JPS60136324A - Method of measuring minute depth and apparatus therefor - Google Patents

Method of measuring minute depth and apparatus therefor

Info

Publication number
JPS60136324A
JPS60136324A JP24386783A JP24386783A JPS60136324A JP S60136324 A JPS60136324 A JP S60136324A JP 24386783 A JP24386783 A JP 24386783A JP 24386783 A JP24386783 A JP 24386783A JP S60136324 A JPS60136324 A JP S60136324A
Authority
JP
Japan
Prior art keywords
light
substrate
depth
groove
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24386783A
Other languages
Japanese (ja)
Other versions
JPH0527256B2 (en
Inventor
Minoru Noguchi
稔 野口
Toru Otsubo
徹 大坪
Susumu Aiuchi
進 相内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24386783A priority Critical patent/JPS60136324A/en
Priority to US06/685,550 priority patent/US4615620A/en
Publication of JPS60136324A publication Critical patent/JPS60136324A/en
Priority to US07/254,964 priority patent/USRE33424E/en
Publication of JPH0527256B2 publication Critical patent/JPH0527256B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To enable the depth of a groove formed by etching or the like on a substrate having minute concavo-convex patterns thereon, by radiating light with various wavelengths on the substrate and detecting the spectral intensity distribution of diffracted light other than the zeroth one from the direction inclined to the substrate. CONSTITUTION:A measurement apparatus comprises, for example, a light source 22, a spectroscope 24, an optical system 26 and a light detector 31. Light separated into spectra is made parallel beams having a diameter of 2-3mm. by the optical system 26 and slits 27 and 28, and radiated on an object to be measured 30. The light reflected and diffracted on the object to be measured 30 is reflected by a concave mirror 29 and reaches the light detector 31, where the light intensity is determined and transmitted to a signal processing system 35. The spectroscope 24 automatically changes the wavelength by rotating a diffraction grating 32 through a driving system 33. Thus, the depth of the object 30 can be calculated and determined by detecting the wavelengths lambda1 and lambda2 in which the light intensities become the extremes.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、基板上に例えばエツチング等によって形成さ
れる微細な凹凸の深さを測定する微細溝深さ測定方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a microgroove depth measuring method for measuring the depth of microscopic irregularities formed on a substrate by, for example, etching.

〔発明の背景〕[Background of the invention]

従来の微細溝深さ測定方法としては、第1図乃至第6図
に示す光の干渉を利用した深さの測定方法が知られてい
る。この測定方法を実施する装置は、タングステンラン
プ光源1と、入射スリット7、凹面鐘形回折格子9.鏡
8 、11゜及び出射スリット10から構成される分光
器2と光検出器3と、信号処理部4とから構成される。
As a conventional method for measuring the depth of a fine groove, a depth measuring method using light interference shown in FIGS. 1 to 6 is known. The apparatus for carrying out this measurement method includes a tungsten lamp light source 1, an entrance slit 7, a concave bell-shaped diffraction grating 9. It is composed of a spectrometer 2 composed of mirrors 8 and 11 degrees and an exit slit 10, a photodetector 3, and a signal processing section 4.

次に本装置を用いて、第2図および第6図に示した凹凸
パターンの深さを測定する場合について説明する。即ち
試料台6に載置され、且つ第2図及び第3図に示す凹凸
パターンを有する試料5は、タングステンランプ光源1
により照射される。第3図に示すように試料5の2面1
B。
Next, a case will be described in which the depth of the uneven patterns shown in FIGS. 2 and 6 is measured using this apparatus. That is, the sample 5 placed on the sample stage 6 and having the uneven pattern shown in FIGS. 2 and 3 is placed on the tungsten lamp light source 1.
irradiated by. As shown in Figure 3, two sides 1 of sample 5
B.

19で反射した光は分光器2により分光され、光検出器
3で検出される。この光検出器3で検出される分光され
た光は、第4図に示す面18および面19で反射した光
が干渉し合ったものである。
The light reflected by 19 is separated into spectra by a spectrometer 2 and detected by a photodetector 3. The separated light detected by the photodetector 3 is obtained by interference of the light reflected from the surface 18 and the surface 19 shown in FIG.

