JPS6013674B2 - insoluble bioactive - Google Patents

insoluble bioactive

Info

Publication number
JPS6013674B2
JPS6013674B2 JP4409277A JP4409277A JPS6013674B2 JP S6013674 B2 JPS6013674 B2 JP S6013674B2 JP 4409277 A JP4409277 A JP 4409277A JP 4409277 A JP4409277 A JP 4409277A JP S6013674 B2 JPS6013674 B2 JP S6013674B2
Authority
JP
Japan
Prior art keywords
hollow body
active substance
biologically active
diameter
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4409277A
Other languages
Japanese (ja)
Other versions
JPS53130487A (en
Inventor
一 山本
俊策 針江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4409277A priority Critical patent/JPS6013674B2/en
Publication of JPS53130487A publication Critical patent/JPS53130487A/en
Publication of JPS6013674B2 publication Critical patent/JPS6013674B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】 本発明は酵素、微生物等の生物活性物質を、蓮通孔を有
する多孔性物質に包括した不落性生物活性体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an immovable biologically active substance containing biologically active substances such as enzymes and microorganisms in a porous material having pores.

最近、酵素や微生物等の生物活性物質を担体に固定し、
不落化したものを反応に使用し、高価な酵素や微生物等
を有効に利用するための研究が行なわれ、一部では固定
化された酵素が工業的に使用されている。この固定化さ
れた酵素は、酵素をポリマーで包括したものや、酵素を
多孔性アルミナ等の表面に物理的或いは化学的に結合さ
せたものである。
Recently, bioactive substances such as enzymes and microorganisms are immobilized on carriers,
Research has been conducted to effectively utilize expensive enzymes and microorganisms by using immobilized enzymes in reactions, and in some cases, immobilized enzymes are used industrially. This immobilized enzyme is one in which the enzyme is enclosed in a polymer, or one in which the enzyme is physically or chemically bonded to the surface of porous alumina or the like.

しかるに、酵素をポリマーで包括したものは、機械的強
度に劣り、反応塔等に充填するとつぶれて開そ〈したり
、ポリマーが微生物におかされる恐れがあった。又、酵
素を多孔性アルミナ等の表面に吸着させたものは、細孔
内での拡散抵抗が大きく酵素の活性が充分に得られない
と共に、酵素の離脱が起り易かった。又、酵素を多孔性
物質の表面に化学的に結合するものは結合時に酵素の失
活が大きい等の欠点があった。本発明は上述の欠点に鑑
みなされたものであり、生物活性物質が中空体内部に包
括された不溶性生物活性体であって、前記中空体が剛性
を有し、かつ、生物活性物質の大きさより小さい有効径
の蓬通孔を有する多孔性物質で構成され、生物活性物質
が生産物中へ流出するのを防止し、生物活性物質の有効
利用を計ることを目的とする。
However, enzymes encased in polymers have poor mechanical strength, and when packed in a reaction tower, etc., they may collapse or open, or the polymer may be exposed to microorganisms. Furthermore, when enzymes are adsorbed onto the surface of porous alumina or the like, the diffusion resistance within the pores is large, making it difficult to obtain sufficient enzyme activity, and the enzymes tend to separate. Furthermore, methods in which enzymes are chemically bonded to the surface of porous materials have drawbacks such as large deactivation of enzymes during bonding. The present invention has been made in view of the above-mentioned drawbacks, and is an insoluble biologically active substance in which a biologically active substance is enclosed within a hollow body, the hollow body having rigidity, and the size of the biologically active substance being larger than that of the biologically active substance. It is composed of a porous material that has through-holes with a small effective diameter, and its purpose is to prevent biologically active substances from flowing into the product and to ensure effective use of biologically active substances.

本発明に於いて、中空体内部に包括される生物活性物質
は、、酵素、微生物、抗原、抗体、ホルモンであり、こ
の内の二種類以上の混合体であってもよい。又、上記生
物活性物質を包括される中空体は、反応塔等に充填され
た際大きく変形したり、破損したりしない様に剛性を有
し、かつ、生物活性物質が流出しない様に生物活性物質
の大きさより小さい有効径の蓮通孔を有する多孔性物質
で構成されている。
In the present invention, the biologically active substances contained within the hollow body are enzymes, microorganisms, antigens, antibodies, and hormones, and may be a mixture of two or more of these. In addition, the hollow body that encloses the biologically active substance has rigidity so that it will not be significantly deformed or damaged when packed into a reaction tower, etc. It is composed of a porous material having pores with an effective diameter smaller than the size of the material.

