JPS6013672B2 - Immobilized protease and its production method - Google Patents

Immobilized protease and its production method

Info

Publication number
JPS6013672B2
JPS6013672B2 JP8970979A JP8970979A JPS6013672B2 JP S6013672 B2 JPS6013672 B2 JP S6013672B2 JP 8970979 A JP8970979 A JP 8970979A JP 8970979 A JP8970979 A JP 8970979A JP S6013672 B2 JPS6013672 B2 JP S6013672B2
Authority
JP
Japan
Prior art keywords
protease
aqueous solution
fibroin
weight
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8970979A
Other languages
Japanese (ja)
Other versions
JPS5615687A (en
Inventor
博 中山
幸雄 堀川
哲朗 太田
研一 大坪
紘 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP8970979A priority Critical patent/JPS6013672B2/en
Publication of JPS5615687A publication Critical patent/JPS5615687A/en
Publication of JPS6013672B2 publication Critical patent/JPS6013672B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は固定化プロテアーゼ及びその製造法に関する。[Detailed description of the invention] The present invention relates to an immobilized protease and a method for producing the same.

酵素は、種々の化学反応に対して基質特異性が高く、又
反応条件が温和で且つ反応効率も高く、極めて有用な触
媒として現在食品工業、医薬品工業界、化粧品工業界に
広く利用されている。しかしながら一般に酵素は水溶性
であるため、使用后の回収が困難であり、単に不経済で
あるのみならず、反応生成物との分離が難しい欠点を有
している。この背景の下に酵素の各種挺体等への固定化
が多く提案されてきた。
Enzymes have high substrate specificity for various chemical reactions, mild reaction conditions, and high reaction efficiency, and are currently widely used in the food, pharmaceutical, and cosmetic industries as extremely useful catalysts. . However, since enzymes are generally water-soluble, they are difficult to recover after use, making them not only uneconomical but also difficult to separate from reaction products. Against this background, many proposals have been made to immobilize enzymes on various types of rods.

例えばガラスビーズ担体への共有結合、イオン結合によ
る酵素の固定化をはじめ、ポリアクリルアミドゲル体へ
の酵素の包括法等が広く研究され、又一部実用化されて
いる。プロテアーゼに就いても同様であるが特に医薬品
、食品及び化隣品等にプロテアーゼを使用するに際し、
熱安定性、pH安定性、経時安定性等に優れたものに固
定化すること、及び得られたものは当然人体に悪影響を
及ぼさないことが望まれている。しかしながら、種々の
化学反応を用いてプロテアーゼを固定化した場合、酵素
が失活したり、保存又は使用時に架橋剤が分解し害を及
ぼすことがある。
For example, methods such as immobilization of enzymes by covalent bonding or ionic bonding to glass bead carriers, methods of entrapping enzymes in polyacrylamide gel bodies, etc. have been widely studied, and some have been put into practical use. The same applies to proteases, but especially when using proteases in medicines, foods, chemical products, etc.
It is desired that the immobilization be performed on something with excellent thermal stability, pH stability, stability over time, etc., and that the obtained product should naturally have no adverse effects on the human body. However, when protease is immobilized using various chemical reactions, the enzyme may be deactivated or the crosslinking agent may degrade during storage or use, causing harm.

又、ポリアクリルアミドを用いてプロテアーゼを包括す
る方法では、一般に酵素を安定に固定化出来るが、ゲル
強度並びに酵素の活性保持性が充分でなく、薬品、食品
等に使用した場合、保存中に毒性の高いアクリルアミド
モノマー等が生成するという欠点がある。特開昭51−
67785号公報には酵素を絹糸蛋白質に固定させる不
溶化酵素の製造法が記載されており、吐糸直前の蚕より
取り出された絹糸線を牽引して得られる繊維又は蚕の口
から吐出直後の絹糸を酵素溶液中をくぐらせる方法が開
示されているが、斯かる方法では繊維又はフィルムに酵
素を固定せしめるため、酵素の含有量を高くすることは
できず、又その安定性も悪い。
In addition, in the method of enclosing protease using polyacrylamide, enzymes can generally be immobilized stably, but the gel strength and activity retention of the enzyme are insufficient, and when used in medicines, foods, etc., toxicity may occur during storage. The disadvantage is that acrylamide monomers with high levels of oxidation are produced. Japanese Patent Application Publication No. 1973-
Publication No. 67785 describes a method for producing an insolubilized enzyme in which enzymes are immobilized on silk proteins, and fibers obtained by pulling silk threads taken out from silkworms immediately before spinning or silk threads immediately after being discharged from the mouth of silkworms. A method has been disclosed in which the fibers are passed through an enzyme solution, but in this method, the enzyme is immobilized on the fiber or film, so the enzyme content cannot be increased and the stability is also poor.

更に、形態も繊維又はフィルム状のため自らその用途も
限定されるし、しかもセリシンを含んでいる為腐敗し易
く保存性に欠ける。更に又、本発明者等の追試によると
、この方法により絹糸にプロテアーゼを固定化すること
は実質的に不可能であった。これは非晶部に付着したプ
ロテアーゼが絹蛋白質を分解し、水洗工程で流出した為
と考えられ、活性は発現しなかつた。又、特開昭52一
57392号公報にはフィプロィン溶液に酵素を添加混
合したのち製膜し、次いでこの膜を不溶化処理すること
により、固形フィブロィン中に酵素を含有させてなる固
定イ坊酵素を製造することが記載されているが、前者と
同機膜のため用途は限定されざるを得ないばかりか、こ
の方法によりプロテアーゼを固定化する場合添加より製
膜に至る間に蛋白分解が進行する為プロテアーゼが固定
化されたまともな際を得ることは不可能である。
Furthermore, since it is in the form of a fiber or film, its uses are limited, and since it contains sericin, it is easily putrefied and lacks preservability. Furthermore, according to additional tests conducted by the present inventors, it was virtually impossible to immobilize protease on silk thread using this method. This is thought to be because the protease attached to the amorphous part degraded the silk protein and was washed out during the washing process, and no activity was expressed. Furthermore, Japanese Patent Application Laid-Open No. 52-57392 discloses that an enzyme is added to a fiproin solution and then mixed to form a membrane, and then this membrane is insolubilized to obtain an immobilized enzyme containing the enzyme in solid fibroin. Although it is described that it can be manufactured, not only is its use limited because it is the same membrane as the former, but also because when protease is immobilized using this method, proteolysis progresses from the time of addition to the time of membrane formation. It is not possible to obtain a decent sample of immobilized protease.

