JPS60136151A - High pressure electric-discharge lamp - Google Patents

High pressure electric-discharge lamp

Info

Publication number
JPS60136151A
JPS60136151A JP24211083A JP24211083A JPS60136151A JP S60136151 A JPS60136151 A JP S60136151A JP 24211083 A JP24211083 A JP 24211083A JP 24211083 A JP24211083 A JP 24211083A JP S60136151 A JPS60136151 A JP S60136151A
Authority
JP
Japan
Prior art keywords
lamp
ceramic capacitor
periphery
electric
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24211083A
Other languages
Japanese (ja)
Other versions
JPH043623B2 (en
Inventor
Takenobu Iida
飯田 武伸
Jiyoujirou Shiina
椎名 城治郎
Shunichi Sasaki
俊一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP24211083A priority Critical patent/JPS60136151A/en
Publication of JPS60136151A publication Critical patent/JPS60136151A/en
Publication of JPH043623B2 publication Critical patent/JPH043623B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/56One or more circuit elements structurally associated with the lamp

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To prevent any breakage of the glass bulb and any burning of the stabilizer which might occur in the last stage of the life of a high pressure electric-discharge lamp by properly selecting the structure and dimensions of a highly-dielectric ceramic capacitor which constitutes a starter. CONSTITUTION:In order to prevent the electrostatic radiation of electrons, the electric field of the electrode film surface is decreased by coating the base body of a ceramic capacitor 2 with a material having a higher electric constant than the base body. During the usual lighting of a high pressure electric-discharge lamp, any electric discharge in the ceramic capacitor 2 can be prevented by properly selecting the distance between the periphery of silver film electrodes 8a and 8b and the periphery of a ceramic base plate, the thickness of a highly-dielectric crystalline glass film and several factors including the partial pressure of xenon gas in the internal atmosphere. Owing to the above constitution, it is possible to prevent any breakage of the glass bulb and any burning of the stabilizer which might occur in the last stage of the life of the lamp.

Description

【発明の詳細な説明】 イ、産業上の利用分野 この発明は一般照明に使用される高圧ナトリウムランプ
のごとき高圧放電ランプの改良に関し、特に外球の内部
に始動装置を収納した高圧放電ランプの改良に関するも
のである。
Detailed Description of the Invention A. Field of Industrial Application This invention relates to the improvement of high-pressure discharge lamps such as high-pressure sodium lamps used for general lighting, and in particular to the improvement of high-pressure discharge lamps with a starting device housed inside the outer bulb. It is about improvement.

口、従来技術 高圧ナトリウムランプのごとき高圧放成ランプは通常の
商用電源電圧で始動させることが困1帷であるだめ、こ
れを始動させるには高圧パルス電圧の印加が必要である
。このようなパルス電圧を発生させる装置をランプの外
球内に設置し、一般の高圧水銀ランプ用安定器と組み合
せて使用するようにしたランプが普及してきた。第1図
及び第2図はかかるランプの回路図である。このランプ
は基本的には発光管1と並列に強誘電体セラミックコン
デンサー2を接続したもので、これに半導体スイッチ3
やダイオード4と組み合せることによって高圧パルス電
圧を発生させ、それを亀源眠圧とともに発光管1に印加
してランプを始1助さぜるものである。ところで、この
ような高圧ナトリウムランプを始動させるのにはこのラ
ンプを構成する発光・C1内のキセノンカス圧にもよる
が、一般的には2000V以上のピーク値を有するパル
ス電圧を印加する必要がある。かかる高圧パルス電圧を
安定に発生させる手段として、強誘電体セラミックコン
デンサーを用いるのが効果的である。
High-pressure emission lamps such as prior art high-pressure sodium lamps are difficult to start with normal commercial power supply voltage, and require the application of a high-voltage pulse voltage to start them. Lamps in which a device for generating such a pulse voltage is installed inside the outer bulb of the lamp and are used in combination with a general high-pressure mercury lamp ballast have become popular. 1 and 2 are circuit diagrams of such a lamp. This lamp basically consists of an arc tube 1 and a ferroelectric ceramic capacitor 2 connected in parallel, which is connected to a semiconductor switch 3.
A high voltage pulse voltage is generated by combining it with a diode 4, and is applied to the arc tube 1 together with the starting pressure to start the lamp. By the way, in order to start such a high-pressure sodium lamp, it is generally necessary to apply a pulse voltage having a peak value of 2000 V or more, although it depends on the xenon gas pressure in the light emitting C1 that constitutes this lamp. . It is effective to use a ferroelectric ceramic capacitor as a means for stably generating such a high pulse voltage.