この干渉光の強度を考える前に回折に関して説明する。Before considering the intensity of this interference light, diffraction will be explained.

即ちスリット@d、スリット中心間距@l、スリット数
Nなる平行スリットを考え、このスリットに波長λなる
コヒーレント光を照射した場合、距@bなる7ランホー
フア領域での回折像の強度分布Iは次の式に従う。
In other words, if we consider parallel slits with a slit @d, a distance between slit centers @l, and a number of slits N, and when this slit is irradiated with coherent light with a wavelength λ, the intensity distribution I of the diffraction image in a 7-Lanhofer region with a distance @b is as follows. Follow the formula.

ここでxは、光が直進して7ランホー77領域に設置し
たスクリーンに到達した点を基準にとったスクリーン上
の位置である。
Here, x is the position on the screen based on the point where the light travels straight and reaches the screen installed in the 7 run ho 77 area.

従って、x=0すなわち光が直進していく方向(0次の
回折方向)の光強度は、溝幅dの2乗に比例することに
なる。
Therefore, the light intensity in the direction where x=0, that is, the direction in which the light travels straight (0th order diffraction direction), is proportional to the square of the groove width d.

そこで、第3図に示したような形状に溝17が形成され
ている場合は、溝幅dが溝ピッチlに対して、縦方向に
も横方向にもd / l = 1 / 10となってい
るので、溝面19の反射光強度Ieと表面18の反射光
強度Iaとの比は、前記のIeocd2の関係を縦横に
2度適用して、概ねle/Is= 1/10000 の
関係となる。従って、光検出器5で検出される光強度工
2は光の波長をλとするとほぼ次の(2)式の関係とな
る。
Therefore, when the groove 17 is formed in the shape shown in Fig. 3, the groove width d is d/l = 1/10 in both the vertical and horizontal directions relative to the groove pitch l. Therefore, the ratio of the reflected light intensity Ie of the groove surface 19 and the reflected light intensity Ia of the surface 18 is approximately the relationship le/Is = 1/10000 by applying the above relationship Ieocd2 twice in the vertical and horizontal directions. Become. Therefore, the light intensity factor 2 detected by the photodetector 5 has a relationship approximately expressed by the following equation (2), where λ is the wavelength of light.

■λoc I s −) Ie −25e JTi c
os(4π号)h キIs −−Ia cos (4π ) ・・凹・・曲
・・・・・・(2)EIO、7 但し、hは溝の深さを示す。
■λoc I s -) Ie -25e JTic
os (4π number) h Ki Is --Ia cos (4π) ... Concave ... Curved ... (2) EIO, 7 However, h indicates the depth of the groove.

このように、表面18と溝面19との面積比が1/10
0程度になると、2つの面がらの正反射(試料面から垂
直方向)してきた光が干渉する時の光の強度変化は11
5oと小さく光強度変化を検出することは出来ない。
In this way, the area ratio of the surface 18 and the groove surface 19 is 1/10.
When it becomes about 0, the intensity change of the light when the light specularly reflected from the two surfaces (vertical direction from the sample surface) interferes is 11
It is impossible to detect changes in light intensity as small as 5o.

これは、光検出器の8/N (信号m圧/ノイズ電圧)
に起因するものである。すなわち、一般に光検出器のS
/Nは20程度であり、s/Nが20程度では、115
o程度の光強度変化はノイズと区別することができな□
い・ため食刻深さを測定することは困難である。
This is 8/N (signal m pressure/noise voltage) of the photodetector.
This is due to That is, generally the photodetector S
/N is about 20, and when s/N is about 20, 115
A light intensity change of about o cannot be distinguished from noise □
It is difficult to measure the etching depth.