本発明者等は従来の欠陥を改良し安定性に優れた固定化
プロテァーゼを得べく鋭意研究の結果本発明を完成した
ものである。本発明の目的は、安定性、特に熱安定性、
餌安定性及び経時安定性等に優れた固定化プロテアーゼ
を提供するにある。
The present inventors completed the present invention as a result of intensive research aimed at improving conventional defects and obtaining an immobilized protease with excellent stability. The object of the present invention is to improve stability, especially thermal stability,
An object of the present invention is to provide an immobilized protease with excellent feed stability and stability over time.

他の目的は安定性、特に熱安定性、pH安定性及び経時
安定性等に優れた固定化ブロテアーゼを工業的容易且つ
安価に製造する方法を提供するにある。本発明はフイブ
ロィン中にアルカリプロテアーゼ及び/又は中性プロテ
アーゼを0.1〜2の重量%含有する固定化プロテアー
ゼであり、本発明方法は恥3〜6のフイブロイン水溶液
とpH3〜5.5のアルカリプロテアーゼ及び/又は中
性プロテアーゼの水溶液とを混合した後、無機塩及び/
又は有機塩を用いてフィプロィンと前記プロテアーゼと
を塩折沈澱せしめ、次いで得られた沈澱を水洗後乾燥す
ることを特徴とする。
Another object of the present invention is to provide a method for industrially easily and inexpensively producing an immobilized protease having excellent stability, particularly thermal stability, pH stability, and stability over time. The present invention is an immobilized protease containing 0.1 to 2% by weight of alkaline protease and/or neutral protease in fibroin. After mixing with an aqueous solution of protease and/or neutral protease, inorganic salt and/or
Alternatively, the method is characterized in that fiproin and the protease are precipitated by salt precipitation using an organic salt, and then the obtained precipitate is washed with water and then dried.

本発明の固定化プロテアーゼは、酵素を0.1〜2の重
量%、好ましくは1〜15重量%、特に好ましくは2〜
10重量%含有する。
The immobilized protease of the present invention contains 0.1 to 2% by weight of the enzyme, preferably 1 to 15% by weight, particularly preferably 2 to 2% by weight.
Contains 10% by weight.

酵素が0.1重量%未満の場合、得られた固定イ技酵素
の酵素活性能が低く実用に乏しい。一方2の重量%を超
えると、酵素活性館は飽和し、使用時に酵素の溶出が起
こり易い上に経済性が劣る。本発明に適用するアルカリ
プロテアーゼ及び/又は中性プロテアーゼの種類は特に
限定されず、例えばトリブシン、キモトリプシン、ズブ
チリシンBPN、アルベルギルスアルカリプロテアーゼ
、プラスミン、ストレプトコツカスベプチダーゼA、キ
モパパイン、パパイソ、ブロメライン、フィシン等があ
げられる。
When the amount of enzyme is less than 0.1% by weight, the obtained immobilized enzyme has low enzymatic activity and is of little practical use. On the other hand, if the amount exceeds 2% by weight, the enzyme activity chamber becomes saturated, and the enzyme is likely to be eluted during use, and the cost efficiency is poor. The type of alkaline protease and/or neutral protease applied to the present invention is not particularly limited, and examples include tribucin, chymotrypsin, subtilisin BPN, Albergillus alkaline protease, plasmin, Streptococcus beptidase A, chymopapain, papiso, bromelain, ficin, etc. can be given.

これらのアルカリブロテアーゼ及び中性プロテァーゼは
2種以上を混合して使用することもできる。本発明方法
に適用するフィブロ.ィン水溶液は生糸、まゆ、生糸暦
、キモ、ビス、ブーレット等の絹原料を常法に従い、セ
リシンを精練除去したものをフィプロィンを溶解し得る
例えばアルカリ金属塩又はアルカリ士類金属塩等の水溶
液又はシュバィッアー試薬(銅−アンモニア液)等に溶
解せしめたもの、或いは更にそれを透析脱塩して得られ
たものが挙げられるが、特に透析脱塩したものが好まし
い。
Two or more types of these alkaline proteases and neutral proteases can also be used in combination. Fibro to be applied to the method of the present invention. The fiprone aqueous solution is obtained by scouring and removing sericin from silk raw materials such as raw silk, cocoon, raw silk calendar, kimo, bis, and boulet according to a conventional method, and then using an aqueous solution containing an alkali metal salt or an alkali metal salt capable of dissolving fiprone. Alternatively, it may be dissolved in Schwerer's reagent (copper-ammonia solution) or the like, or it may be further desalted by dialysis, and those obtained by desalting by dialysis are particularly preferred.

前記のアルカリ金属塩及びアルカリ士類金属塩としては
、Licl、LIBr、LINO3、M舞12、MgB
r2、Mg(N03)2、ZM12、Zn(N03)2
等が使用されるが、溶解性並びにフィブロィンの分子量
を出来る限り高く保っためにCac12又はCa(N0
3)2の使用が好ましい。
Examples of the alkali metal salts and alkali metal salts include Licl, LIBr, LINO3, Mmai12, MgB
r2, Mg(N03)2, ZM12, Zn(N03)2
In order to keep the solubility and molecular weight of fibroin as high as possible, Cac12 or Ca(NO
3) Use of 2 is preferred.

又、該金属塩濃度は5〜8の重量%、好ましくは20〜
7値重量%、特に好ましくは40〜6の重量%である。
又溶解性をより一層良好ならしめる為に、該水溶液にメ
チルアルコール、エチルアルコール、プロピルァルコー
ル等のアルコール類の添加が好ましい。
Further, the metal salt concentration is 5 to 8% by weight, preferably 20 to 8% by weight.
7% by weight, particularly preferably 40-6% by weight.
In order to further improve the solubility, it is preferable to add alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, etc. to the aqueous solution.

