JPS6013676B2 - Gas-liquid contact shelf for distillation of fermented alcohol - Google Patents

Gas-liquid contact shelf for distillation of fermented alcohol

Info

Publication number
JPS6013676B2
JPS6013676B2 JP55088288A JP8828880A JPS6013676B2 JP S6013676 B2 JPS6013676 B2 JP S6013676B2 JP 55088288 A JP55088288 A JP 55088288A JP 8828880 A JP8828880 A JP 8828880A JP S6013676 B2 JPS6013676 B2 JP S6013676B2
Authority
JP
Japan
Prior art keywords
gas
liquid contact
liquid
distillation
shelf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55088288A
Other languages
Japanese (ja)
Other versions
JPS5714541A (en
Inventor
栄一 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUO KAKOKI
Original Assignee
CHUO KAKOKI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUO KAKOKI filed Critical CHUO KAKOKI
Priority to JP55088288A priority Critical patent/JPS6013676B2/en
Publication of JPS5714541A publication Critical patent/JPS5714541A/en
Publication of JPS6013676B2 publication Critical patent/JPS6013676B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Description

【発明の詳細な説明】 本発明は発酵アルコールの蒸留用気液接触棚、更に詳し
くは、エタノール−水系に含まれる多数の徴量成分から
なる中沸点成分を蒸留塔の特定区域に集積させて極めて
効率的に側抜することができる発酵アルコールの蒸留用
気液接触棚に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a gas-liquid contact shelf for distillation of fermented alcohol, more specifically, a gas-liquid contact shelf for distillation of fermented alcohol, and more specifically, a gas-liquid contact shelf for distilling fermented alcohol. This invention relates to a gas-liquid contact shelf for distilling fermented alcohol that can be side-drawn extremely efficiently.

発酵酸から各種の蒸留工程を経て得られる精製されたエ
タノールは、酒精飲料用、医薬用、化粧品用等に広く利
用され、更に今日では、ガソリンと混合して内燃機関の
燃料源としての利用が経済的にも襲用性あるものとして
大いに期待されている。
Refined ethanol, which is obtained from fermented acids through various distillation processes, is widely used for alcoholic beverages, medicines, cosmetics, etc., and today it is also used as a fuel source for internal combustion engines by mixing it with gasoline. It is highly anticipated that it will be economically viable.

ところが、糖質原料からの発酵酸中には、エタノール−
水以外にアセトアルデヒト、メタノ−ル、酢酸エチル、
ダイアセチル、アセタール、酢酸ァミル、プロピルァル
コール、アミルアルコール、アセトィン等の低沸点成分
、中沸点成分及び高沸点成分からなる多種の不純物が含
まれていて、さらに亜硫酸パルプ廃液原料からの発酵酸
中には、フルフラール系やテルベン系の不純物も含まれ
ている。
However, ethanol-
In addition to water, acetaldehyde, methanol, ethyl acetate,
It contains various impurities consisting of low-boiling point components, medium-boiling point components, and high-boiling point components such as diacetyl, acetal, amyl acetate, propyl alcohol, amyl alcohol, and acetoine, and also contains fermented acids from sulfite pulp waste liquid raw materials. also contains furfural and terbene impurities.

したがって、発酵酸中からの不純物を分離しなければな
らない。従来、主として省エネルギー化の観点から気液
接触効率を向上させるべく各種の改良された気液接触棚
が提供され、また、これらの気液接触棚を多段で内蔵す
る蒸留塔を組み込んだ各種の熟留方式が提供されている
Therefore, impurities from the fermented acid must be separated. Conventionally, various improved gas-liquid contact shelves have been provided to improve the gas-liquid contact efficiency mainly from the viewpoint of energy saving, and various distillation systems incorporating distillation columns containing multiple stages of these gas-liquid contact shelves have been provided. A retention method is provided.