このコンデンサーは第4図のごときD(電荷)−E(抗
電界)特性を有する。このコンデンサーの矩形特性を利
用しスイッチング作用を行わせることによシ前記のよう
な高圧パルス電圧を発生することができる。
This capacitor has D (charge)-E (coercive electric field) characteristics as shown in FIG. By utilizing the rectangular characteristics of this capacitor to perform a switching action, it is possible to generate the above-mentioned high-voltage pulse voltage.

このような高圧パルス電圧の発生は高圧ナトリウムラン
プを始動させるには非常に有効である反面、高圧ナトリ
ウムランプの寿命末期に生じる問題を考慮する必要があ
る。すなわち、間圧ナトリウムランプは一般に寿命末期
に発光管1の電極シール部のリークが生じやすく、これ
によシ発光管1内のキセノンガスやナトリウムや水銀が
外球5内に出てくることが多い。この場合、ランプの外
球内は高真空であるため、ランプにパルス電圧が印加さ
れると、ランプの外球内全体で放′亀が開始し、当然の
こととしてアーク放電に伴う大電流が流れる。このよう
な状態を長く続けるとランプの外部に設置されている安
定器6を焼損させることもありうるし、又、最も危険な
こととして、外球内のアークにより外球5が破損するこ
とがある。
Although generation of such a high-pressure pulse voltage is very effective for starting a high-pressure sodium lamp, it is necessary to consider problems that occur at the end of the life of a high-pressure sodium lamp. That is, in general, pressure sodium lamps tend to leak at the electrode seal part of the arc tube 1 at the end of their life, and this can cause xenon gas, sodium, and mercury in the arc tube 1 to come out into the outer bulb 5. many. In this case, since the inside of the lamp's outer bulb is in a high vacuum, when a pulse voltage is applied to the lamp, a discharge starts throughout the lamp's outer bulb, and naturally a large current accompanying arc discharge is generated. flows. If this condition continues for a long time, the ballast 6 installed outside the lamp may be burnt out, and, most dangerously, the outer bulb 5 may be damaged by the arc inside the outer bulb. .

ハ・発明の目的 本発明は以上の点に鑑みてなされたもので、ランプの寿
命末期にカラス球の破損や安定器の焼損を招くことがな
いように、安全機能を持たせた高圧放電ランプを提供す
ることを目的とする。この目的を達成するために、本発
明は寿命末期に生じる発光管リークに伴うキセノンガス
の外球内部への漏出に対して始動装置を構成する強誘電
体セラミックコンデンサーを破壊させる筬構を持たせた
ことを特徴とするものである。
C. Purpose of the Invention The present invention has been made in view of the above points, and is a high-pressure discharge lamp equipped with a safety function to prevent damage to the glass bulb or burnout of the ballast at the end of the lamp's life. The purpose is to provide In order to achieve this objective, the present invention has a receptacle structure that destroys the ferroelectric ceramic capacitor that constitutes the starter device against the leakage of xenon gas into the outer bulb due to leakage of the arc tube at the end of its life. It is characterized by:

ユ0発明の構成 本発明に係る高圧放電ランプの回路構成例は第1図及び
第2図に示すとおりであシ、その具体的構成例は第3図
に示すとおりである。
Structure of the Invention An example of the circuit structure of the high pressure discharge lamp according to the present invention is as shown in FIGS. 1 and 2, and a specific example of the structure is as shown in FIG. 3.