添加時期は、絹の溶解の前又は途中が良く、又添加量は
該金属塩溶液に対し、20〜6の重量%、好ましくは2
5〜5の重量%である。フィプロィン水溶液として前記
の水溶液にフィブロィンを溶解したものをそのまま用い
ても良いが固定化プロテアーゼの酵素活性能をより高く
する、あるいは塩折沈澱時に水不溶性塩の生成を防ぐ等
の観点から、好ましくはセ。
The timing of addition is preferably before or during the dissolution of silk, and the amount added is 20 to 6% by weight, preferably 2% by weight, based on the metal salt solution.
5-5% by weight. Fibroin dissolved in the above-mentioned aqueous solution may be used as it is as the fibroin aqueous solution, but it is preferable from the viewpoint of increasing the enzymatic activity of the immobilized protease or preventing the formation of water-insoluble salts during salt precipitation. Se.

ファン膜に代表される透析膜や中空繊維を用いた透析器
により前記塩類を除去したものを使用する。フイブ。イ
ン水溶液の濃度は通常2〜2の重量%、好ましくは3〜
15重量%、特に好ましくは4〜1の重量%に調整する
。一方アルカリプロテアーゼ及び中性プロテアーゼ等の
酵素水溶液の酵素濃度は通常0.5〜3の重量%、好ま
しくは1〜2の重量%、特に好ましくは5〜15重量%
に調整する。
The salts are removed using a dialysis membrane such as a fan membrane or a dialysis machine using hollow fibers. Huib. The concentration of the in aqueous solution is usually 2 to 2% by weight, preferably 3 to 2% by weight.
It is adjusted to 15% by weight, particularly preferably from 4 to 1% by weight. On the other hand, the enzyme concentration of the aqueous solution of enzymes such as alkaline protease and neutral protease is usually 0.5 to 3% by weight, preferably 1 to 2% by weight, particularly preferably 5 to 15% by weight.
Adjust to.

フィブロィン水溶液と酵素水溶液を何らの調整もないこ
混合すれば酵素の量による数秒ないし少なくとも数十秒
以内にフィプロィンが著しく分解され、実質的に工業的
には固定イ捉酵素を得ることができない。
If an aqueous fibroin solution and an aqueous enzyme solution are mixed without any adjustment, the fibroin will be significantly decomposed within several seconds or at least several tens of seconds depending on the amount of enzyme, and it is virtually impossible to obtain an immobilized captured enzyme on an industrial scale.

従って安定して固定化酵素を得るためには一時的に酵素
活性を低減せしめ、フィプロィンの分解をできる限り抑
えねばならない。そのためには酵素水溶液及び酵素水溶
液とフィブロィン水溶液を混合した液のpHを3〜5.
ふ好ましくはpH3.5〜5.0に調整しなくてはなら
ない。PH3未満ではプロテアーゼが短時間に不可逆的
に失活し、得られた固定化プロテアーゼは酵素活性を発
現しない。又pH6を超えると混合時に急速にフィブロ
ィンが分解され実質的にプロテアーゼをフィブロインで
固定化し得ない。フィブロィン水溶液の舟は特に限定さ
れないが酵素水溶液と混合した場合にpH調整すること
なくpH3.0〜5.5の範囲になるものがよく、通常
餌3.0〜6.0で略酵素水溶液と同程度のものが使用
される。酵素水溶液のpHは使用する酵素の種類により
斑3.0〜5.5の範囲において最も安定して製造でき
る条件を選択すればよい。又、酵素水溶液、又は酵素水
溶液とフィブロィン水溶液の混合液を斑3.0〜5.5
に調整して長時間放置すればフィブロィンはゲル化し、
酵素は徐々に不可逆的に失活するので、少なくとも2〜
3時間以内に塩折沈澱させることが好ましい。フィブロ
ィン水溶液、酵素水溶液及びそれらの混合液の餌調整に
は塩酸、硫酸等の無機酸、あるいは酢酸、クエン酸等の
有機酸、又はリン酸系、クエン酸系、酢酸系の緩衝水溶
等を用いることができる。フィブロィン水溶液と酵素水
溶液の混合は適当な蝿洋装贋により両者が均一になるま
で蝿群混合する。混合する際より操作を容易にかつ安定
して固定化酵素を製造するために液温を低温下、例えば
0〜1テ0で行なってもよい。得られた酵素含有フィブ
ロィン水溶液を無機塩及び/又は有機塩によりフイブロ
ィンと酵素を塩折沈澱せしめる。
Therefore, in order to stably obtain an immobilized enzyme, it is necessary to temporarily reduce the enzyme activity and suppress the decomposition of fiproin as much as possible. To do this, adjust the pH of the enzyme aqueous solution and the mixture of the enzyme aqueous solution and the fibroin aqueous solution to 3 to 5.
The pH should preferably be adjusted to between 3.5 and 5.0. At pH below 3, the protease is irreversibly inactivated in a short period of time, and the obtained immobilized protease does not express enzyme activity. Moreover, when the pH exceeds 6, fibroin is rapidly decomposed during mixing, making it virtually impossible to immobilize protease with fibroin. The fibroin aqueous solution is not particularly limited, but it is best to have a pH in the range of 3.0 to 5.5 without adjusting the pH when mixed with the enzyme aqueous solution. The same level is used. The pH of the enzyme aqueous solution may be selected from the range of 3.0 to 5.5, depending on the type of enzyme used, to ensure the most stable production. In addition, an enzyme aqueous solution or a mixture of an enzyme aqueous solution and a fibroin aqueous solution can be applied to a spot of 3.0 to 5.5.
If you adjust it and leave it for a long time, the fibroin will gel.
The enzyme gradually and irreversibly deactivates, so at least 2~
Preferably, the salt precipitation is carried out within 3 hours. Inorganic acids such as hydrochloric acid and sulfuric acid, organic acids such as acetic acid and citric acid, or aqueous buffer solutions of phosphoric acid, citric acid, and acetic acid are used to prepare fibroin aqueous solutions, enzyme solutions, and mixtures thereof. be able to. The fibroin aqueous solution and the enzyme aqueous solution are mixed with a fly group using a suitable fly-dressing device until both become uniform. In order to manufacture the immobilized enzyme more easily and stably during mixing, the solution temperature may be lowered, for example, from 0 to 1°. The obtained enzyme-containing fibroin aqueous solution is salted to precipitate the fibroin and enzyme using an inorganic salt and/or an organic salt.