そして、これらのいずれの蒸留方式においても、低沸点
成分や高沸点成分は比較的容易に分離され得るため、効
率的に且つ精製度合の高いエタノールを得るということ
は、エタノール−水系と比較的挙動が類似する中沸点成
分を如何に分離するかに係っているものである。しかし
、従来の気液袋触棚は、前記したように、主として省エ
ネルギ化の観点から気液接触効率を向上させるべく改良
されていることもあって、これを多段で内蔵する蒸留塔
を組み込んだ蒸留方式においては、充分に効率良く中沸
点成分を分離しているとはいえない。例えば、今日最も
一般的に用いられているスーパーアロスパス方式におい
ては、通常、A2塔(濃縮塔)及びB塔(糟留塔の一つ
)の中間部からフーゼル油として中沸点成分が側抜され
ているが、そのフーゼル油濃度は最高部分で6%程度で
ある。
In any of these distillation methods, low-boiling components and high-boiling components can be separated relatively easily, so obtaining ethanol efficiently and with a high degree of purification means that the behavior is relatively different from that of the ethanol-water system. It is concerned with how to separate similar medium-boiling components. However, as mentioned above, conventional gas-liquid bag contact shelves have been improved to improve the gas-liquid contact efficiency mainly from the viewpoint of energy saving, and therefore do not incorporate distillation columns containing multi-stages. In the double distillation method, it cannot be said that medium-boiling components are separated efficiently. For example, in the super allospass system that is most commonly used today, medium-boiling components are usually side-drawn as fusel oil from the middle of the A2 column (concentrating column) and the B column (one of the distillation columns). However, the highest concentration of fusel oil is about 6%.

本発明は、蒸留塔の特定区域に高濃度でかかるフーゼル
油を集積させ得る気液接触棚を提供することにより、究
極的にはより一層効率的に且つ精製度合の高いエタノー
ルを得て、併せてこの結果として省エネルギー化をもす
るものであり、その要旨は、気液接触棚における流入部
、気液接触部及び溢流部をともに2分割する仕切板を備
え、該仕切板により区分された両側の液が直接的に緩衝
し合わないようにする点にある。
By providing a gas-liquid contact shelf capable of accumulating such fusel oil at a high concentration in a specific area of a distillation column, the present invention ultimately achieves even more efficient and highly purified ethanol. As a result of this lever, it also saves energy, and its gist is that it is equipped with a partition plate that divides the inflow part, the gas-liquid contact part, and the overflow part in the gas-liquid contact shelf into two parts. The point is to prevent the liquids on both sides from directly buffering each other.

以下、従来の場合と比較しつつ、本発明の構成を図面に
基づき詳細に説明する。
Hereinafter, the configuration of the present invention will be explained in detail based on the drawings while comparing it with the conventional case.

第1図はスーパーアロスパス方式の工程図である。FIG. 1 is a process diagram of the super allopath method.

発酵鱗はA,塔頂部に供給され「各種蒸留塔を経てC塔
底部より精製された96%濃度のエタノールとなって得
られる。これらの詳細は従来から知られている通りであ
り、この間、エタノール−水以外の前記したような不純
物は次のような各種の方法で分離される。先ず、D,塔
及びD塔においては加水抽出により低沸点成分及び高級
アルコールの類が分離され「 またA塔、F塔及びB,
繁底部においては水より高沸点成分が分離される。
The fermented scales are fed to the top of the column A, passed through various distillation columns, and purified to 96% ethanol from the bottom of the column C.The details are as known in the past, and during this time, The above-mentioned impurities other than ethanol-water are separated by the following various methods.First, in the D column and the D column, low boiling point components and higher alcohols are separated by hydroextraction. tower, F tower and B,
In the closed bottom part, components with higher boiling points than water are separated.

