JPS60137061A - Semiconductor integrated circuit device and manufacture thereof - Google Patents

Semiconductor integrated circuit device and manufacture thereof

Info

Publication number
JPS60137061A
JPS60137061A JP25048683A JP25048683A JPS60137061A JP S60137061 A JPS60137061 A JP S60137061A JP 25048683 A JP25048683 A JP 25048683A JP 25048683 A JP25048683 A JP 25048683A JP S60137061 A JPS60137061 A JP S60137061A
Authority
JP
Japan
Prior art keywords
base
electrode
film
melting point
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25048683A
Other languages
Japanese (ja)
Inventor
Tsutomu Fujita
勉 藤田
Toyoki Takemoto
竹本 豊樹
Kenji Kawakita
川北 憲司
Hiroyuki Sakai
坂井 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25048683A priority Critical patent/JPS60137061A/en
Publication of JPS60137061A publication Critical patent/JPS60137061A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Abstract

PURPOSE:To enhance the density, speed and to decrease power consumption of a semiconductor integrated circuit device by forming emitter electrode and base electrode wirings in a multilayer structure with a high melting point metal film or a high melting point silicide as the emitter electrode. CONSTITUTION:Part 9 of a collector region buried in N<+> type, part 10 of a collector region of an N type epitaxial layer, a contacting region 11 of a base of a P type inert base region, a P type active base region 12, a polycrystalline silicon layer 14 of an N<+> type emitter region 13 and an N<+> type emitter region, an emitter electrode 15 and an insulating film 16 of a high melting point metal film or its silicide film, and a base electrode 17 of Al wiring are formed on a P type substrate 8. The electrode 17 is formed through the film 16 with the electrode 15 in a 2-layer structure. An interval between the base electrode and the emitter electrode is planely formed in a thickness of the film 16, the length (b) of the inactive base is narrowed, and the length (c) of the base is also narrowed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路特に高密度、高速、低消費電力
な半導体集積回路装置及びその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor integrated circuits, and particularly to high-density, high-speed, low-power consumption semiconductor integrated circuit devices and methods of manufacturing the same.

従来例の構成とその問題点 バイポーラLSIを、高速、低消費電力化するだめには
種々の方法かあるが、その中でも一番効果のある方法は
ベースとコレクタ間の容量を小さくすることである。特
に、トランジスタの動作に関係しない不活性ベース領域
を小さくして容量を下げることが重要である。しかしな
がら従来の方法では電極の形成方法による制限のだめ、
不活性ベース領域を小さくすることができなかった。そ
の例を第1図をもとに説明する。第1図は従来のバイポ
ーラトランジスタの断面構造を示す。1はp形基板、2
はn+埋込、3は絶縁分離層、4はp形ベース、6はn
形エミソク、6けエミッタ電極、7−1.7−2.はベ
ース電極である。またa領域はエミッタ部、b領域は不
活性ベース部、C領域はベース部である。第1図かられ
かるようにベース部Cにおいて不活性ベースbがかガり
の領域を占有しているのがわかる。例えば通常のトラン
ジスタでは不活性ベース領域はベース領域の%以上を占
めている。その理由としてはエミッタ電極aとベース電
極すが接しないように間隔をあけねばならず、そのため
余分な領域が生じる。それで不活性ベース領域が大きく
なるわけである。
Conventional configurations and their problems There are various ways to make bipolar LSIs faster and with lower power consumption, but the most effective method is to reduce the capacitance between the base and collector. . In particular, it is important to reduce the capacitance by reducing the size of the inactive base region that is not related to the operation of the transistor. However, conventional methods are limited by the method of forming electrodes;
It was not possible to reduce the inert base area. An example of this will be explained based on FIG. FIG. 1 shows a cross-sectional structure of a conventional bipolar transistor. 1 is a p-type substrate, 2
is n+ buried, 3 is insulating isolation layer, 4 is p-type base, 6 is n
Type emitter, 6 emitter electrodes, 7-1.7-2. is the base electrode. Further, the a region is an emitter portion, the b region is an inactive base portion, and the C region is a base portion. As can be seen from FIG. 1, in the base portion C, the inert base b occupies the overcast area. For example, in a typical transistor, the inactive base region occupies more than % of the base area. The reason for this is that the emitter electrode a and the base electrode must be spaced apart so that they do not come into contact with each other, which results in an extra area. Therefore, the inactive base area becomes larger.