何れも、発光管1と並列に強誘電体セラミックコンデン
サー2と接続し、これらを内部を高真空にした外球5の
中に収納しである。前記の強誘電性セラミックコンデン
サー2は一般に、ヂタン酸バリウム粉末に数モルチのチ
タン酸ストロンチウムやジルコニウム鍍バリウムや錫酸
バリウム等と微量の希土拳酸化物扮末を加え、造粒し円
板状にプレス成形し、気中で焼成して第5図に示すよう
なセラミック基板7をつくり、このセラミック基板7の
両面に銀ペースト等で電極膜8a、8bを形成する。こ
れに強誘電性結晶化ガラスペースト9でリード端子部を
除いてオーバーコートしたうえリード線端子部にリード
端子10a110bを接着させて仕トける。前記のオー
バーコート用の強誘電性結晶化ガラスペースト9は暴本
的にはxBaTi03+ (17x)Ba/Igz、5
jzosの購aからなシ、焼成温度とその保持時間によ
り比誘電率ε を300〜1200とすることがてきる
。前記のようなオーバーコートをしない状態でコンデン
サーを外球内に収納すると、高圧パルス電圧の発生時に
銀膜電極全面又はエツジ部からの放電が生じ、電極膜を
損耗させるばかシか、セラミック基体を破壊させてしま
う。これは高電界がせまい電極膜に集中し、かつ銀jj
k電極自体に酸化物すなわちガラスフリットが混合しで
あるため銀膜電極自体の能事函数が低くなっておシ、′
電子の電界放射が容易になっているためである。このよ
うな電界放射を防ぐためには、先に述べたように、セラ
ミックコンデンサーの基体をこれよりも誘覗率の高い材
例でオーバーコートすることによって電極j摸面の電界
を下げればよい。つまり、このようなコンデンサーを1
吏用する場合は、銀j模成極の周縁とセラミック2F仮
の周縁との距矧[、強誘電性結晶化ガラス膜の厚さ、そ
して雰囲気としてのギセノンガス圧等の要素を適宜選択
することによって、高圧放電ランプの通常点灯時にはセ
ラミックコンデンサーにおける放電を防止し、ランプの
寿命末期には逆に防電を起させて制圧パルス電圧の発生
機能を破壊させることもできるわけである。そこで発明
者等は上記要素のうち、銀膜電極の周縁とセラミック基
体の周縁との距離がとりわけ影響が大きいことに着目し
次のと・とくコンデンサーの放電破壊の実験を行った。
In each case, a ferroelectric ceramic capacitor 2 is connected in parallel with the arc tube 1, and these are housed in an outer bulb 5 whose interior is kept in a high vacuum. The above-mentioned ferroelectric ceramic capacitor 2 is generally made by adding several moles of strontium titanate, zirconium-plated barium, barium stannate, etc., and a trace amount of rare earth oxide powder to barium ditanate powder, and granulating it into a disk shape. A ceramic substrate 7 as shown in FIG. 5 is produced by press molding and firing in air, and electrode films 8a and 8b are formed on both surfaces of the ceramic substrate 7 using silver paste or the like. This is overcoated with ferroelectric crystallized glass paste 9 except for the lead terminal portions, and then lead terminals 10a110b are adhered to the lead wire terminal portions. The above-mentioned ferroelectric crystallized glass paste 9 for overcoat is literally xBaTi03+ (17x)Ba/Igz, 5
The dielectric constant ε can be set to 300 to 1200 depending on the firing temperature and its holding time. If the capacitor is housed in the outer bulb without an overcoat as described above, discharge will occur from the entire surface or edge of the silver film electrode when a high voltage pulse is generated, which may damage the electrode film or damage the ceramic substrate. I will destroy it. This is because the high electric field is narrow and concentrated on the electrode film, and the silver
Since the k-electrode itself is mixed with oxide, that is, glass frit, the function of the silver film electrode itself is low.
This is because the electric field emission of electrons becomes easier. In order to prevent such electric field radiation, as described above, the electric field on the surface of the electrode J can be lowered by overcoating the base of the ceramic capacitor with a material having a higher dioptric index. In other words, one such capacitor
When using this method, factors such as the distance between the periphery of the silver j imitation electrode and the temporary periphery of the ceramic 2F, the thickness of the ferroelectric crystallized glass film, and the gysenon gas pressure as the atmosphere should be selected appropriately. This prevents discharge in the ceramic capacitor during normal lighting of the high-pressure discharge lamp, and at the end of the lamp's life, it can conversely cause electrical protection and destroy the suppressing pulse voltage generation function. Therefore, among the above factors, the inventors focused on the fact that the distance between the periphery of the silver film electrode and the periphery of the ceramic substrate had a particularly large effect, and conducted the following experiment on discharge breakdown of a capacitor.