さらに最終のG塔においてはエタノールと同伴し易いメ
タノールが分離される。そして、これらの不純物以外の
中沸点成分はA2塔及びB塔の中間部に集積され、該当
する一群の気液接触棚から側抜された後、デカンターで
2液層にされて、結局フーゼル油として分離される。と
ころが、従来の気液接触棚を多段に内蔵するん塔及びB
塔では、構造上及びこの構造に起因する蒸留塔内の流れ
によって、充分な高濃度にかかるフーゼル油を集積させ
ることができない。
Furthermore, in the final G tower, methanol, which is easily entrained with ethanol, is separated. The medium-boiling components other than these impurities are accumulated in the middle part of the A2 tower and the B tower, and after being side-drawn from the corresponding group of gas-liquid contact shelves, they are made into two liquid layers in a decanter, and eventually become fusel oil. Separated as However, conventional gas-liquid contact shelves built in multiple stages and B
Due to the structure of the column and the resulting flow within the distillation column, it is not possible to accumulate such fusel oils in sufficiently high concentrations.

最高濃度に集積される気液接触棚においても、通常6%
程度である。本発明者が、この原因について種々の試験
を繰り返した結果、集積しようとするフーゼル油が供給
液により薄められて分散し、一定濃度以上に集積するこ
とができないことを発見した。
Even in the gas-liquid contact shelf where the highest concentration is accumulated, it is usually 6%.
That's about it. The inventor of the present invention repeatedly conducted various tests to find out the cause of this problem, and found that the fusel oil that attempts to accumulate is diluted and dispersed by the supply liquid, and cannot be accumulated above a certain concentration.

そして、このことは逆に、集積しようとするフーゼル油
と供給液とが直接的に緩衝し合わないような構造の気液
接触棚とし、かかる気液接触棚を蒸留塔の必要箇所に一
群をなして内蔵させれば良いことに着目し、本発明を完
成するに敦つたものである。第2図は蒸留塔の外筒を切
除して本発明に係る気液接触棚1を使用している状態を
示す一部省略の側面図であり、第3図a及び同図bは本
発明に係る気液接触棚1の平面図である。これらはいず
れも例示するものであるが、流入堰2と溢流堰3とで区
分される、流入管4を含む流入部5、流入堰2と溢流堰
3とで挟み込まれている気液接触部6及び溢流管7を含
む溢流部8の三つの部分をともに2分割する仕切板9が
取り付けられていて、この仕切板9はこれによって区分
される両側の液が直薮的に緩衝し合わないように充分な
高さを有するものである。この場合、2分割する仕切板
9の取り付け位置は、気液接触棚上の液量や蒸気量等に
よって影響される。かかる気液接触棚を、フーゼル油側
抜棚を含めた上下数段の位置に−群をなして設ければ、
最高濃度に集積される気液接触棚において、20%程度
のフーゼル油が側抜される。
Conversely, this means that the gas-liquid contact shelves should be constructed so that the fusel oil to be accumulated and the feed liquid do not directly buffer each other, and such gas-liquid contact shelves should be installed in groups at necessary locations in the distillation column. The present invention has been successfully completed by focusing on the fact that it can be built-in. FIG. 2 is a partially omitted side view showing a state in which the gas-liquid contact shelf 1 according to the present invention is used with the outer cylinder of the distillation column removed, and FIG. FIG. 2 is a plan view of a gas-liquid contact shelf 1 according to the present invention. These are all examples, but the inflow part 5 including the inflow pipe 4 is divided into the inflow weir 2 and the overflow weir 3, and the gas and liquid sandwiched between the inflow weir 2 and the overflow weir 3. A partition plate 9 is attached that divides all three parts of the overflow part 8, including the contact part 6 and the overflow pipe 7, into two parts, and the liquid on both sides divided by this partition plate 9 is divided into two parts. It has sufficient height so that they do not buffer each other. In this case, the mounting position of the partition plate 9 that divides the space into two parts is influenced by the amount of liquid, the amount of steam, etc. on the gas-liquid contact shelf. If such gas-liquid contact shelves are arranged in groups at several levels above and below, including the fusel oil side shelf,
Approximately 20% of fusel oil is side-drawn at the gas-liquid contact shelf where the highest concentration is accumulated.

しかも、蒸留塔全体へのフーゼル油の分散も少くなり、
棚段数の減少及び還流比の減少をすることもできる。第
4図は本発明に係る気液接触棚を}群として内蔵する蒸
留塔内部の流れ状態を模式的に示す側面図である。
Moreover, the dispersion of fusel oil throughout the distillation column is reduced,
It is also possible to reduce the number of plates and the reflux ratio. FIG. 4 is a side view schematically showing the flow state inside a distillation column incorporating gas-liquid contact shelves according to the present invention as a group.