当然ながら上記に述べた方法では、バイポーラLSIの
高密度化、高速化、低消費電力化に対して大きな問題が
生じるわけである。
Naturally, the method described above poses a major problem in achieving higher density, higher speed, and lower power consumption of bipolar LSIs.

ところで本発明は、不活性ベース領域を小さくするとい
う観点から、高融点金属又はそのシリサイド膜をエミッ
タ電極に用い、ベース電極と多層構造にすることにより
、ベース電極とエミッタ電極の間隔を小さくしてベース
領域の縮小を図ったものである。
However, from the viewpoint of reducing the size of the inactive base region, the present invention uses a high melting point metal or its silicide film as the emitter electrode, and forms a multilayer structure with the base electrode, thereby reducing the distance between the base electrode and the emitter electrode. This is intended to reduce the base area.

発明の目的 本発明はこのような従来の問題に鑑み、高密度。purpose of invention In view of these conventional problems, the present invention has been developed to provide a high-density system.

高速、低消費電力を実現することのできる半導体集積回
路装置及びその製造方法を提供することを目的とする。
An object of the present invention is to provide a semiconductor integrated circuit device that can achieve high speed and low power consumption, and a method for manufacturing the same.

発明の構成 本発明は、高融点金属又はそのシリサイド膜をエミッタ
電極として用い、ベース電極と多層構造にすることによ
りベース電極とエミッタ電極の間隔を小さくしてバイポ
ーラトランジスタのベース領域の縮小を実現し半導体集
積回路装置の高密度。
Structure of the Invention The present invention uses a high melting point metal or its silicide film as an emitter electrode and forms a multilayer structure with the base electrode to reduce the distance between the base electrode and the emitter electrode, thereby reducing the base area of a bipolar transistor. High density of semiconductor integrated circuit devices.

高速、低消費電力化の達成を可能とするものである。This makes it possible to achieve high speed and low power consumption.

実施例の説明 第2図は本発明のバイポーラトランジスタの構造の一例
を示すものである。同図において、8はp形基板、9 
ij: n十埋込でコレクタ領域の一部、10はn形エ
ピタキシャル層でコレクタ領域の一部、1l−1p形の
不活性ベース領域でベースのコンタクト領域、12はp
形の活性ベース領域、13はn十エミッタ領域、14は
n十エミツク領域で多結晶シリコン層、16は高融点金
属膜又はそのシリサイド膜でエミッタ電極、16は絶縁
膜、17は1g金属配線でベース電極となっている。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows an example of the structure of a bipolar transistor of the present invention. In the figure, 8 is a p-type substrate, 9
ij: n0 is a part of the collector region, 10 is an n-type epitaxial layer and is a part of the collector region, 1l-1 is a p-type inactive base region and is a base contact region, 12 is a p-type inactive base region and a part of the collector region.
13 is an n0 emitter region, 14 is an n0 emitter region with a polycrystalline silicon layer, 16 is a high melting point metal film or its silicide film as an emitter electrode, 16 is an insulating film, and 17 is a 1g metal wiring. It serves as the base electrode.

第2図において、ベース電極17は絶縁膜16を介して
エミッタ電極15と2層構造になっている。当然なから
、ベース電極17とエミッタ電極16は電気的に絶縁さ
れているわけである。平面的には、ベース電極とエミッ
タ電極の間隔は絶縁膜16の厚みのみである。そのため
不活性ベースの長さbが非常に狭くなり、その結果ベー
ス長さCも狭くなっている。これは、第1図と比較する
と釣機になっている。エミッタに高融点金属(又はその
シリサイド)16を用いる理由はエミッタ引き出し部の
抵抗を下げるためと、高温で熱処理しても多結晶シリコ
ン14や絶縁膜16と反応しないからである。通常のム
l配線をエミッタに用いると高温の熱処理を行なうと、
多結晶5i14や絶縁膜16と反応し、ム4が侵入して
いく。そのためエミッタ・ベースの接合を破壊したり、
絶縁膜16の絶縁性が悪く々るからである。
In FIG. 2, the base electrode 17 has a two-layer structure with the emitter electrode 15 with an insulating film 16 in between. Naturally, the base electrode 17 and the emitter electrode 16 are electrically insulated. Planarly, the distance between the base electrode and the emitter electrode is only the thickness of the insulating film 16. Therefore, the length b of the inert base becomes very narrow, and as a result, the base length C also becomes narrow. This is a fishing machine compared to Figure 1. The reason for using the high melting point metal (or its silicide) 16 for the emitter is to lower the resistance of the emitter lead-out portion, and also because it does not react with the polycrystalline silicon 14 or the insulating film 16 even when heat treated at high temperature. When ordinary mulch wiring is used as an emitter and subjected to high-temperature heat treatment,
It reacts with the polycrystalline layer 5i14 and the insulating film 16, and the layer 4 invades. This may destroy the emitter-base junction,
This is because the insulating properties of the insulating film 16 are poor.