以上のように、従来の深さ測定方法では、光強度変化を
検出できないため、深さhも測定することがむずがしい
という欠点を有した。
As described above, the conventional depth measuring method has the disadvantage that it is difficult to measure the depth h because changes in light intensity cannot be detected.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の欠点を1なくし、基板
上にエツチング等で形成される微細な溝の深、さを、正
、確に測定できるようにした微細溝深さ測定方法及びそ
の装置を提供するにある。
The object of the present invention is to eliminate one of the drawbacks of the above-mentioned conventional techniques and to provide a method and method for measuring the depth of fine grooves that can accurately and accurately measure the depth and width of fine grooves formed on a substrate by etching or the like. We are in the process of providing equipment.

〔発明の概要〕[Summary of the invention]

即ち、本発明は、光干渉法による溝深さ測定方法であっ
て、基板上に形成、された微細な凹凸パターンに光を照
射した場合、表面および溝の底部からそれぞれ反射した
光は、バビネット(Babinet )の原理に従い、
それぞれ全く等しい光強度分布をもって回折することに
着目し、微細な凹凸パターンが形成された基板に光の波
長を変化させて照射し、該基板に対して傾射した方向か
ら0次以外回折光の分光強度分布を検出し、この分光強
度分布の極値を示す光の波長から溝の深さを測定するこ
とを特徴とするものである。このバビネットの原理によ
れば、回折ヲ起こさせるある図形による回折像と、その
図形の透明部分と不透明部、分とを入れかえてできる図
形による回折像とは、回折像面の中央部分(0次の回折
像)を除いて全く同じ光強度分布を持つ特性を有する。
That is, the present invention is a groove depth measuring method using optical interferometry, in which when light is irradiated onto a fine uneven pattern formed on a substrate, the light reflected from the surface and the bottom of the groove is reflected by the Babinet. According to the principle of (Babinet),
Focusing on the fact that each light is diffracted with exactly the same light intensity distribution, we irradiate a substrate with a fine uneven pattern with varying wavelengths of light, and detect non-zero-order diffracted light from a direction tilted to the substrate. This method is characterized by detecting the spectral intensity distribution and measuring the depth of the groove from the wavelength of light that indicates the extreme value of this spectral intensity distribution. According to this Babinet principle, a diffraction image due to a certain figure that causes diffraction and a diffraction image due to a figure created by replacing the transparent and opaque parts of that figure are the central part of the diffraction image surface (0-order They have exactly the same light intensity distribution except for the diffraction image (diffraction image).

従って第2図、治よび第3図に示したような形状に例え
ば食刻形成される測定物において非食刻部と被食刻部は
、上記バビネットの原理における2つの回折を起こさせ
る同形に相当し、それぞれから反射し、回折する干渉光
の光強度分布は、0次の回折像を除いて全く同じ光強度
分布を持つことになる。そこで0次方向以外の回折像の
光強度を検出し、従来と同じ干渉計測を行なえば、同じ
光強度を持つ、2つの光束が干渉を起こすことになるか
ら、光強度は概ね以下の(5)式に従って変化すること
になり、光強度の弱い位置ではほぼ0になることになり
、光強度変化を容易に検出することができる。
Therefore, in a measurement object that is etched into the shape shown in FIGS. 2, 3, and 3, the non-etched part and the etched part have the same shape that causes two diffraction based on the above-mentioned Babinet principle. The light intensity distributions of the interference lights corresponding to each other and reflected and diffracted from each other will have exactly the same light intensity distribution except for the zero-order diffraction image. Therefore, if we detect the light intensity of the diffraction image in directions other than the zero-order direction and perform the same interference measurement as before, two light beams with the same light intensity will interfere, so the light intensity will be approximately as follows (5 ), and it becomes almost 0 at a position where the light intensity is weak, so that changes in light intensity can be easily detected.

I oc Is + Ie −25e Fcoa (平
) ・−・・C5)〔発明の実施例〕 以下本発明を第2図乃至第5図に示す実施例に基いて具
体的に説明する。
I oc Is + Ie -25e Fcoa (flat) --- C5) [Embodiments of the Invention] The present invention will be specifically described below based on the embodiments shown in FIGS. 2 to 5.