第5図に示すセラミック基体7として前記したようなチ
タン酸バリウム系の非線形特性をもつ材料を焼成し直径
26.0 mm、J厚d o、 5 mmの円板状のも
のを使用し、このセラミック基板7の周縁と銀膜電極8
a、8bの周1、家との距離d、強誘電性結晶化ガラス
9の)換厚t1及びこのコンデンサーを設(4する外球
内部のキセノンガス圧を斐えて、高圧パルス重圧を発生
させ、コンデンサーの放電破壊の状態を調べた。実験の
結果は以下に示すとおりであった。なお、実検結果を示
す表に゛。
As the ceramic substrate 7 shown in FIG. 5, a barium titanate-based material having nonlinear characteristics as described above was fired, and a disc-shaped material with a diameter of 26.0 mm and a J thickness of 5 mm was used. Periphery of ceramic substrate 7 and silver film electrode 8
a, the circumference 1 of 8b, the distance d from the house, the thickness t1 of the ferroelectric crystallized glass 9, and the xenon gas pressure inside the outer sphere with this capacitor set (4) to generate a high-voltage pulse pressure. The state of discharge breakdown of capacitors was investigated.The results of the experiment were as shown below.The table showing the actual test results is shown below.

おける、×、○、△の記号はそれぞれ次のような状態で
あったことをケす。
The symbols ×, ○, and △ in the table indicate the following conditions, respectively.

×:放′亀破壊しない。・ ○°放亀1波壊した。×: Do not destroy the turtle.・ ○°I broke one wave of Houki.

△:エツジ放電するが破壊捷で到らない。△: Edge discharge occurs, but it does not reach due to destructive power.

■強誘電性結晶化ガラス膜厚:1011m■強誘奄吐結
晶化ガラス膜厚、20μm(3り強誘電性結晶化カラス
膜厚、30μmこれらの宋験は第6図に示す回路で行っ
た。
■ Ferroelectric crystallized glass film thickness: 1011 m ■ Ferroelectric crystallized glass film thickness: 20 μm (3 Ferroelectric crystallized glass film thickness: 30 μm These experiments were conducted using the circuit shown in Figure 6. .

この回路で交流低源11の入力を200V150Hzと
し/ヒ時、チョークコイル6の出力4N+1には20 
tJ f)〜2600Vのピーク値を有する高圧パルス
電圧が発生する。2がセラミックコンデンサー、4はダ
イオード、12は抵抗体、:l;jSSS索子である。
In this circuit, when the input of the AC low source 11 is 200V150Hz, the output 4N+1 of the choke coil 6 is 20V.
A high voltage pulse voltage with a peak value of tJ f) ~2600V is generated. 2 is a ceramic capacitor, 4 is a diode, 12 is a resistor, :l;j SSS wire.

次に、このセラミック基板の′S膜電極の塗布面の直径
と高圧パルス電圧のピーク値の関係を測定したところ第
7図のようになった。銀膜電極の直径が24mmより小
ざくなシ、同電極の周1寡とセラミック基体の周縁1b
1の距離dが1.0 mmを超えたところからパルス電
圧が低下することがら、′電極の非着部を太きくとるこ
とばランプを確実に点灯させるための高圧パルスを発生
させるうえでは不利となる。−それ故前記周縁間の非着
距*I ij 1.2 mm ’!でにすることかNt
Lい。
Next, the relationship between the diameter of the coated surface of the 'S film electrode of this ceramic substrate and the peak value of the high voltage pulse voltage was measured, and the result was as shown in FIG. If the diameter of the silver film electrode is smaller than 24 mm, the circumference of the electrode is 1 or more and the periphery of the ceramic substrate is 1b.
Since the pulse voltage decreases when the distance d of 1 exceeds 1.0 mm, it is disadvantageous to make the non-bonded part of the electrode thick in order to generate the high voltage pulse that will reliably light the lamp. Become. - hence the non-contact distance between said peripheral edges *I ij 1.2 mm'! What should I do?
L.