次に第3図をもとに本発明によるトランジスタの製造方
法を示す。
Next, a method for manufacturing a transistor according to the present invention will be described based on FIG.

(A’) tず、p形基板8にn 埋込層9、絶縁分離
層10、n形エピタキシャル層11を順次形成する0 (B) 全面にn にトープされた多結晶シリコン膜1
4を堆積し熱処理してn 層13を形成する。
(A') An n-buried layer 9, an insulating separation layer 10, and an n-type epitaxial layer 11 are sequentially formed on a p-type substrate 8. (B) A polycrystalline silicon film 1 doped with n on the entire surface.
4 is deposited and heat treated to form an n layer 13.

この部分はエミッタとなる。次に高融点金属膜16、絶
縁膜16を堆積する。エミソタノ々ターンをフォトレジ
スト18で形成する。高融点金属膜16の替りにそのシ
リサイド膜を堆積してもよい。高融点金属膜としては、
T 1+ M o +W7等が上げられる。
This part becomes the emitter. Next, a high melting point metal film 16 and an insulating film 16 are deposited. Emi-striped turns are formed using photoresist 18. Instead of the high melting point metal film 16, a silicide film thereof may be deposited. As a high melting point metal film,
T 1 + M o +W7 etc. are raised.

(G) エミッタパターンフォトレジスト膜18をマス
クとして、絶縁膜16、高融点金属膜16、多結晶シリ
コン膜14、n十層13を異方性のドライエツチングに
より同時に除去する。
(G) Using the emitter pattern photoresist film 18 as a mask, the insulating film 16, high melting point metal film 16, polycrystalline silicon film 14, and n+ layer 13 are simultaneously removed by anisotropic dry etching.

(D) 次に、全面に約2000〜3QOO^の絶縁膜
19を堆積する。この工程で高融点金属膜16多結晶シ
リコン膜14、n+層13の側面及びn形エピタキシャ
ル層11の表面が絶縁膜19で被覆されることになる。
(D) Next, an insulating film 19 of approximately 2000 to 3 QOO^ is deposited over the entire surface. In this step, the high melting point metal film 16, the polycrystalline silicon film 14, the side surfaces of the n+ layer 13, and the surface of the n-type epitaxial layer 11 are covered with the insulating film 19.

(E) ボロンを全面にイオン注入して、活性ベース領
域12、不活性ベース領域11を形成する。
(E) Boron ions are implanted into the entire surface to form an active base region 12 and an inactive base region 11.

エミッタ部には多結晶シリコン14、高融点金属電極1
6、絶縁膜19が被覆されているので活性ベース領域1
2にはボロンがあまり入らない。しだがって低濃度で浅
く形成される。不活性ベース領域11上は絶縁膜のみが
形成されているので高濃度で深くなる。ボロンをイオン
注入した後、高温でアニールしても高融点金属16は融
解しないのでプロセス上問題ヲ生シない。
Polycrystalline silicon 14, high melting point metal electrode 1 in the emitter part
6. Since the insulating film 19 is covered, the active base region 1
2 does not contain much boron. Therefore, it is formed shallowly with low concentration. Since only an insulating film is formed on the inactive base region 11, it is highly doped and deep. After boron ion implantation, even if annealing is performed at a high temperature, the high melting point metal 16 does not melt, so there is no problem in the process.

(F) 異方性のドライエツチングを用いて、絶縁膜1
9を除去する。この時、垂直方向のみ絶縁膜19がエツ
チングされるので、n 工ζツタ13多結晶シリコン1
4、高融点金属膜16の側面には絶縁膜19が残る。高
融点金属膜上には、先に絶縁膜16が堆積しているので
、絶縁膜19けエツチングされるが絶縁膜16は残るこ
とになる。また不活性ベース11上の表面は露出する。
(F) Insulating film 1 using anisotropic dry etching
Remove 9. At this time, since the insulating film 19 is etched only in the vertical direction,
4. The insulating film 19 remains on the side surface of the high melting point metal film 16. Since the insulating film 16 has been deposited on the high melting point metal film first, the insulating film 19 is etched, but the insulating film 16 remains. Further, the surface on the inert base 11 is exposed.