か)る中空体としては、セルロース等の有機物で予め所
望形状の核を形成し、この表面に蓮藻±、アルミナ、シ
リカアルミナ、ゼオライト、チタニア、ジルコニア、酸
性白土、シリカゲル、シリコンカーバイト、珪藻±−ペ
ンナイト等を塗布し、次いで焼成する際有機物が燃焼し
て発生するガスによって形成された運通孔を有する無機
質の多孔性中空体等がある。これら中空体の蓮通孔の径
は、無機質のものに於いては焼成条件の選択によって決
められる。
For the hollow body, a core of a desired shape is formed in advance with organic matter such as cellulose, and on the surface of this core, lotus algae, alumina, silica alumina, zeolite, titania, zirconia, acid clay, silica gel, silicon carbide, diatom There are inorganic porous hollow bodies having communication holes formed by gases generated by combustion of organic substances when coating ±-pennite or the like and then firing. The diameter of the hole in these hollow bodies is determined by the selection of firing conditions in the case of inorganic bodies.

しかしながら、この径は、生物活性体の大きさより必ず
しも小さい必要性はなく、生物活性体を包括した際達通
孔内に生物活性体が吸着されるものに於いては、吸着後
実質的に小さな有効径となり、この有効径が生物活性体
よりも小さければよい。例えば、中空体がアルミナで構
成され、包括される生物活性体がグルコース・ィソメラ
ーゼである場合には、グルコース・ィソメラーゼは約1
00Aの大きさがあり、アルミナと吸着性がある為運通
孔内へ吸着するので、アルミナの蓮通孔の孔径が300
Aであっても、グルコース・イソメラーゼを注入した場
合の有効径は100Aとなる。従って孔径が300Aよ
り小さいものであればグルコース・ィソメラーゼは外部
へ流出する薦れがなく「下溶化される。一方、中空体と
生物活性物質との吸着性が弱いものの場合は、生物活性
物質の大きさより小さい孔径の中空体にする必要がある
However, this diameter does not necessarily need to be smaller than the size of the biologically active substance, and in cases where the biologically active substance is adsorbed within the passage hole surrounding the biologically active substance, the diameter is substantially smaller than the size of the biologically active substance after adsorption. It is sufficient that this effective diameter is smaller than the biologically active substance. For example, if the hollow body is composed of alumina and the bioactive substance encapsulated is glucose isomerase, the glucose isomerase is about 1
It has a size of 00A and has adsorption properties with alumina, so it adsorbs into the passage hole, so the diameter of the alumina lotus passage hole is 300A.
Even if it is A, the effective diameter will be 100 A when glucose isomerase is injected. Therefore, if the pore size is smaller than 300A, glucose isomerase will not flow out to the outside and will be "subsolubilized."On the other hand, if the adsorption between the hollow body and the biologically active substance is weak, the biologically active substance will be absorbed into the hollow body. It is necessary to make a hollow body with a pore diameter smaller than the size.

他方、外部にある基質はこの蓮通孔を通り内部の生物活
性物質の作用で反応し、生成物となり再び蓮通孔を通り
外部へ出て行くが蓮通孔の有効経が4・さ過ぎると、基
質や生成物の通過を妨げるので、有効径は生物活性物質
の大きさを越えない範囲で大きいものが好ましい。
On the other hand, the external substrate passes through this lotus hole and reacts with the action of the internal biologically active substance, becoming a product and exiting through the lotus hole again to the outside, but the effective meridian of the lotus hole is too small. The effective diameter is preferably large within a range that does not exceed the size of the biologically active substance, since this prevents the passage of substrates and products.

又、二種類以上の生物活性物質が混在する場合には、小
さい方の生物活性物質より小さい有効径の中空体を用い
る必要がある。
Furthermore, when two or more types of biologically active substances are mixed, it is necessary to use a hollow body with an effective diameter smaller than that of the smaller biologically active substance.