無機塩及び/又は有機塩の種類は蛋白を沈澱せしめ得る
ものならば何でも良く、例えば硫酸アンモニウム、硫酸
ナトリウム、硫酸マグネシウム、塩化ナトリウム、塩化
カリウム、硝酸ナトリウム、リン酸ナトリウム、酢酸ナ
トリウム、クエン酸ナトリウム等が挙げられるが、酵素
活性能の保持あるいは経済性、操作性の観点から硫酸ア
ンモニウム、クエン酸ナトリウムが特に好ましい。塩析
沈澱する方法は塩を固体のまま酵素含有フイブロィン水
溶液中に投入混合する、あるいは塩水溶液にして混合す
ることにより行なう。
Any type of inorganic salt and/or organic salt may be used as long as it can precipitate proteins, such as ammonium sulfate, sodium sulfate, magnesium sulfate, sodium chloride, potassium chloride, sodium nitrate, sodium phosphate, sodium acetate, sodium citrate, etc. Ammonium sulfate and sodium citrate are particularly preferred from the viewpoints of retaining enzyme activity, economy, and operability. The salting out precipitation method is carried out by adding the salt as a solid to an aqueous solution of enzyme-containing fibroin, or by mixing the salt in an aqueous salt solution.

無機塩及び/又は有機塩はフィブロィン及び酵素が塩折
沈澱するに足る量であれば良いが、通常各塩類の25〜
70重量%飽和で行なう。次いで、前記塩類を水洗によ
り除去するが水洗は2回以上、通常は4回程度行なう。
The inorganic salt and/or organic salt may be used in an amount sufficient to precipitate fibroin and enzymes, but usually 25 to 25% of each salt is used.
Perform at 70% saturation by weight. Next, the salts are removed by washing with water, which is carried out two or more times, usually about four times.

水洗中にプロテアーゼによるフィブロィンの分解の恐れ
がある場合には第1回目の水洗水のpHを3〜6、好ま
しくは柵3.5〜5.0に調整すればよい。水洗後、乾
燥して固定化プロテアーゼを得るが、乾燥はプロテアー
ゼの不可逆的失活を防止するために6ぴ0以下で常圧又
は減圧下に行なうことができる。得られた乾燥固定プロ
テアーゼは目的に応じ、粉末あるいは粒状等に成型する
ことができる。本発明により得られた固定式酵素は非常
に高い活性収率を有し、水中における連続使用において
も高い活性を維持し、酵素が流出することはほとんど認
められない。
If there is a possibility that fibroin may be decomposed by protease during washing, the pH of the first washing water may be adjusted to 3 to 6, preferably 3.5 to 5.0. After washing with water, the immobilized protease is obtained by drying. Drying can be carried out under normal pressure or reduced pressure at a temperature of 60 mm or less to prevent irreversible deactivation of the protease. The obtained dried and fixed protease can be shaped into powder, granules, etc. depending on the purpose. The immobilized enzyme obtained according to the present invention has a very high activity yield, maintains high activity even during continuous use in water, and hardly any enzyme is observed to leak out.

又本発明の固定化プロテアーゼは高温下、磁広いpHの
範囲、あるいは各種媒体中等において元の酵素よりはる
かに高い安定性を示す。
Furthermore, the immobilized protease of the present invention exhibits much higher stability than the original enzyme at high temperatures, in a wide pH range, or in various media.

その上生体に無害な蛋白のみからなる利点のため医薬、
食品及び化粧品等の分野に有効に利用することができる
。以下実施例により本発明方法を詳述する。実施例 1
絹精紡肩(ブーレット)lk9をマルセル石けん0.5
重量%水溶液30そ中に浸債し80℃で1時間燈杵混合
し、実質的にセリシン及び油分を完全に除き、充分に水
洗後70qoで乾燥した。
Moreover, because of the advantage that it consists only of proteins that are harmless to living organisms,
It can be effectively used in fields such as food and cosmetics. The method of the present invention will be explained in detail below with reference to Examples. Example 1
Silk spun shoulder (boulet) lk9 Marcel soap 0.5
The mixture was immersed in a 30 wt % aqueous solution and mixed with a pestle at 80° C. for 1 hour to substantially completely remove sericin and oil, thoroughly washed with water, and then dried at 70 qo.

次いで65重量%の塩化カルシウム水溶液4k9とエチ
ルアルコール1.6k9の入ったニーダー中に前記精練
ずみのブーレツト0.8k9を投入し、80〜85qo
で1時間燈梓溶解した。得られた粘穂な溶解液に80q
oの温水3.2kgを加え希釈した。該溶解液のフィプ
ロィン濃度は85重量%であった。更に溶解液の一部を
再生セルロース系中空繊維を用いた透析装置によりフィ
プロィン透析液を得た。該透析液のフィプロィン濃度は
5.5重量%であった。前記溶解液及び透析液を5規定
塩酸により柵4.5となしフィブロイン水溶液とした。
一方、アルカリブロテアーゼとして長瀬産業社製ビオプ
ラーゼConc(150000PUN′夕)を用いアル
カリプロテアーゼの濃度が1の重量%となるように水に
溶解した後、5規定塩酸によりpH4.2に調整した酵
素水溶液を得た。
Next, 0.8k9 of the refined boulet was put into a kneader containing 4k9 of a 65% by weight calcium chloride aqueous solution and 1.6k9 of ethyl alcohol, and 80 to 85qo
Dissolved the tozusa for 1 hour. 80q to the resulting sticky solution
3.2 kg of warm water was added to dilute the mixture. The fiprone concentration of the solution was 85% by weight. Furthermore, a portion of the solution was subjected to a dialysis device using regenerated cellulose-based hollow fibers to obtain a fiprone dialysate. The fiprone concentration of the dialysate was 5.5% by weight. The solution and dialysate were diluted with 5N hydrochloric acid to obtain a fibroin aqueous solution.
On the other hand, as alkaline protease, Bioplase Conc (150000PUN') manufactured by Nagase Sangyo Co., Ltd. was dissolved in water so that the concentration of alkaline protease was 1% by weight, and then the enzyme aqueous solution was adjusted to pH 4.2 with 5N hydrochloric acid. I got it.