(G) AA等の金属を用いて、ベース電極17を形成
する。このベース電極17は絶縁膜16を介してエミッ
タ電極15と多層構造をなしている。
(G) Form the base electrode 17 using metal such as AA. This base electrode 17 has a multilayer structure with the emitter electrode 15 with an insulating film 16 in between.

平面的にみると、ベース電極17とエミッタ電極15の
間隔は絶縁膜19の厚さく 2000〜3000A )
のみである。したかってベース長さCが小さくなる。ま
だエミッタ電極として高融点金属又はそのシリサイド膜
を用いるとエミッタ電極形成後でも高温の熱処理か可能
となる。
When viewed from above, the distance between the base electrode 17 and the emitter electrode 15 is the thickness of the insulating film 19 (2000 to 3000 A).
Only. Therefore, the base length C becomes smaller. However, if a high-melting point metal or its silicide film is used as the emitter electrode, high-temperature heat treatment can be performed even after the emitter electrode is formed.

以上のように、本実施例によれば、簡単な製造方法で、
不活性ベース領域を小さくすることが出き、トランジス
タのサイズを縮小出来る。
As described above, according to this embodiment, with a simple manufacturing method,
The inactive base region can be made smaller and the size of the transistor can be reduced.

発明の効果 以上のように本発明はエミッタ電極として高融点金属膜
又は高融点シリサイド膜を用い、エミッタ電極とベース
電極配線とを多層構造にすることによりエミッタ電極と
ベース電極の間隔を絶縁膜の厚み程度(2000〜30
00A)に小さくすることが出来る。さらにエミッタ電
極として高融点金属膜を用いると、電極形成後も高温の
熱処理が可能となる。エミッタ電極とベース電極の間隔
が小さくなると、トランジスタのベース面積が縮小され
る。そのだめベースとコレクタ間の容量が下がるので、
バイポーラ集積回路の高速化、低消費電力化が可能とな
る。例えばベースコレクタ間の容量が半分になると集積
回路のスピードは約30%改善される。さらにトランジ
スタサイズも小さくなるので高密度化も同様に達成され
る。このように本発明により特性のすぐれた半導体集積
回路装置を実現することかできる。
Effects of the Invention As described above, the present invention uses a high-melting point metal film or a high-melting point silicide film as the emitter electrode, and forms the emitter electrode and base electrode wiring into a multilayer structure, thereby reducing the distance between the emitter electrode and the base electrode by increasing the distance between the emitter electrode and the base electrode. Thickness (2000~30
00A). Furthermore, if a high melting point metal film is used as the emitter electrode, high temperature heat treatment is possible even after the electrode is formed. As the distance between the emitter electrode and the base electrode becomes smaller, the base area of the transistor is reduced. As a result, the capacitance between the base and collector decreases,
This makes it possible to increase the speed and reduce power consumption of bipolar integrated circuits. For example, if the base-collector capacitance is halved, the speed of the integrated circuit will be improved by about 30%. Furthermore, since the transistor size becomes smaller, higher density can be achieved as well. As described above, according to the present invention, a semiconductor integrated circuit device with excellent characteristics can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の構造を示す断面図、第2図
は本発明の半導体装置の構造を示す断面図、第3図A〜
Gは本発明の半導体装置の製造工程を示す断面図である
。 0・・・・・・コレクタ領域、11・・・・・・不活性
ベース領域、12・・・・・・活性ベース領域、13・
・・・・・n エミッタ領域、14・・・・・・多結晶
シリコン層、16・・・・・・高融点金属膜、16・・
・・・・絶縁膜、17・・・・・・ベース電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図
FIG. 1 is a sectional view showing the structure of a conventional semiconductor device, FIG. 2 is a sectional view showing the structure of the semiconductor device of the present invention, and FIGS.
G is a sectional view showing the manufacturing process of the semiconductor device of the present invention. 0... Collector region, 11... Inactive base region, 12... Active base region, 13.
......n emitter region, 14... polycrystalline silicon layer, 16... high melting point metal film, 16...
...Insulating film, 17...Base electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1) エミッタ電極として高融点金属膜又は高融点シ
リサイド膜を用い、上記エミッタ電極上にある絶縁膜を
介して上記エミッタ電極上にベース電極金属膜が配線さ
れていることを特徴とする半導体集積回路装置。
(1) A semiconductor integrated circuit characterized in that a high melting point metal film or a high melting point silicide film is used as an emitter electrode, and a base electrode metal film is wired on the emitter electrode via an insulating film on the emitter electrode. circuit device.
(2)選択的に形成された半導体基板にエミッタとなる
高濃度領域を形成する工程、上記高濃度領域上に高融点
金属膜及び第1の絶縁膜を形成する工程、上記第1の絶
縁膜上に形成されたエミッタパターンをマスクとして上
記第1の絶縁膜、上記高融点金属膜、上記高濃度領域を
同時にエツチングする工程、全面に第2の絶縁膜を形成
する工程、上記第1の絶縁膜及び上記高融点金属膜及び
上記高濃度領域の側面のみに第2の絶縁膜を選択的に残
し、ベースコンタクト部を露出させる工程、ベース電極
配線を形成し上記高(3)高融点金属膜として高融点シ
リサイド膜を用いることを特徴とする特許請求の範囲2
項記載の半導体集積回路装置の製造方法。
(2) A step of forming a high concentration region to serve as an emitter on the selectively formed semiconductor substrate, a step of forming a high melting point metal film and a first insulating film on the high concentration region, and a step of forming the first insulating film. a step of simultaneously etching the first insulating film, the high melting point metal film, and the high concentration region using the emitter pattern formed above as a mask; a step of forming a second insulating film on the entire surface; a step of etching the first insulating film; A step of selectively leaving a second insulating film only on the side surfaces of the film, the high melting point metal film, and the high concentration region to expose the base contact portion, forming a base electrode wiring and forming the high (3) high melting point metal film. Claim 2 characterized in that a high melting point silicide film is used as the
A method for manufacturing a semiconductor integrated circuit device as described in 1.
JP25048683A 1983-12-26 1983-12-26 Semiconductor integrated circuit device and manufacture thereof Pending JPS60137061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25048683A JPS60137061A (en) 1983-12-26 1983-12-26 Semiconductor integrated circuit device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25048683A JPS60137061A (en) 1983-12-26 1983-12-26 Semiconductor integrated circuit device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60137061A true JPS60137061A (en) 1985-07-20