この様な中空体に包括され、不溶化された生物活性体は
、反応塔等に充填され基質を含む溶液と接触し、反応生
成物を生産する工程等に使用されるが、この溶液中には
各種の微生物が混入する事も多く、中空体が無機質の為
、微生物によっておかされる心配はない。
The insolubilized biologically active substance enclosed in such a hollow body is packed into a reaction tower, etc., and comes into contact with a solution containing a substrate, and is used in the process of producing a reaction product. It is often contaminated with various microorganisms, and since the hollow body is inorganic, there is no need to worry about it being contaminated by microorganisms.

又無機質のものは有機質のものより剛性が大きい為肉厚
をより薄くしても充分な機械的強度を有しており蓮通孔
を通過する基質や、生成物の抵抗を小さく出来反応速度
が向上する。
In addition, inorganic materials have greater rigidity than organic materials, so they have sufficient mechanical strength even if the wall thickness is made thinner, and the resistance of the substrate and products passing through the lotus hole can be reduced, and the reaction rate can be increased. improves.

要9こ、無機質の中空体に於いては、生物活性物質に有
害な細菌が付着していても、中空体を加熱滅菌した後生
物活性物質を注入することが出来るので、細菌によって
活性が矢なわれる虜れもない。
Point 9: In an inorganic hollow body, even if harmful bacteria adhere to the biologically active substance, the biologically active substance can be injected after the hollow body is heated and sterilized, so the activity will not be inhibited by the bacteria. I am not a prisoner.

従って、本発明に於いては無機質の中空体が好ましい。Therefore, in the present invention, inorganic hollow bodies are preferred.

本発明に於ける最も好ましい中空体は、焼成によって成
形されたアルミナを主成分とする球状の多孔性中空体で
、孔径が生物活性物質より小さな有孔径のものであり、
かつ生物活性物質を中空体内に注入する為の注入口を少
なくとも1コ有するものである。この注入口より生物活
性物質を注入した後注入口を接着剤等で密封した不溶性
生物活性体は、球状である為機械的強度が強い。中でも
0.5肋〜1仇舷の大きさのものは、複雑な形状の反応
塔などにも容易に充填出釆る外、基質の反応速度を向上
するので好ましい。この理由は定かでないが、中空体が
0.5肋以下のものは、充填層内に閉塞がおこり、基質
を含む溶液が充分に中空体の表面に到達しない為反応速
度が小さくなるものと考えられる。
The most preferable hollow body in the present invention is a spherical porous hollow body mainly composed of alumina formed by firing, and has a pore diameter smaller than that of the biologically active material,
It also has at least one injection port for injecting a biologically active substance into the hollow body. The insoluble bioactive substance obtained by injecting the biologically active substance through the injection port and sealing the injection port with an adhesive or the like has a strong mechanical strength because it is spherical. Among them, those having a size of 0.5 to 1 shipboard are preferred because they can be easily filled and discharged into reaction towers with complex shapes and improve the reaction rate of the substrate. The reason for this is not clear, but it is thought that when the hollow body is less than 0.5 cells, clogging occurs in the packed bed and the solution containing the substrate does not reach the surface of the hollow body sufficiently, resulting in a slow reaction rate. It will be done.

又、中空体が1仇肋以上のものは、充填層内で、溶液と
接する中空体の総表面積が小さくなり、蓮通孔の数が少
なくなって、見かけ上基質或は生成物の抵抗が大きくな
る為反応速度が小さくなるものと考えられる。以上説明
した如く本発明による不溶性生物活性体は、従来のもの
と異り表面に吸着したものでないので生物活性物質が脱
落し流出する塵れもなく、又、基質は中空体の薄い肉厚
を通過すれば液体拡散の為活性物質との接触が極めて良
いため細孔内での反応に比べ反応速度が向上する。
In addition, when the hollow body has one or more ribs, the total surface area of the hollow body in contact with the solution in the packed bed becomes smaller, the number of through holes decreases, and the apparent resistance of the substrate or product decreases. It is thought that because the size increases, the reaction rate decreases. As explained above, the insoluble biologically active substance according to the present invention is not adsorbed to the surface unlike the conventional ones, so there is no dust that is released due to the biologically active substance falling off, and the substrate has a thin wall thickness of the hollow body. If it passes through, contact with the active substance is extremely good due to liquid diffusion, so the reaction rate is improved compared to the reaction inside the pores.