図中No.1、No.2及びNo.7は従来の気液接触
棚であり、No.3〜No.6は本発明に係る気液接触
棚である。塔底より矢印cにしたがって流入するペーパ
ーは、No.7からNo.1の気液接触棚へと気液接触
しつつ、順次上昇し、塔頂より矢印dにしたがって排出
される。
No. in the figure. 1.No. 2 and no. 7 is a conventional gas-liquid contact shelf; 3~No. 6 is a gas-liquid contact shelf according to the present invention. The paper flowing in from the bottom of the tower in the direction of arrow c is No. From 7 to No. While being in gas-liquid contact with the gas-liquid contact shelf No. 1, the gas rises sequentially and is discharged from the top of the column in the direction of arrow d.

この後、図示しないコンデンサーにより凝縮され、その
一部は還流液として矢印b‘こしたがって再び繁内に供
給され、No.1、NO.2の気液接触棚で自由に混合
されつつ流下する。しかし、No.3からNo.6の気
液接触棚においては、仕切板9によって2分割された両
側の液が混合し合うことなく流下し、No.7の気液接
触棚で再び合流して、矢印eにしたがい塔底より排出さ
れる。この後、一部は加熱されてペーパーとなり再び矢
印cにしたがい熔内に供給される。徴量の中沸点成分を
含む供給液は矢印aにしたがってNo.5の気液接触棚
に供給される。
Thereafter, it is condensed by a condenser (not shown), and a part of it is supplied as a reflux liquid to Shikinai again in the direction of arrow b'. 1.No. The liquid flows down while being mixed freely on the second gas-liquid contact shelf. However, No. 3 to no. In the gas-liquid contact shelf No. 6, the liquid on both sides divided into two by the partition plate 9 flows down without mixing with each other. They are combined again at the gas-liquid contact shelf 7 and discharged from the bottom of the tower according to arrow e. Thereafter, a part of the paper is heated and turned into paper, which is again fed into the melt according to arrow c. The feed liquid containing the medium-boiling point component in the amount is No. 1 according to the arrow a. 5 gas-liquid contact shelf.

このうち、比較的沸点のものは上昇ペーパーと熱交換し
て上方の気液接触棚へと移行し、比較的高沸点のものは
流下する。この間、NO.3からNo.6の気液接触棚
においてもペーパー状態となれば仕切板9にいずれの側
へも自由に移行することができ、また塔内においては常
時前記したようなペーパーと還流液との流れがある。
Of these, those with relatively high boiling points exchange heat with the rising paper and move to the upper gas-liquid contact shelf, while those with relatively high boiling points flow down. During this time, NO. 3 to no. Even in the gas-liquid contact shelf 6, if it becomes paper, it can freely move to either side of the partition plate 9, and there is always a flow of paper and reflux liquid as described above in the column.

したがって、供給液中の徴量の中沸点成分は、各々の平
衡温度の気液接触棚で凝縮され、集積される。
Therefore, the mid-boiling components in the feed liquid are condensed and accumulated at each equilibrium temperature gas-liquid contacting shelf.

そしてこの場合、集積される度合の高いNo.3〜No
.6の気液接触棚では、供給液の直接的な影響を受けな
い、仕切板9で2分割された図中右手方向の側に、中沸
点成分が高濃度に集積されるのである。最後に、本発明
に係る気液接触棚の具体的効果について例示する。
In this case, No. 1 with a high degree of accumulation. 3~No
.. In the gas-liquid contact shelf 6, medium-boiling point components are accumulated at a high concentration on the right-hand side in the figure, which is divided into two parts by the partition plate 9, which is not directly affected by the feed liquid. Finally, specific effects of the gas-liquid contact shelf according to the present invention will be illustrated.