液温5℃の前記フィブロィン水溶液500のこ第1表に
示すような量の前記酵素水溶液を添加し、充分に混合し
た。
To 500 grams of the aqueous fibroin solution at a liquid temperature of 5° C., the aqueous enzyme solution in the amount shown in Table 1 was added and thoroughly mixed.

混合液の舟は4.3〜4.5であった。次に混合液を1
その飽和硫酸アンモニウム水溶液中に投入混合し、フィ
プロィンとアルカリプロテアーゼを沈殿させた。該沈殿
物を炉別後500ccの水で5回繰り返し洗浄し、次い
で40qoにて15時間乾燥し、ジェットミルにて10
〜6叱の粉末状固定化プロテアーゼを得た。○’酵素活
性 Pートシルアルギニンメチルエステル 0.033M水溶液(pH8)中に適当量の固定化フ。
The value of the mixed solution was 4.3 to 4.5. Next, add 1 part of the mixture
The mixture was poured into the saturated ammonium sulfate aqueous solution and mixed to precipitate fiproin and alkaline protease. After the precipitate was separated in a furnace, it was repeatedly washed 5 times with 500 cc of water, then dried at 40 qo for 15 hours, and dried in a jet mill for 10
A powdered immobilized protease of ~60% was obtained. ○' Enzyme activity P Tosyl arginine methyl ester 0.033M aqueous solution (pH 8) with an appropriate amount of immobilization.

oテァーゼを加え、30℃で3粉ふ間反応した後固定イ
控酵素を炉則した炉液中のメタノールをガスクロマトグ
ラフイにより定量する。固定化プロテアーゼによるメタ
ノール生成量(の活性収率(%)=初期添加量に相当す
るプ。
After adding o-tase and reacting at 30°C for 3 minutes, the methanol in the reaction mixture was determined using gas chromatography. The amount of methanol produced by immobilized protease (activity yield (%) = the amount of methanol produced corresponding to the initial addition amount).

テァーゼによるメタノール生成量(の×100固定化酵
糸中海隆発現プロテアーゼ量凶)xlooプロテアーゼ
添加量(の‘2} 固定化プロテアーゼ量 塩析に用いた硫酸アンモニウム水溶液及び水※※ 洗炉
液の酵素活性の測定から流出プロテアーゼ量を算出した
Amount of methanol produced by thiase (100 times the amount of protease expressed by Takashi Nakaumi in the immobilized fermentation yarn) The amount of effluent protease was calculated from the measurement.

固定化率(%)=添加プロテァーゼ(の−流出プロテァ
ーゼ量(のxloo添加プロテアーゼ量(の‘3丁 熱
安定性 8000の熱風乾燥機中で固定化プロテアーゼを1週間
保存した後、酵素活性を測定。
Immobilization rate (%) = added protease (- amount of effluent protease () .

活性残存率く%):熱宗処処理鐘拳の活蓮蓮性収溝率費
髪菱)X・oo■ プロテアーゼの水流出内径2伽長さ
20仇のカラム中に固定化プロテアーゼ10夕を詰め込
み、上部より2泌′minの割合で水を通過せしめ連続
1週間使用した後固定化プロテアーゼを取り出し、酵素
活性を測定した。
Residual activity rate (%): Active lotus retention rate of heat-treated bell fists) The tube was packed, water was allowed to pass through the top at a rate of 2 min, and after continuous use for one week, the immobilized protease was taken out and the enzyme activity was measured.

プロテアーゼ流出率(%)=三三XI。Protease efflux rate (%) = Sansan XI.

〇A:禾処理固定化プロテアーゼ活性収率(%)* B
:流水処理 〃 (%){5ー プ
ロテアーゼ含有量固定プロテアーゼ中のプロテアーゼ含
有量は次式により算出した。
〇A: Yield of immobilized protease activity (%) * B
: Flowing water treatment 〃 (%) {5- Protease content The protease content in the fixed protease was calculated using the following formula.

プ。P.

テァーゼ含有量(%)=プロテァーゼ添加量(のx固定
化率虹%2固定化プロテアーゼ収量(の第1表 第1表実験No.{1}の比較例の如くプロテァーゼ含
有量が0.1重量%未満の場合、活性収率は低く「固定
化プロテアーゼ単位重量当りの酵素活性が著しく低く、
実用上使用が困難であった。
Table 1 Table 1 Table 1 Protease content (%) = amount of protease added (x immobilization rate rainbow %2 yield of immobilized protease) %, the activity yield is low and the enzyme activity per unit weight of immobilized protease is extremely low.
It was difficult to use in practice.

又実験No.【9}あるいはNo.働の比較例の如くプ
ロテアーゼ含有量が20重量%を超えると活性収率が低
い上に、熱安定性プロテアーゼの水流出率も劣化してく
る。更に含有量を上げるためには大量のプロテァーゼを
用いねばならないが、固定化率が急激に低下するため経
済的に非常に不利であった。一方本発明方法によって作
製した固定化プロテァーゼは何れも固定化率、活性収率
が高く、水へのプロテァーゼの流出も至って少なく、そ
の上固定化しない元のプロテアーゼの耐熱活性残存率が
47.5%に比較してはるかに高い安定性を示した。実
施例 2実施例1と同様にして得られた5.3重量%フ
ィブロィン透析液1〆及びビオプラーゼ・Conclo
重量%水溶液50夕を予め5℃とし、各々を2の重量%
クエン酸水溶液を用いて第2表に示したpH値に設定し
た。
Also, experiment no. [9} Or No. When the protease content exceeds 20% by weight, as in the comparative example, the activity yield is low, and the water efflux rate of the thermostable protease also deteriorates. In order to further increase the content, a large amount of protease must be used, but this is economically very disadvantageous because the immobilization rate drops rapidly. On the other hand, all of the immobilized proteases produced by the method of the present invention have high immobilization rates and high activity yields, and there is very little leakage of protease into water.Moreover, the heat-resistant activity residual rate of the original protease that is not immobilized is 47.5. % showed much higher stability. Example 2 5.3% by weight fibroin dialysate 1 obtained in the same manner as in Example 1 and bioplase/Conclo
50 wt % aqueous solutions were brought to 5°C in advance, and each was 2 wt %.
The pH values shown in Table 2 were set using an aqueous citric acid solution.