以下本発明の実施例を示す。Examples of the present invention will be shown below.

実施例 1 孔径約250A、外径2柳アルミナを主成分とする球状
の多孔性非中空体を、脱塩水にて洗浄し、更に0.05
モル/そのMg(CH3COO)2と0.01モル/そ
CoC12の水溶液で洗浄し、次いで、充分な量のグル
コース・ィソメラーゼ溶液に24hr浸潰し、非中空体
にグルコース・ィソメラーゼを充分に吸着させた。
Example 1 A spherical porous non-hollow body mainly composed of willow alumina with a pore diameter of approximately 250A and an outer diameter of 2 was washed with demineralized water and further 0.05A in diameter.
It was washed with an aqueous solution of Mg(CH3COO)2 and 0.01 mole/So CoC12, and then soaked in a sufficient amount of glucose isomerase solution for 24 hours to fully adsorb glucose isomerase to the non-hollow body. .

別に孔径約90A、外径2柳、肉厚約0.2脚のアルミ
ナを主成分とする多孔性中空体(0.5柵の注入口1ケ
を有する)を同様に洗浄し、次いでこの中空体内にグル
コース・ィソメラーゼ溶液を注入した後注入口をェポキ
シ樹脂で密封した。
Separately, a porous hollow body mainly made of alumina with a pore diameter of about 90 A, an outer diameter of 2 yam, and a wall thickness of about 0.2 mm (having one injection port of 0.5 mm) was similarly cleaned, and then this hollow body was cleaned in the same manner. After injecting the glucose isomerase solution into the body, the injection port was sealed with epoxy resin.

この非中空体及び中空体をそれぞれ、直径2.5cの、
長さ2.5cmのガラス管に充填し、50%のグルコー
ス溶液をpH7.0、温度6yCにして、これらのガラ
ス管中を50cc/minの割合で通過させ、夫々の通
過液のフラクトース量を測定した。
The non-hollow body and the hollow body each have a diameter of 2.5 c.
Glass tubes with a length of 2.5 cm were filled, and a 50% glucose solution was adjusted to pH 7.0 and temperature to 6yC, and passed through these glass tubes at a rate of 50 cc/min, and the amount of fructose in each passing liquid was determined. It was measured.

これらの結果を表1に示す。These results are shown in Table 1.

表中の数字はグルコースがフラクトースへ変化した割合
であって、中空体による第1日目のものを100とした
相対的なものである。表1 表1から判る如く、中空体内に酵素を注入したものは、
非中空体に酵素を吸着させたものに比べ、フラクトース
への変化量が大きく、活性があり、この活性も30日間
でわずかに低下する程度である。
The numbers in the table are the rate of glucose conversion to fructose, and are relative to the hollow body on the first day as 100. Table 1 As can be seen from Table 1, the enzyme injected into the hollow body is
Compared to the case where the enzyme is adsorbed to a solid body, the amount of change to fructose is large and the enzyme is active, and this activity only slightly decreases after 30 days.

実施例 2 5.1単位/柵のウレアーゼ100の9をディチオトレ
イトール0.0001モル/〆及びエチレンジアミン四
酢酸0.1モル/夕を含む軸7.0の緩衝液で10机【
に稀釈した。
Example 2 5.1 units/9 of 100 units of urease were mixed 10 units in a 7.0 unit buffer containing dithiothreitol 0.0001 mol/unit and ethylenediaminetetraacetic acid 0.1 mol/unit.
diluted to

このウレアーゼを実施例1と同機の方法により、アルミ
ナを主成分とする多孔質(孔径100A)の球状中空体
(肉厚0.2側、直径4肋?)に注入した。
This urease was injected into a porous (pore diameter 100A) spherical hollow body (wall thickness 0.2 side, diameter 4 ribs) mainly composed of alumina by the same method as in Example 1.