第5図はその結果を示すグラフで、藤軸に段数を、縦軸
にフーゼル油として側抜されるものの濃度を目盛ったも
のであるが、これは、第1図に示したスーパーアロスパ
ス方式における、68安のB塔(糟留塔の一つ)を用い
て、下方より1$段〜30段の箇所に本発明に係る気液
接触棚を取り付け、このうち14段〜2雑没の各気液接
触棚にサンプルノズルを設けて、仕切板により2分割さ
れた両側の液中のフーゼル油集積度合を測定したもので
ある。
Figure 5 is a graph showing the results, with the number of stages on the rattan axis and the concentration of the fusel oil drawn out as fusel oil on the vertical axis. In this system, using a 68-yen B tower (one of the distillation towers), the gas-liquid contact shelves according to the present invention are installed at locations from 1 to 30 stages from the bottom, and among these, 14 stages to 2 miscellaneous stages are installed. A sample nozzle was provided on each gas-liquid contact shelf to measure the degree of fusel oil accumulation in the liquid on both sides divided by a partition plate.

この図からも明らかなように、仕切坂によって2分割さ
れた片側の部分、これは供給液によって直接的な影響を
受けない部分であるが、ここには極めて高濃度に、フー
ゼル油として側抜される不純物である中沸点成分が集積
されていることが知られる。
As is clear from this figure, the part on one side divided into two by the partition slope, which is not directly affected by the feed liquid, has an extremely high concentration of fusel oil that is extracted from the side. It is known that medium-boiling components, which are impurities that can be removed, are accumulated.

以上説明した通りであるから、本発明には、供給液によ
って直接的に影響を受けないように2分割する仕切板を
設けた気液触棚とすることにより、これを蒸留塔の一部
に使用する場合、極めて高濃度且つ集中的に中沸点成分
を集積し、したがってこれをフーゼル油として側抜する
ことにより、究極的には極めて効率的に且つ精製度合の
高いェタ/ールを得て、併せて省エネルギー化をするこ
とができる効果がある。
As explained above, in the present invention, by providing a gas-liquid contact shelf with a partition plate that is divided into two so as not to be directly affected by the feed liquid, this can be used as a part of the distillation column. When used, the medium boiling point components are accumulated in an extremely high concentration and intensively, and this is then side-drawn as fusel oil, ultimately resulting in extremely efficient and highly purified ether/ethanol. This also has the effect of saving energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスーパーアロスパス方式の工程図、第2
図は本発明の一実施例としての気液触触棚を用いた蒸留
塔内部の一部省略の側面図、第3図は第2図に用いた気
液接触棚の平面図、第4図は本発明に係る気液接触棚を
一群として内蔵する蒸留塔内部の流れ状態を模式的に示
す側面図、第5図は第1図のB塔を用いて本発明に係る
気液接触棚を試験した結果を示す一例としてのグラフで
ある。 1・・・・・・気液接触棚、2・…・・流入堰、3・・
・・・・溢流堰、4・・・・・・流入管、5…・・・流
入部、6・・・・・・気液接触部、7・・・・・・溢流
管、8・・・・・・溢流部、9・…・・仕切板。 第「図 第2図 第3図 第4図 第5図
Figure 1 is a process diagram of the conventional Super Allos Pass method, Figure 2
The figure is a partially omitted side view of the inside of a distillation column using a gas-liquid contact shelf as an embodiment of the present invention, Figure 3 is a plan view of the gas-liquid contact shelf used in Figure 2, and Figure 4 5 is a side view schematically showing the flow state inside a distillation column that incorporates a group of gas-liquid contact shelves according to the present invention, and FIG. It is a graph as an example showing the test results. 1... Gas-liquid contact shelf, 2... Inflow weir, 3...
... Overflow weir, 4 ... Inflow pipe, 5 ... Inflow section, 6 ... Gas-liquid contact section, 7 ... Overflow pipe, 8 ...Overflow section, 9...Partition plate. Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 蒸留塔に内蔵される多段の気液接触棚の一群をなす
ものにして、流入部、気液接触部及び溢流部をともに2
分割する仕切板を備え、該仕切板により区分された両側
の液が直接的に緩衝し合わないようにしたことを特徴と
する発酵アルコールの蒸留用気液接触棚。
1 A group of multi-stage gas-liquid contact shelves built into a distillation column, with an inflow section, a gas-liquid contact section, and an overflow section.
1. A gas-liquid contact shelf for distillation of fermented alcohol, characterized in that it is provided with a dividing partition plate, and the liquid on both sides divided by the partition plate is prevented from directly buffering each other.
JP55088288A 1980-06-28 1980-06-28 Gas-liquid contact shelf for distillation of fermented alcohol Expired JPS6013676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55088288A JPS6013676B2 (en) 1980-06-28 1980-06-28 Gas-liquid contact shelf for distillation of fermented alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55088288A JPS6013676B2 (en) 1980-06-28 1980-06-28 Gas-liquid contact shelf for distillation of fermented alcohol