Family

ID=17208572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25048683A Pending JPS60137061A (en) 1983-12-26 1983-12-26 Semiconductor integrated circuit device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60137061A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760870A (en) * 1980-09-29 1982-04-13 Nec Corp Semiconductor device and manufacture thereof
JPS582065A (en) * 1981-06-25 1983-01-07 Fujitsu Ltd Manufacture of semiconductor device
JPS5886761A (en) * 1981-10-27 1983-05-24 フエアチアイルド・カメラ・アンド・インストルメント・コ−ポレ−シヨン Polysilicon mutial connector for bipolar transistor flip-flop

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760870A (en) * 1980-09-29 1982-04-13 Nec Corp Semiconductor device and manufacture thereof
JPS582065A (en) * 1981-06-25 1983-01-07 Fujitsu Ltd Manufacture of semiconductor device
JPS5886761A (en) * 1981-10-27 1983-05-24 フエアチアイルド・カメラ・アンド・インストルメント・コ−ポレ−シヨン Polysilicon mutial connector for bipolar transistor flip-flop

Similar Documents

Publication Publication Date Title
JPH0123949B2 (en)
JPS6252963A (en) Manufacture of bipolar transistor
US4883772A (en) Process for making a self-aligned silicide shunt
JPS60137061A (en) Semiconductor integrated circuit device and manufacture thereof
JP2827246B2 (en) Method for manufacturing semiconductor device
JPS61160965A (en) Semiconductor ic device
JPS5834943A (en) Semiconductor device and manufacture thereof
JPH0358172B2 (en)
JPS63114261A (en) Self-aligning base shunt for transistor
JPS60245171A (en) Manufacture of semiconductor integrated circuit device
JPH07240522A (en) Semiconductor integrated circuit device and its manufacture
JPS6246072B2 (en)
JPH04267554A (en) Bi-mos semiconductor device and manufacture thereof
JP3128818B2 (en) Semiconductor integrated circuit
JPS62111459A (en) Manufacture of semiconductor device
JPS5951130B2 (en) Method for manufacturing semiconductor devices with low leakage current
JPS6184049A (en) Manufacture of semiconductor device
JPS59188172A (en) Manufacture of semiconductor device
JPH069212B2 (en) Method for manufacturing semiconductor device
JPS5886725A (en) Semiconductor device with improved contact hole
JPS58192371A (en) Semicondctor device and manufacture thereof
JPS59189667A (en) Manufacture of semiconductor device
JPS60182149A (en) Manufacture of semiconductor integrated circuit
JPS6048903B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0817912A (en) Manufacture of semiconductor device and element isolation region