この中空体30N固を第1図の如く直径2仇舷でのガラ
ス製の尿素窒素分析器に充填した。
This 30N hollow body was filled into a glass urea nitrogen analyzer with a diameter of 2 m wide as shown in Fig. 1.

この中空体上部から既知の尿素窒素を含む溶液を入れ、
中空体1のウレアーゼによって尿素窒素がアンモニアに
反応するのをアンモニア電極2で検出しメーター3で測
定し検量線を作成した。次いで、血清3泌をエチレンジ
アミン四酢酸0.1モル/〆、緩衝液15の‘で稀釈し
中空体上部から注入し、尿素窒素量を測定した。
A known solution containing urea nitrogen is poured into the upper part of this hollow body.
The reaction of urea nitrogen with ammonia by urease in the hollow body 1 was detected with an ammonia electrode 2 and measured with a meter 3 to create a calibration curve. Next, serum 3 was diluted with 0.1 mol/l of ethylenediaminetetraacetic acid and buffer solution 15' and injected from the upper part of the hollow body, and the amount of urea nitrogen was measured.

同一血清について10回測定した結果、平均値15.1
の‘/d‘、標準偏差0.25物9/ので、バラツキは
少なかった。同様にして尿素窒素30の9/d‘の溶液
について測定した結果、平均値29.8の9′の、標準
偏差0.3父の9/d‘でバラツキが小さかった。次い
でこのウレアーゼの失活性を調べる為、尿素窒素30地
/d‘含有溶液を用い、数日間隔で測定した結果第2表
の通りで、滋日後も充分な活性を有していた。
As a result of measuring the same serum 10 times, the average value was 15.1
'/d', the standard deviation was 0.25 9/, so there was little variation. Similarly, measurements were made on a solution of 9/d' of urea nitrogen 30, and the variation was small with an average value of 9/d' of 29.8 and a standard deviation of 9/d' of 0.3. Next, in order to investigate the deactivation of this urease, measurements were carried out at intervals of several days using a solution containing urea nitrogen 30 di/d', and the results were as shown in Table 2, indicating that sufficient activity was maintained even after several days.

表2 次いでこのウレアーゼの保存性を調べる為4℃に保存し
ておき、中空体に注入直後のものとの活性を比較した結
果、表3の如く6ケ月後でも2%程度の活性低下であっ
た。
Table 2 Next, in order to examine the storage stability of this urease, it was stored at 4°C, and the activity was compared with that immediately after injection into the hollow body.As shown in Table 3, the activity decreased by about 2% even after 6 months. Ta.

表3 実施例 3 ブレビバクテリウムアンモニアゲネスの微生物を3ぴ0
、2曲時間振糧培養し、遠D分離して得られた菌体懸濁
液を実施例1と同様にアルミナを主成分とする球状多孔
質中空体(孔径800A、直径3肌)に封入した。
Table 3 Example 3 Three microorganisms of Brevibacterium ammoniagenes
The cell suspension obtained by shaking culture for 2 hours and centrifugal D separation was encapsulated in a spherical porous hollow body (pore diameter 800 A, diameter 3 skin) containing alumina as the main component in the same manner as in Example 1. did.

この中空体をガラス管につめ、1モル/そのフマル酸ナ
リウム液(pH8.5温度37℃)を上方より注入し、
L−リンゴ酸への変化率を求め微生物の活性を調べた結
果を表4に示す。
This hollow body was packed in a glass tube, and 1 mol/sodium fumarate solution (pH 8.5 temperature 37°C) was injected from above.
Table 4 shows the results of determining the conversion rate to L-malic acid and examining the activity of microorganisms.

表の数字は第1日目のLーリンゴ酸への変化率を100
とした相対的なものである。この結果、中空体に封入し
た微生物は実用に充分耐えることが明らかとなった。
The numbers in the table represent the rate of change to L-malic acid on the first day.
It is a relative thing. As a result, it was revealed that the microorganisms encapsulated in the hollow body were sufficiently durable for practical use.