又、強性′6体結晶ガラスの塗布膜の厚みtが30μn
tを超えると発光′g1のスローリーりが始った段階で
はセラミックコンテンサーを破壊させることができず、
1o−3〜10−2torrオーダーのガス圧の時に安
定器1oに流れる′電流は正常な時の1.2〜1.4倍
になり、この時間が長くなると安定器の巻線に対し過電
流となシ、巻線を焼損させる可能性がある。それ故、強
誘電性結晶化ガラスの塗布膜の厚みは10〜20μmに
することが望ましい。
In addition, the thickness t of the coating film of strong '6 body crystal glass is 30 μn.
When the time exceeds t, the ceramic capacitor cannot be destroyed at the stage when the light emission 'g1 starts to slow down.
When the gas pressure is on the order of 1o-3 to 10-2 torr, the current flowing through the ballast 1o is 1.2 to 1.4 times the normal value, and if this time becomes longer, an overcurrent will flow to the ballast winding. Otherwise, the windings may be burnt out. Therefore, it is desirable that the thickness of the coating film of ferroelectric crystallized glass be 10 to 20 μm.

木実haり1] 実際に本発明を定格人力360Wの高圧すトリウムラン
プで実施してみた。発光庁の内容、漬け5.1cc で
あり、この中に適量の水銀及びナトリウムとともにキセ
ノンカスを、150Lorrの圧力で封入した。外球は
1000 ccであるからこの発光庁1のキセノンカス
が全て外球5に漏出した@会0.8Irの圧力となる。
The present invention was actually implemented using a high-pressure thorium lamp with a rated human power of 360W. The content of the luminescent chamber was 5.1 cc, into which xenon scum was sealed together with appropriate amounts of mercury and sodium at a pressure of 150 Lorr. Since the outer sphere is 1000 cc, all of the xenon scum from the luminescent station 1 leaked into the outer sphere 5, resulting in a pressure of 0.8 Ir.

かかる外球内に第5図に2j1jような構造を有しかつ
MfJ記実験で確認された粂注、すなわち、セラミック
基体と銀、膜電極の周縁間化HILをO〜1.2mとし
た強誘電1本セラミックコンデンサーを収納して高圧パ
ルス電圧を発生きせたところ、ランプの寿命末期におけ
る発光計1のシール部リークのキセノンカスで強誘電性
セラミックコンデンサーを確果に破壊させることができ
た。
This outer sphere has a structure as shown in FIG. When a single dielectric ceramic capacitor was housed and a high pulse voltage was generated, the ferroelectric ceramic capacitor was successfully destroyed by the xenon scum that leaked from the seal of luminometer 1 at the end of the lamp's life.

へ発明の効果 以上の説明から明らかなように、本発明によれば始動装
置を構成する強誘電i生セラミックコンデンサーの構面
、寸法を適宜選択することにより、ランプの寿命末期に
おける高圧パルス電圧の印加に伴うカラス球の破損や安
定器の焼損を効果的に防止することができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, by appropriately selecting the structure and dimensions of the ferroelectric raw ceramic capacitor constituting the starting device, the high voltage pulse voltage at the end of the lamp life can be reduced. It is possible to effectively prevent damage to the glass bulb and burnout of the ballast due to application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明を実hmする高圧放゛亀ラン
プの回路図、第3図(は同ランプの具体的溝潰図、第4
図は本発明に用いる強誘電性セラミックコンデンサーの
重圧−電荷特性図、第5図は本発明に用いる強請゛亀1
生セラミックコンテンサーの断面図、第6図は同コンデ
ンサーの舐吸回路、第7図は同コンデンサーのセラミッ
ク基体と亀惨の周、隙間距離と高圧パルス電圧のピーク
値との関係図である。 第1図及び第5図において、1・発光・庁、2・・・強
請itnセラミックコンデンサー、5・・・外球、7・
セラミック基板、8a、8b・・・銀膜低1血、9・・
・強誘電1生結晶化カラス。 第4図 第6図 第7図 (V) 0 04 0.8 1.2 (mm)
1 and 2 are circuit diagrams of a high-pressure tortoise lamp embodying the present invention, FIG. 3 is a detailed groove diagram of the same lamp, and FIG.
The figure is a pressure-charge characteristic diagram of the ferroelectric ceramic capacitor used in the present invention, and Figure 5 is the pressure-charge characteristic diagram of the ferroelectric ceramic capacitor used in the present invention.
Fig. 6 is a cross-sectional view of a raw ceramic capacitor, Fig. 6 is a suction circuit of the same capacitor, and Fig. 7 is a diagram showing the relationship between the ceramic base and the circumference of the capacitor, the gap distance, and the peak value of the high-voltage pulse voltage. In Fig. 1 and Fig. 5, 1. Light emitting station, 2.. Extortion itn ceramic capacitor, 5.. Outer sphere, 7.
Ceramic substrate, 8a, 8b... silver film low 1 blood, 9...
・Ferroelectric 1 raw crystallized glass. Figure 4 Figure 6 Figure 7 (V) 0 04 0.8 1.2 (mm)