本発明は、従来の測定装置のように0次方向でなく、1
次以上の回折光を検出1、波長な走査した時の光強度変
化を検出する。
The present invention does not measure in the 0-order direction like conventional measuring devices, but in the 1-order direction.
Detection of diffracted light of the following order or higher 1: Detecting changes in light intensity when scanning wavelengths.

本発明の微細溝深さ測定装置の一実施例は、第4図に示
すように主として、光源22、分光器24、光学系26
、及び光検出器31より構成されるO 光源22ニは輝度の窩いキセノンランプ、ハロゲンラン
プあるいはタングステンランプが用いられ、冷却用送風
機21により冷却される。分光器24の入射スリットに
効果的に入射させるために、光源22の凹面鏡34が、
分光器24のスリット上に焦点を結ぶように設置されて
いる。
An embodiment of the micro groove depth measuring device of the present invention mainly includes a light source 22, a spectrometer 24, an optical system 26, as shown in FIG.
, and a photodetector 31. The light source 22 is a xenon lamp, a halogen lamp, or a tungsten lamp with low brightness, and is cooled by a cooling blower 21. In order to effectively enter the entrance slit of the spectrometer 24, the concave mirror 34 of the light source 22
It is installed so as to focus on the slit of the spectrometer 24.

分光された光25は、光学系26およびスリット27.
28により直径2〜卜龍の平行なビームとなり、被測定
物30上に照射される。
The separated light 25 is transmitted through an optical system 26 and a slit 27 .
28, the beam becomes a parallel beam with a diameter of 2 to 40 mm, and is irradiated onto the object to be measured 30.

被測定物50上で反射し、回折した光は、凹面鏡29に
より反射され、凹面鏡の焦点の位置に設置されlた光検
出器31に達し、光強度が測定され信号処理系65に伝
送される。
The light reflected and diffracted on the object to be measured 50 is reflected by the concave mirror 29 and reaches the photodetector 31 installed at the focal point of the concave mirror, where the light intensity is measured and transmitted to the signal processing system 65. .

また分光器24は、駆動系56により回折格子32を回
転させることで自動的に波長を変化させることができ、
同時に、回折格子32の向きの情報、すなわち、分光器
波長情報が、信号処理系35に伝送される。
Furthermore, the spectrometer 24 can automatically change the wavelength by rotating the diffraction grating 32 using the drive system 56.
At the same time, information on the orientation of the diffraction grating 32, ie, spectrometer wavelength information, is transmitted to the signal processing system 35.

更に赤外カットフィルタ23を入れることで、熱による
分光器24などの故障を防いでいる。
Furthermore, by inserting an infrared cut filter 23, failure of the spectrometer 24 etc. due to heat is prevented.

次に、深さの算出方法を第2図、第3図、第5図を用い
て詳細に説明する。
Next, a method for calculating the depth will be explained in detail using FIGS. 2, 3, and 5.

被測定物の平面形状および断面形状はそれぞれ第2図、
第3図に示すような凹凸パターンである。
The planar and cross-sectional shapes of the object to be measured are shown in Figure 2 and
This is an uneven pattern as shown in FIG.

この時、バビネットの原理より、面18、および面19
で反射し、回折してくる光強度は、各面の振幅反射率に
よってのみ決定される。面18、面19の振幅反射率を
それぞれrssreとし、照射される光の波長なλとす
ると、検出されるn次の回折光の光強度Iλは次の式に
従う。
At this time, based on the Babinet principle, planes 18 and 19
The intensity of light reflected and diffracted by the surface is determined only by the amplitude reflectance of each surface. Assuming that the amplitude reflectances of the surfaces 18 and 19 are respectively rssre and the wavelength of the irradiated light is λ, the light intensity Iλ of the detected n-th order diffracted light follows the following equation.

%式%)() また、回折光の方向θは次の式に従う。%formula%)() Further, the direction θ of the diffracted light follows the following equation.