約5分間放置した後、両者を混合し、約3分間、鷹拝し
た。続いて、これを5℃の66重量%飽和硫酸アンモニ
ウム水溶液2そ中の蝿拝しながら添加した。得られた沈
澱を炉別採取し、pH突4.5の0.01Mクエン酸緩
衝液1そを用いて洗浄し、更に水1ぐずつで4回洗浄し
た後、風乾した。これをジェット・ミル粉砕し粒径10
〜50ミクロンの粉末とした。これ等の粉末に就き、収
率及び実施例1に述べた方法で、固定化率、活性収率及
びカラム充填水流適法によるプロテアーゼ流出率を測定
した。
After leaving for about 5 minutes, both were mixed and stirred for about 3 minutes. Subsequently, this was added to a 66% by weight saturated aqueous ammonium sulfate solution at 5° C. while stirring. The resulting precipitate was collected in a furnace, washed with one portion of 0.01M citric acid buffer having a pH of 4.5, and further washed four times with one portion of water, and then air-dried. This was pulverized with a jet mill and the particle size was 10
~50 micron powder. For these powders, the yield, immobilization rate, activity yield, and protease efflux rate using the column filling water flow method were measured using the methods described in Example 1.

結果を第2表に示す。第2表 第2表より酸素水溶液及びこれをフィブロィン水溶液と
混合した際のpH値を3〜5.5の範囲内にした場合は
、収率、固定化率共に良好、且つ活性収率の高い固定化
ブロテアーゼを得ることが出来た。
The results are shown in Table 2. Table 2 From Table 2, when the oxygen aqueous solution and the pH value when mixed with the fibroin aqueous solution are within the range of 3 to 5.5, both the yield and the immobilization rate are good, and the activity yield is high. We were able to obtain immobilized protease.

又、流通テストによるプロテアーゼの流出も実質上ない
。しかし、実験No.(11)のように酵素溶液のpH
値が低いと、酵素は不可逆的に失活し、活性収率は殆ん
ど発現しない。又酵素が失活した為固定化率は求められ
なかった。又実験No.(15)のように混合した際の
PH値の高い場合、フィブロィンの分解が急速に進行し
、硫酸アンモニウム水溶液に添加しても細い粒子となっ
て分散する状態となり収率は著しく低くなる。
Furthermore, there is virtually no leakage of protease in distribution tests. However, experiment no. The pH of the enzyme solution as in (11)
If the value is low, the enzyme will be irreversibly inactivated and little activity yield will occur. Furthermore, the immobilization rate could not be determined because the enzyme was deactivated. Also, experiment no. When the pH value at the time of mixing is high as in (15), the decomposition of fibroin proceeds rapidly, and even when added to the ammonium sulfate aqueous solution, it becomes fine particles and becomes dispersed, resulting in a significantly low yield.

又、固定化率、活性収率共に低く、実用に通さない。実
施例 3 第3表に示す各種の無機塩又は有機塩を用い、フィプロ
ィン透析水溶液500夕とプロテアーゼ水溶液20夕を
用いる以外はすべて実施例1と同機の手法により固定化
プロテアーゼを得た。
In addition, both the immobilization rate and the activity yield are low, making it impractical. Example 3 Immobilized protease was obtained using various inorganic salts or organic salts shown in Table 3, and by the same method as in Example 1, except that 500 hours of aqueous fiproin dialysis solution and 20 hours of aqueous protease solution were used.

第3表 塩の種類、量又は混合方法により若干の差はあるが何れ
の塩を使った固定化プロテアーゼも優れた固定化率と酵
素活性能を有していた。
Table 3 Although there were slight differences depending on the type, amount, or mixing method of the salt, the immobilized protease using any of the salts had excellent immobilization rates and enzyme activity.

実施例 4 実施例1と同様にして得た透析フィブロィン水溶液を3
.0、5.0 10.0及び15.0重量%にフィブロ
ィン濃度を調製し、2の重量%のクエン酸水溶液にてP
H4.8にした。
Example 4 A dialyzed fibroin aqueous solution obtained in the same manner as in Example 1 was
.. Fibroin concentrations were adjusted to 0, 5.0, 10.0 and 15.0% by weight, and P was added with a citric acid aqueous solution of 2% by weight.
I set it to H4.8.

アルカリプロテアーゼ及び/又は中性プロテアーゼとし
てピオプラーゼconc(長瀬産業社製)、ニュートラ
ーゼ(ノボ社製)、プロテオ・リクィフアーゼ(上田化
学工業社製)、タイプO Fungal Cmdefr
omA.or〆os(シグマ社製)の4種を用いて第4
種に示す濃度で水に溶解し、2の重量%のクエン酸水溶
液にて軸4.3にした。以下実施例1と同様にして混合
、塩析、水洗、乾燥して固定化プロテアーゼを得た。こ
の場合混合時のpHは4.5〜4.8であった。酵素活
性の測定は実施例1〜3と異なって下記方法によった。
0.亀重量%のカゼイン水溶液(pH7)中に適当量の
固定化プロテアーゼを加え、30oCで1M分間反*応
した後、固定化プロティンを炉別した炉液をフェノール
試薬で発色660のぷの吸光度により算出した。
As alkaline protease and/or neutral protease, pioprase conc (manufactured by Nagase Sangyo Co., Ltd.), Neutrase (manufactured by Novo Corporation), Proteo Requifurase (manufactured by Ueda Chemical Industry Co., Ltd.), Type O Fungal Cmdefr
omA. The fourth test was performed using four types of or〆os (manufactured by Sigma).
It was dissolved in water at the concentration indicated in the table and made up to 4.3 with a 2% by weight aqueous citric acid solution. Thereafter, the mixture was mixed, salted out, washed with water, and dried in the same manner as in Example 1 to obtain an immobilized protease. In this case, the pH during mixing was 4.5 to 4.8. Enzyme activity was measured by the following method, different from Examples 1 to 3.
0. An appropriate amount of immobilized protease was added to a casein aqueous solution (pH 7) of 1% by weight, and the reaction was carried out at 30oC for 1M minutes.Then the furnace solution from which the immobilized protein was separated was colored with a phenol reagent and determined by the absorbance of 660. Calculated.