表4Table 4

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による活性体を用いた分析例である。 1・・・・・・活性体、2・・・・・・アンモニウム電
極、3・・・…メーター。 多ノ図
FIG. 1 is an example of analysis using the active substance according to the present invention. 1... Active substance, 2... Ammonium electrode, 3... Meter. Ta-no-zu

Claims (1)

【特許請求の範囲】 1 生物活性物質が中空体内部に包括された不溶性生物
活性体であって、前記中空体が剛性を有し、かつ、生物
活性物質の大きさより小さい有効径の連通孔を有する無
機質の多孔性物質で構成されていることを特徴とする不
溶性生物活性体。 2 前記中空体は球状である特許請求の範囲第1項記載
の活性体。 3 前記中空体はアルミナである特許請求の範囲第2項
記載の活性体。 4 前記生物活性物質はグルコースイソメラーゼ、ウレ
アーゼ、グルコースオキシダーゼの一種類である特許請
求の範囲第3項記載の活性体。
[Scope of Claims] 1. A biologically active substance is an insoluble biologically active substance enclosed within a hollow body, the hollow body having rigidity and having communicating holes with an effective diameter smaller than the size of the biologically active substance. An insoluble biologically active substance characterized by being composed of an inorganic porous substance. 2. The active substance according to claim 1, wherein the hollow body is spherical. 3. The active body according to claim 2, wherein the hollow body is alumina. 4. The active substance according to claim 3, wherein the biologically active substance is one of glucose isomerase, urease, and glucose oxidase.
JP4409277A 1977-04-19 1977-04-19 insoluble bioactive Expired JPS6013674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4409277A JPS6013674B2 (en) 1977-04-19 1977-04-19 insoluble bioactive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4409277A JPS6013674B2 (en) 1977-04-19 1977-04-19 insoluble bioactive

Publications (2)

Publication Number Publication Date
JPS53130487A JPS53130487A (en) 1978-11-14
JPS6013674B2 true JPS6013674B2 (en) 1985-04-09

Family

ID=12681969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4409277A Expired JPS6013674B2 (en) 1977-04-19 1977-04-19 insoluble bioactive

Country Status (1)

Country Link
JP (1) JPS6013674B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2578448B1 (en) * 1985-01-31 1990-11-16 Manville Corp PROCESS FOR PRODUCING CATALYST SUPPORTS AND PRODUCTS OBTAINED

Also Published As

Publication number Publication date
JPS53130487A (en) 1978-11-14

Similar Documents

Publication Publication Date Title
US5300564A (en) Doped sol-gel glasses for obtaining chemical interactions
US3841971A (en) Synergistic enzymes adsorbed within porous inorganic carriers
JPS6029475B2 (en) Immobilized enzyme membrane and its manufacturing method
US3875008A (en) Hollow filament containing enzymes and/or microorganisms
Dickensheets et al. Characteristics of yeast invertase immobilized on porous cellulose beads
US4149936A (en) High surface low volume fungal biomass composite
US4287305A (en) Microorganism immobilization
JPS6215198B2 (en)
CN114395549A (en) Enzyme in-situ packaging method based on hollow covalent organic framework material
US4169765A (en) Apparatus for the quantitative determination of α-amylase
US7264962B1 (en) Enzymatic cascade bioreactor
JPS6013674B2 (en) insoluble bioactive
JPS59164953A (en) Immobilized enzyme film and manufacture thereof
CN209143799U (en) A kind of magnetic bio-carrier material
US4434229A (en) Enzyme immobilization with an immobilizing reagent in vapor phase
Yoshioka et al. Studies of polystyrene-based ion-exchange fiber. V. Immobilization of microorganism cells by adsorption on a novel fiber-form anion exchanger.
JPS6098985A (en) Preparation of immobilized mold of microorganism for enzyme
JPH0138524Y2 (en)
WO1989008705A1 (en) Supports for proteins and amino acids
CN107988196A (en) A kind of preparation method of the carboxyl carbon nanotubes immobilization laccase coated with polymethyl methacrylate
JPS6043382A (en) Immobilized microorganism and its preparation
JPH0518377B2 (en)
CN102093995A (en) Preparation method of pH-responsive biological microcapsule
JPS6326992B2 (en)
JPS6349996B2 (en)