θ = 3、。 −言(ni=、 ) 、 ・・・・・・・・・(5) 式(4)を図示したのが第5図であ°る。ここで光強度
Iλが極値をとる波長をλ1.λ、とすると、深さhは
、次式で表わされる。
θ = 3,. - (ni=, ), (5) FIG. 5 illustrates equation (4). Here, the wavelength at which the light intensity Iλ takes an extreme value is λ1. Assuming that λ is λ, the depth h is expressed by the following equation.

従って、光強度Iλが極値をとる波長λ1.λ。Therefore, the wavelength λ1. at which the light intensity Iλ takes an extreme value. λ.

を検出すれば良い。All you have to do is detect it.

第4図に示す信号処理系65においては、分光器24か
らの波長の信号と、光検出器31からの光強度の信号が
取り込まれ、第5図における極値を示す波長λ1および
λ、が算出され、式(6)により深さhが算出測定され
る。
In the signal processing system 65 shown in FIG. 4, the wavelength signal from the spectrometer 24 and the light intensity signal from the photodetector 31 are taken in, and the wavelengths λ1 and λ showing the extreme values in FIG. The depth h is calculated and measured using equation (6).

また、回折光の方向は、式(5)で示されるように、波
長λを走査すると変化する。凹面鏡29を用いているの
は、方向θが変わっても定位置に設定した光検出器31
上に回折光がとどくようにするためである。従って凹面
鏡29は、回転楕円鏡とし、2つの焦点57.58がそ
れぞれ、測定点光検出器31の検出1面になるように設
定してあり光検出器31の検出面には、光の入射角によ
る影響をなくすために拡散板56が設けられている。
Furthermore, the direction of the diffracted light changes as the wavelength λ is scanned, as shown by equation (5). The concave mirror 29 is used for the photodetector 31 which is set at a fixed position even if the direction θ changes.
This is to allow the diffracted light to reach the top. Therefore, the concave mirror 29 is a spheroidal mirror, and the two focal points 57 and 58 are each set to be one detection surface of the measurement point photodetector 31. A diffuser plate 56 is provided to eliminate the influence of corners.

以上の実施例においては、分光器24を用い照射光の波
長を走査しているが、波長を連続的に変える他の手段、
例えば発振波長を連続で変えられるレーザなどにより照
射光の波長を決定しても良い。
In the above embodiment, the wavelength of the irradiated light is scanned using the spectroscope 24, but other means for continuously changing the wavelength,
For example, the wavelength of the irradiation light may be determined by a laser whose oscillation wavelength can be changed continuously.

また、本実施例においては、白色光源を分光してから被
測定物に照射して、波長を変えた時□の干渉強度変化を
検出しているが、白色光を被測定物に照射し、反射し回
折してくる光を分光することによって、波長に対する干
渉強度変化を検出しても同じことである。
In addition, in this example, the white light source is spectrally separated and then irradiated onto the object to be measured, and the change in interference intensity of □ is detected when the wavelength is changed. The same thing can be achieved by detecting changes in interference intensity with respect to wavelength by spectrally dispersing the reflected and diffracted light.

次に、本発明を半導体装置製造工程で用いた・場合につ
いて説明する。
Next, a case will be described in which the present invention is used in a semiconductor device manufacturing process.

半導体装置は、増々高集積化されつつある。Semiconductor devices are becoming increasingly highly integrated.

以下に説明する深溝技術も、こうした半導体装置の高集
積化になくてはならない技術である。
The deep groove technology described below is also an indispensable technology for achieving high integration of such semiconductor devices.

1つには、半導体装置を構成する半導体素子を一基板上
で分離する素子間分離技術に深溝技術が用いられる。従
来は、絶縁物である酸化層により行なっていた素子間分
離を、素子間に溝を設けることで行い素子間分離に用い
られる面積を小さくして集積度を上げる。
For one thing, a deep trench technique is used as an element isolation technique for separating semiconductor elements constituting a semiconductor device on one substrate. Conventionally, isolation between elements was achieved using an oxide layer, which is an insulator, but grooves are provided between the elements to reduce the area used for isolation and increase the degree of integration.