Publications (2)

Publication Number Publication Date
JPS5714541A JPS5714541A (en) 1982-01-25
JPS6013676B2 true JPS6013676B2 (en) 1985-04-09

Family

ID=13938715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55088288A Expired JPS6013676B2 (en) 1980-06-28 1980-06-28 Gas-liquid contact shelf for distillation of fermented alcohol

Country Status (1)

Country Link
JP (1) JPS6013676B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036659A (en) * 2004-07-23 2006-02-09 Kyowa Hakko Chemical Co Ltd Method and system for distilling ethanol
US20130149693A1 (en) * 2011-12-12 2013-06-13 Ineos Bio Sa Management of ethanol concentration during syngas fermentation
JP7090230B2 (en) * 2017-09-29 2022-06-24 国立大学法人 宮崎大学 Shochu Biomass Fuel Manufacturing Plant
CN114028833B (en) * 2022-01-07 2022-05-17 东营曜康医药科技有限公司 Rectifying tower for producing 2-methyl-3-trifluoromethyl aniline

Also Published As

Publication number Publication date
JPS5714541A (en) 1982-01-25

Similar Documents

Publication Publication Date Title
US4217178A (en) Distillation system for motor fuel grade anhydrous alcohol
ES2296770T3 (en) PROCEDURE FOR THE SEPARATION BY DISTILLATION OF MIXTURES CONTAINING TETRAHYDROFURANE, GAMMA-BUTIROLACTONE AND / OR 1,4-BUTANODIOL.
Cheng et al. Ultrafiltration of triglyceride from biodiesel using the phase diagram of oil–FAME–MeOH
Collura et al. Energy-saving distillation designs in ethanol production
US3151042A (en) Bubble-plate chamber stepped still and the process for using such a still for alcohol or petroleum purification
JPS6013676B2 (en) Gas-liquid contact shelf for distillation of fermented alcohol
WO2022002721A1 (en) Process and apparatus for distillation
US1744421A (en) Fractional distillation
US3174911A (en) Formaldehyde manufacture
US1507108A (en) Process and apparatus for the continuous distillation of alcohol
US3884770A (en) Process for obtaining purified alcohol from fermented mash
JPS581087B2 (en) Ethanol
Madrera et al. Characterization of cider brandy on the basis of aging time
US2095347A (en) Method of and apparatus for preparing in the pure state acetone, ethyl alcohol, and butyl alcohol from watery solutions
JPS6337622B2 (en)
SU889024A1 (en) Extractive rectifcation coloumn
CN103045286A (en) Process method for removing water from diesel or jet fuel by using compound function vacuum tower
RU2756497C2 (en) Method of separating multicomponent mixtures of low-boiling and homogeneous-soluble liquids and a distillation column for its implementation
SU1557156A1 (en) Method of obtaining brandy spirit
JP3648267B2 (en) Alcoholic distillation method
Stampe energy analysis of Small-Scale ethanol Distillation
Douglas et al. Evaluation of nondistillation ethanol-separation processes
US1106832A (en) Continuous distilling apparatus.
JPH0116475B2 (en)
Shriner Cyclic Distillation for Energy Conservation in Spirit Production