第4表 1. フィブロィン水溶液は500タ使用、2.プロテ
ァーゼ種類、A:ピォブラ−ゼコンク、B:ニュートラ
ーゼ、0:プロテオ・ククイフアーゼー D:Type
11Fungal○rade frQhAoryzas
第4表に示すように各種のアルカリプロテアーゼ及び/
又は中性プロテアーゼを用いて本発明方法により得た固
定化プロテアーゼは何れも活性収率が高く、かつ流水中
へのプロテアーゼの流出も至って少なく安定性のある固
定化プロテアーゼであった。
Table 4 1. 2. Use 500 ta of fibroin aqueous solution. Protease type, A: Piobrase conc., B: Neutrase, 0: Proteo cucuifase D: Type
11Fungal○rade frQhAoryzas
As shown in Table 4, various alkaline proteases and/or
All of the immobilized proteases obtained by the method of the present invention using neutral proteases had high activity yields, and very little leakage of protease into flowing water, resulting in stable immobilized proteases.

実施例 5 実施例1と同様にして得た透析フィブロィン水溶液(フ
ィブロイン濃度5.4重量%)lk9とピオプラーゼC
onc水溶液60夕(ビオプラーゼ濃度10重量%)と
を2の重量%クエン酸にて餌をそれぞれ5.0〜4.0
に調整した。
Example 5 Dialyzed fibroin aqueous solution (fibroin concentration 5.4% by weight) obtained in the same manner as in Example 1 lk9 and pioprase C
onc aqueous solution (bioplase concentration 10% by weight) and 2% by weight citric acid to feed 5.0 to 4.0% respectively.
Adjusted to.

この場合混合時のpHは4.9であった。次いで実施例
1と同様に硫酸アンモニウム飽和水溶液2そで塩祈沈殿
せしめた沈殿を水洗、風乾後、ジェットミルで4〜4叫
の微粉末化固定化プロテアーゼを得た。該固定化プロテ
アーゼの活性収率はpートシルアルギニンメチルェステ
ルを用いる方法で22.6%であった。
In this case, the pH at the time of mixing was 4.9. Next, in the same manner as in Example 1, the precipitate was precipitated using a saturated ammonium sulfate aqueous solution and salt, and the precipitate was washed with water, air-dried, and then used in a jet mill to obtain 4 to 4 micronized immobilized protease. The activity yield of the immobilized protease was 22.6% using the method using p-tosylarginine methyl ester.

前記固定化プロテアーゼと対称として元のビオプラーゼ
Concを次のような環境下で処理した後、活性を測定
し、比較した。【1} グリセリン中60℃で2日間 【2} 水中(イオン交換水)3び0で1日間(3}
〃(酢酸にてpH4に調整)30qoで1日間‘4}
〃(水酸化ナトリウムにてPHilに調整)30℃
で1日間■ 乾燥機中60こ0で7日間 【6) 〃 80o0で7日間 第5表 第5表に示す如く、本発明方法により固定化したプロテ
ァーゼは何れの環境下においても元のロテァーゼに比較
してはるかに活性が維持されており、固定化の優位性が
明白であった。
As a contrast to the immobilized protease, the original bioplase Conc was treated under the following environment, and its activities were measured and compared. [1] 2 days at 60°C in glycerin [2] 1 day in water (ion exchange water) 3 and 0 (3)
(Adjusted to pH 4 with acetic acid) 30qo for 1 day'4}
(Adjusted to PHil with sodium hydroxide) 30℃
■ 7 days at 60°C in a dryer [6] 7 days at 80°C Table 5 As shown in Table 5, the protease immobilized by the method of the present invention reverts back to the original rotease under any environment. In comparison, the activity was much more maintained, and the superiority of immobilization was obvious.

Claims (1)