また、電界効果型トランジスタを用いたメモリに用いら
れるコンデンサを深溝を用いて形成する。従来は平面的
に形成していたコンデンサを〜縦方向に形成することで
、平面的には小面積で必要十分な容量を持つコンデンサ
を形成できることになり集積度向上が可能となる。
Further, a capacitor used in a memory using a field effect transistor is formed using a deep groove. By forming capacitors, which were conventionally formed in a plane, vertically, it is possible to form a capacitor with a sufficient capacity in a small area in a plane, thereby making it possible to improve the degree of integration.

なお、コンデンサを形成する際、この深溝に絶縁材が充
填される〇 以上説明した素子分離用深溝の概観を第6図及び第7図
に、コンデンサ用深溝を第8図及び第9図にそれぞれ示
す。
When forming a capacitor, this deep groove is filled with an insulating material. Figures 6 and 7 show an overview of the device isolation deep groove described above, and Figures 8 and 9 show the deep groove for the capacitor, respectively. show.

また以上の深溝は、シリコン基板上に形成されたシリコ
ン酬化膜をマスクにして該基板上にドライエツチングに
より形成する。ここでドライエツチングとは、真空処理
室内に低圧の反応ガスを流人し、高周波放電、マイクロ
波放電などによりプズマ状態を作り、生成した活性状態
にあるラジカルやイオンを被食刻材料と反応させて、被
食刻材を食刻する方法である。
Further, the above-mentioned deep grooves are formed on the silicon substrate by dry etching using a silicone chemical film formed on the substrate as a mask. Here, dry etching is a process in which a low-pressure reactive gas is flowed into a vacuum processing chamber, a plasma state is created by high-frequency discharge, microwave discharge, etc., and the generated radicals and ions in an active state react with the material to be etched. This is a method of etching the material to be etched.

また、光デイスク記録用ビット溝も上記深溝と同形状の
溝が形成される。
Furthermore, a groove having the same shape as the deep groove described above is also formed in the optical disk recording bit groove.

この時、形成された溝の深さを検査する必要があるが、
従来、適当な深さ測定方法がなかった。
At this time, it is necessary to inspect the depth of the groove formed.
Until now, there has been no suitable depth measurement method.

以上の半導体装置の非破壊の食刻深さ測定は・、本発明
による装置を用いてはじめて可能となる。
The non-destructive etching depth measurement of a semiconductor device as described above becomes possible only by using the apparatus according to the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、基板上に形成され
た溝の深さを干渉法により測定する際、溝部の面積が大
きい場合や、溝部と表面の面積が同程度の場合はもちろ
んのこと、溝部ノ面積が微少で表面との面積比が大きく
ても、溝部から射出する光と、表面がら射出する光の強
度を同程度にすることができるので、被食刻部の面積が
微少な電界効果トランジスタによるメモリ用のコンデン
サ用深溝、素子分離用深溝などの溝深さを測定すること
ができるようになる効果を奏する。
As explained above, according to the present invention, when measuring the depth of a groove formed on a substrate by interferometry, it is possible to measure the depth of a groove formed on a substrate not only when the area of the groove is large or when the area of the groove and the surface is about the same. In fact, even if the area of the groove is small and the area ratio to the surface is large, the intensity of the light emitted from the groove and the light emitted from the surface can be made to be about the same, so the area of the etched part is small. This has the effect of making it possible to measure the depth of trenches such as deep trenches for memory capacitors and deep trenches for element isolation using field effect transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の溝深さ測定装置を示すブロック図、第2
図は食刻パターンの一例を示す平面図、第5図は第2図
のA−A断面図、第4図は本発明の微細溝深さ測定装置
の一実施例を示すプルツク図、第5図は第4図に示す装
置によって検出される波長と光強度分布との関係を示す
図、第6図は被測定物の他の一例を示す平面図。 第7図は第6図のB−B断面図、第8図は被測定物の更
に他の一例を示す平面図、第9図は第8図のcl−c断
面図である。 22・・・光源、 24・・・分光器、26・・・レン
ズ系、29・・・凹面鏡、60・・・被測定物、 31
・・・光検出器。 61図 坏 7 図 蒼 うl 多 7 図 成 1 0口 0口 0口 0口 0口 0口 0口 口口
Figure 1 is a block diagram showing a conventional groove depth measuring device, Figure 2 is a block diagram showing a conventional groove depth measuring device.
5 is a plan view showing an example of an etching pattern, FIG. 5 is a sectional view taken along line AA in FIG. 2, FIG. 6 is a diagram showing the relationship between the wavelength detected by the apparatus shown in FIG. 4 and the light intensity distribution, and FIG. 6 is a plan view showing another example of the object to be measured. 7 is a sectional view taken along line BB in FIG. 6, FIG. 8 is a plan view showing still another example of the object to be measured, and FIG. 9 is a sectional view taken along line cl-c in FIG. 22... Light source, 24... Spectrometer, 26... Lens system, 29... Concave mirror, 60... Measured object, 31
...Photodetector. 61 drawings 7 drawing blue ul many 7 drawings 1 0 mouth 0 mouth 0 mouth 0 mouth 0 mouth 0 mouth 0 mouth mouth mouth