Claims (1)

【特許請求の範囲】[Claims] セラミック基板7の周)隊とそのセラミツ毀端板7の上
に設けた導区膜電極(8a、sb)の周縁との距Al1
dをO〜1.2 amに選定し、これらセラミック基板
7及び電極8a、8bの外周全体をリード端子部を除い
て強誘電性結晶化カラス9で完全にオーバーコートした
強誘電体セラミックコンデンサー2を外球5の内部に収
納してなる高圧放電ランプ。
Distance Al1 between the periphery of the ceramic substrate 7 and the periphery of the conductive membrane electrode (8a, sb) provided on the ceramic broken end plate 7
A ferroelectric ceramic capacitor 2 in which d is selected to be O to 1.2 am, and the entire outer periphery of the ceramic substrate 7 and electrodes 8a and 8b is completely overcoated with ferroelectric crystallized glass 9 except for the lead terminal portions. This is a high-pressure discharge lamp in which the lamp is housed inside an outer bulb 5.
JP24211083A 1983-12-23 1983-12-23 High pressure electric-discharge lamp Granted JPS60136151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24211083A JPS60136151A (en) 1983-12-23 1983-12-23 High pressure electric-discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24211083A JPS60136151A (en) 1983-12-23 1983-12-23 High pressure electric-discharge lamp

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP31068192A Division JPH05225956A (en) 1992-11-20 1992-11-20 High pressure discharge lamp

Publications (2)

Publication Number Publication Date
JPS60136151A true JPS60136151A (en) 1985-07-19
JPH043623B2 JPH043623B2 (en) 1992-01-23

Family

ID=17084442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24211083A Granted JPS60136151A (en) 1983-12-23 1983-12-23 High pressure electric-discharge lamp

Country Status (1)

Country Link
JP (1) JPS60136151A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134997A (en) * 1989-10-20 1991-06-07 Iwasaki Electric Co Ltd Metal vapor discharge lamp
JPH03285291A (en) * 1990-04-02 1991-12-16 Iwasaki Electric Co Ltd High pressure vapor discharge lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134997A (en) * 1989-10-20 1991-06-07 Iwasaki Electric Co Ltd Metal vapor discharge lamp
JPH03285291A (en) * 1990-04-02 1991-12-16 Iwasaki Electric Co Ltd High pressure vapor discharge lamp

Also Published As

Publication number Publication date
JPH043623B2 (en) 1992-01-23

Similar Documents

Publication Publication Date Title
CN100447937C (en) Optical source deivce
JP4826446B2 (en) Light source device
US4520294A (en) High pressure metal vapor discharge lamp
JP2002270386A (en) Light source equipment
AU633414B2 (en) High pressure metal vapor discharge lamp
JPS64785B2 (en)
JPS60136151A (en) High pressure electric-discharge lamp
JPH1186797A (en) Rare gas discharge lamp
JPH0587940B2 (en)
JP2014157671A (en) High pressure discharge lamp
GB2127633A (en) High pressure discharge lamp
JP2001118544A (en) Fluorescent lamp with outer surface electrode
JP3858769B2 (en) Discharge lamp
JPH03225745A (en) Rare gas discharge lamp
JP2870136B2 (en) Metal halide lamp
JPH0445932B2 (en)
JP2001126670A (en) Plane rare gas fluorescent lamp
JPH03116687A (en) High-pressure metallic vapour discharge lamp
JPH05275060A (en) Cold cathode fluorescent lamp
JP2000208106A (en) Rare gas discharge lamp
CN117153663A (en) Excimer light source structure, manufacturing method thereof and excimer lamp
JP2001338569A (en) High-pressure discharge lamp and illumination device
JP2008226984A (en) Ferroelectric ceramic capacitor and high-voltage metallic-vapor electric discharge lamp
JP2000106293A (en) Lighting device for rare gas discharge lamp
JP2005019040A (en) Light source equipment