【特許請求の範囲】 1 フイブロイン中にアルカリプロテアーゼ及び/又は
中性プロテアーゼを0.1〜20重量%含有する固定化
プロテアーゼ。 2 フイブロインが粉末状である特許請求の範囲第1項
記載の固定化プロテアーゼ。 3 アルカリプロテアーゼ及び/又は中性プロテアーゼ
を1〜15重量%含有する特許請求の範囲第1項又は第
2項記載の固定化プロテアーゼ。 4 フイブロイン水溶液とpH3〜5.5のアルカリプ
ロテアーゼ及び/又は中性プロテアーゼの水溶液とを混
合してpHを3〜5.5に調整した後、無機塩及び/又
は有機塩を用いてフイブロインと前記プロテアーゼとを
塩折沈殿せしめ、次いで得られた沈殿を水洗後乾燥する
ことを特徴とするフイブロイン中にアルカリプロテアー
ゼ及び/又は中性プロテアーゼを0.1〜20重量%含
有する固定化プロテアーゼの製造法。 5 前記プロテアーゼの水溶液及び/又は混合した後の
液のpHが3.5〜5である特許請求の範囲第4項記載
の製造法。 6 フイブロイン水溶液のフイブロイン濃度が2〜20
重量%である特許請求の範囲第4項記載の製造法。 7 フイブロイン水溶液が銅−エチレンジアミン水溶液
、水酸化銅−アンモニア水溶液、水酸化銅−アルカリ−
グリセリン水溶液、臭化リチウム水溶液、カルシウム或
いはマグネシウム又は亜鉛の塩酸塩或いは硝酸塩又はチ
オシアン酸塩の水溶液、チオシアン酸ナトリウム水溶液
よりなる群から選ばれた少なくとも1種の溶媒に精練絹
原料を溶解後透析したものである特許請求の範囲第4項
又は第6項記載の製造法。 8 前記プロテアーゼの水溶液の該プロテアーゼの濃度
が0.5〜30重量%である特許請求の範囲第4項記載
の製造法。 9 混合を0〜15℃の液温で行なう特許請求の範囲第
4項記載の製造法。 10 無機塩及び/又は有機塩が硫酸アンモニウム又は
クエン酸ナトリウムである特許請求の範囲第4項記載の
製造法。 11 水洗をpH5〜6の水で行なう特許請求の範囲第
4項記載の製造法。 12 乾燥を60℃以下で、常圧又は減圧下で行なう特
許請求の範囲第4項記載の製造法。
[Scope of Claims] 1. An immobilized protease containing 0.1 to 20% by weight of alkaline protease and/or neutral protease in fibroin. 2. The immobilized protease according to claim 1, wherein the fibroin is in powder form. 3. The immobilized protease according to claim 1 or 2, which contains 1 to 15% by weight of alkaline protease and/or neutral protease. 4 After adjusting the pH to 3 to 5.5 by mixing an aqueous solution of fibroin and an aqueous solution of alkaline protease and/or neutral protease having a pH of 3 to 5.5, mix the fibroin and the above using an inorganic salt and/or an organic salt. A method for producing an immobilized protease containing 0.1 to 20% by weight of alkaline protease and/or neutral protease in fibroin, which comprises precipitating the protease by salt-folding, and then washing the obtained precipitate with water and drying it. . 5. The manufacturing method according to claim 4, wherein the pH of the protease aqueous solution and/or the liquid after mixing is 3.5 to 5. 6 The fibroin concentration of the fibroin aqueous solution is 2 to 20
The manufacturing method according to claim 4, wherein the amount is % by weight. 7 Fibroin aqueous solution is copper-ethylenediamine aqueous solution, copper hydroxide-ammonia aqueous solution, copper hydroxide-alkali-
The refined silk raw material was dissolved in at least one solvent selected from the group consisting of an aqueous glycerin solution, an aqueous lithium bromide solution, an aqueous solution of calcium, magnesium or zinc hydrochloride or nitrate or thiocyanate, and an aqueous sodium thiocyanate solution, and then dialyzed. The manufacturing method according to claim 4 or 6, which is 8. The production method according to claim 4, wherein the concentration of the protease in the aqueous solution of the protease is 0.5 to 30% by weight. 9. The manufacturing method according to claim 4, wherein the mixing is carried out at a liquid temperature of 0 to 15°C. 10. The production method according to claim 4, wherein the inorganic salt and/or organic salt is ammonium sulfate or sodium citrate. 11. The manufacturing method according to claim 4, wherein washing is performed with water having a pH of 5 to 6. 12. The manufacturing method according to claim 4, wherein the drying is carried out at 60° C. or lower and under normal pressure or reduced pressure.
JP8970979A 1979-07-13 1979-07-13 Immobilized protease and its production method Expired JPS6013672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8970979A JPS6013672B2 (en) 1979-07-13 1979-07-13 Immobilized protease and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8970979A JPS6013672B2 (en) 1979-07-13 1979-07-13 Immobilized protease and its production method

Publications (2)

Publication Number Publication Date
JPS5615687A JPS5615687A (en) 1981-02-14
JPS6013672B2 true JPS6013672B2 (en) 1985-04-09

Family

ID=13978291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8970979A Expired JPS6013672B2 (en) 1979-07-13 1979-07-13 Immobilized protease and its production method

Country Status (1)

Country Link
JP (1) JPS6013672B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188177U (en) * 1986-05-22 1987-11-30
JP3024212U (en) * 1995-10-30 1996-05-17 有限会社ゴーイング東京 Filter element for engine air cleaner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188177U (en) * 1986-05-22 1987-11-30
JP3024212U (en) * 1995-10-30 1996-05-17 有限会社ゴーイング東京 Filter element for engine air cleaner

Also Published As

Publication number Publication date
JPS5615687A (en) 1981-02-14

Similar Documents

Publication Publication Date Title
JP2975109B2 (en) Enzyme crystallization method
DE2247163A1 (en) CARRIER MATRIX FOR FIXING BIOLOGICALLY ACTIVE SUBSTANCES AND THE PROCESS FOR THEIR PRODUCTION
JPS62255435A (en) Stable protein and stabilization of protein
Kurokawa et al. Immobilization of enzyme onto cellulose–titanium oxide composite fiber
JPH02219571A (en) Modified protease and production thereof
JPS6013672B2 (en) Immobilized protease and its production method
JP2500330B2 (en) Biocompatible material with thrombolytic ability
US3171831A (en) Thiolation of proteins by reaction with homocysteine thiolactone in the presence of tertiary amine
JPS6269988A (en) Hydroxyapatite having stably immobilized dextranse and production thereof
JPH034791A (en) Stabilization of enzyme
JPS59196091A (en) Immobilized protein complex and production thereof
JPS6363388A (en) Production of low molecular weight chitosan
JPS6013673B2 (en) Method for producing immobilized protease
Hatayama et al. Immobilization of urease on composite fibre by using a gel formation of cellulose acetate and titanium iso-propoxide
JPS60175539A (en) Capsule and its production
JPS6158160B2 (en)
JPS62151180A (en) Immobilized enzyme and production thereof
JP2002233362A (en) Method for stabilizing laccase activity and stabilized laccase composition
Banchón Chitosan flakes for papain immobilization: improving the stability and reusability of the enzyme
JP2824902B2 (en) Method for producing enzyme-immobilizing carrier
JPH07265075A (en) Stable modified protease composition and stable enzyme-containing aqueous solution containing the same composition
JPS6392671A (en) Peptide having excellent storage stability and manufacture thereof
JPH0517835B2 (en)
CN115671266A (en) Gallium ion and enzyme co-loaded antibacterial agent and preparation method and application thereof
JP2902747B2 (en) Method for producing modified protease