Claims (1)

【特許請求の範囲】 1、 微細な溝が形成された基板に、平行な光ビームを
波長を変化させて基板に対して直□角に照射し、該基板
から0次以外の回折光の分光強度分布を検出し、この分
光強度分布の極値を示す複数の光の波長から溝の深さを
測定することを特徴とする微細溝深さ測定方法。 2、 微細な溝が形成された基板に、平行な光ビームを
波長を変化させて基板に対して直角に照射する光照射手
段と、該基板から0次以外の回折光の分光強度分布を検
出する検出手段と、該検出手段によって検出された分光
強度分布から極値を示す複数の光の波長を算出しこの算
出された複数の光の波長から溝の深さを測定する測定手
段とを備えたことを特徴とする微細溝深さ測定装置。 3、 上記光照射手段は、光源と、該光源から照射され
た光を分光し、且つこの光の波長な変化させる分光器と
、該分光器から得られる光を平行な光ビームに変換する
光学系とから構成したことを特徴とする特許請求の範囲
第2項記載の微細溝深さ測定装置。 4、 上記検出手段は、一方の焦点位置に測定点が位置
付けされるように設置された回転楕円鏡と、該回転楕円
鏡の他の焦点位置に設置され、拡散板を備え付けた光検
出器とを有することを特徴とする特許請求の範囲第2項
記載の微細溝深さ測定装置。
[Claims] 1. A parallel light beam of varying wavelength is irradiated perpendicularly to the substrate on a substrate in which fine grooves are formed, and the spectroscopy of non-zero-order diffracted light from the substrate is performed. A micro-groove depth measuring method characterized by detecting an intensity distribution and measuring the depth of the groove from a plurality of wavelengths of light showing extreme values of the spectral intensity distribution. 2. Light irradiation means that irradiates a substrate with fine grooves at right angles to the substrate with a parallel light beam of varying wavelength, and detects the spectral intensity distribution of non-zero-order diffracted light from the substrate. and a measuring means that calculates a plurality of wavelengths of light showing extreme values from the spectral intensity distribution detected by the detection means and measures the depth of the groove from the calculated wavelengths of the plurality of lights. A micro groove depth measuring device characterized by: 3. The light irradiation means includes a light source, a spectrometer that separates the light emitted from the light source and changes the wavelength of this light, and an optical device that converts the light obtained from the spectrometer into a parallel light beam. 3. A microgroove depth measuring device according to claim 2, characterized in that the microgroove depth measuring device comprises a system. 4. The detection means includes a spheroidal mirror installed so that the measurement point is positioned at one focal position, and a photodetector equipped with a diffuser plate installed at the other focal position of the spheroidal mirror. A microgroove depth measuring device according to claim 2, characterized in that it has the following.
JP24386783A 1983-12-26 1983-12-26 Method of measuring minute depth and apparatus therefor Granted JPS60136324A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24386783A JPS60136324A (en) 1983-12-26 1983-12-26 Method of measuring minute depth and apparatus therefor
US06/685,550 US4615620A (en) 1983-12-26 1984-12-24 Apparatus for measuring the depth of fine engraved patterns
US07/254,964 USRE33424E (en) 1983-12-26 1988-10-07 Apparatus and method for measuring the depth of fine engraved patterns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24386783A JPS60136324A (en) 1983-12-26 1983-12-26 Method of measuring minute depth and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS60136324A true JPS60136324A (en) 1985-07-19
JPH0527256B2 JPH0527256B2 (en) 1993-04-20

