004B2 (en)
JPS5928964B2 (en) magnetic recording medium
US3770500A (en) Magnetic materials and method of making same
JPH0624062B2 (en) Magnetic recording medium
US4108787A (en) Process for producing ferromagnetic iron oxide
US5766763A (en) Hexagonal system ferrite powder for a high density magnetic recording medium
JPS60137829A (en) Production of magnetic powder
CA1289727C (en) Highly magnetic iron oxide powder
JP2625708B2 (en) Method for producing ultra-high coercivity metal powder
JPH0719363B2 (en) Magnetic recording medium
JP5293946B2 (en) Method for producing nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP2659957B2 (en) Magnetic powder, manufacturing method thereof, and magnetic recording medium using the magnetic powder
JP2620256B2 (en) Magnetic recording media
JPH0252415B2 (en)
JPH0619829B2 (en) Magnetic recording medium
JP2547000B2 (en) Ferromagnetic fine powder for magnetic recording
JP2745306B2 (en) Ferromagnetic fine powder for magnetic recording and method for producing the same
US3558354A (en) Magnetic tapes comprising ferrimagnetic materials
KR910002983B1 (en) Complex magnetic particles and their recording media
JPH1025115A (en) Iron oxide-base magnetic powder and magnetic recording medium using the same
JPS638224A (en) Production of ferro magnetic powder for magnetic recording
JPS59129935A (en) Magnetic recording medium