Family

ID=17110153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24386783A Granted JPS60136324A (en) 1983-12-26 1983-12-26 Method of measuring minute depth and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS60136324A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305512A (en) * 1987-06-05 1988-12-13 Fujitsu Ltd Inspection system for resist pattern
WO2003073085A1 (en) * 2002-02-26 2003-09-04 Matsushita Electric Industrial Co., Ltd. Surface foreign matters inspecting device
KR100852076B1 (en) 2006-08-25 2008-08-13 다이니폰 스크린 세이조우 가부시키가이샤 Measuring method and apparatus for measuring depth of trench pattern

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581370B2 (en) * 2003-10-09 2010-11-17 ソニー株式会社 Irregular pattern inspection apparatus and irregular pattern inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305512A (en) * 1987-06-05 1988-12-13 Fujitsu Ltd Inspection system for resist pattern
WO2003073085A1 (en) * 2002-02-26 2003-09-04 Matsushita Electric Industrial Co., Ltd. Surface foreign matters inspecting device
US7046354B2 (en) 2002-02-26 2006-05-16 Matsushita Electric Industrial Co., Ltd. Surface foreign matter inspecting device
KR100852076B1 (en) 2006-08-25 2008-08-13 다이니폰 스크린 세이조우 가부시키가이샤 Measuring method and apparatus for measuring depth of trench pattern
US7710579B2 (en) 2006-08-25 2010-05-04 Dainippon Screen Mfg. Co., Ltd. Measuring method and apparatus for measuring depth of trench pattern

Also Published As

Publication number Publication date
JPH0527256B2 (en) 1993-04-20

Similar Documents

Publication Publication Date Title
TWI388936B (en) Endpoint detection for photomask etching
TWI503520B (en) Optical system and method for measuring in three-dimensional structures
US7884024B2 (en) Apparatus and method for optical interference fringe based integrated circuit processing
US7233400B2 (en) Interferometer for measuring virtual contact surfaces
US5023188A (en) Method of determining the depth of trenches formed in a semiconductor wafer
US8961804B2 (en) Etch rate detection for photomask etching
TWI512393B (en) Apparatus and methods for etching quartz substrate in photomask manufacturing applications
US20200013588A1 (en) Tilted interferometric endpoint (iep) window for sensitivity improvement
US4988198A (en) Method and apparatus for measuring microlevel difference
US20050042777A1 (en) Control of etch and deposition processes
JP4775685B2 (en) Method and apparatus for shallow angle interference for determining real-time etching rates
JPS60136324A (en) Method of measuring minute depth and apparatus therefor
EP3081901A1 (en) Inspection method and device for inspecting a surface pattern
JP3427085B2 (en) Etching end point detection method
JPH0789051B2 (en) Etching depth measuring method and apparatus
US20220148862A1 (en) Optical cable for interferometric endpoint detection
JP2002340524A (en) Pattern detecting method and pattern detector
JPH0665963B2 (en) Fine groove depth measuring device
JPS61107104A (en) Method and apparatus for measuring depth of fine pattern
JPH0682636B2 (en) Dry etching method
JP3127554B2 (en) Etching apparatus and etching method
JPH0815148B2 (en) Etching depth measuring method
JPS62171127A (en) Method of detecting end point of etching
JPS63158849A (en) Inspection method for fine groove
KR19980054447A (en) Sample surface recognition method in lithography process

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term