JPS60135737A - Pressure transmitter - Google Patents

Pressure transmitter

Info

Publication number
JPS60135737A
JPS60135737A JP24860083A JP24860083A JPS60135737A JP S60135737 A JPS60135737 A JP S60135737A JP 24860083 A JP24860083 A JP 24860083A JP 24860083 A JP24860083 A JP 24860083A JP S60135737 A JPS60135737 A JP S60135737A
Authority
JP
Japan
Prior art keywords
pressure
light
interference fringes
optical
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24860083A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Watanabe
渡辺 賀靖
Chiaki Iwasa
岩佐 千秋
Takahiro Fudeyasu
筆保 隆弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP24860083A priority Critical patent/JPS60135737A/en
Publication of JPS60135737A publication Critical patent/JPS60135737A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • G01L11/025Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means using a pressure-sensitive optical fibre

Abstract

PURPOSE:To detect an increase and a decrease in pressure variation by demultiplexing light and then multiplexing light waves passed through single-mode optical fibers which vary and do not vary in length with pressure, and photodetecting obtained interference fringes at two nearby points and deciding on the moving direction of the fringes. CONSTITUTION:When pressure is applied to a pressure admitting body 1, a pressure reception part 4 increases in diameter to cause an optical path difference between single- mode optical fibers 2 and 3 because the optical fiber 2 extends while the other optical fiber 3 of a reference light part 5 does not vary in length, and interference is caused in the output light of an optical multiplexer 9 to form interference fringes at a photodetection part 10. The interference fringes move from the center of photodetection to the circumference at the time of an increase in pressure or from the circumference to the photodetection center at the time of a decrease in pressure, so the interference fringes are photodetected by photodetectors 11 and 12 and converted into a pulse signal and outputs (a) and (b) of preamplifiers 13 and 14 are supplied to monostable multivibrators 15 and 16 to decide on the before-after relation of the timing. Further, a counter 17 counts up when the pressure increases and counts down when the pressure decreases. Thus, explosion resistance and digital signal output are secured.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、光ファイバ、光干渉を応用した光学式の圧
力伝送器に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to an optical pressure transmitter that uses optical fibers and optical interference.

(ロ)背景 空気、オイル等の流体圧力を測定する計器として2機械
式、電気式のものが従来より種力実施されているが9機
械式は構造が複雑である上に総合的な制御システムに組
込むのに適さないし、電気式のものは、設置場所により
防爆性に難がある上。
(b) Background Mechanical and electric types have traditionally been used as instruments to measure the pressure of fluids such as air and oil, but mechanical types have a complex structure and require a comprehensive control system. It is not suitable for being built into a computer, and electric types have difficulty in being explosion-proof depending on the location where they are installed.

多くのものはアナログ出力を得るものであり、データ処
理の為にデジタル変換する場合には高価なA/D変換器
を設けなければならないという問題があった。そこで、
この問題点を解決するためにこの出願の発明者等は、光
ファイバを用いて圧力に応じて干渉縞を発生させ、この
干渉縞数から圧力を測定する圧力計を創出し、別に出願
した。
Many of them obtain analog output, and when converting to digital for data processing, there is a problem in that an expensive A/D converter must be installed. Therefore,
In order to solve this problem, the inventors of this application created a pressure gauge that generates interference fringes according to pressure using an optical fiber and measures pressure from the number of interference fringes, and filed a separate application.

しかしながら、単に干渉縞数を計数するのみでは、圧力
の変化量を知り得ても、その増減を知ることができない
。それゆえ、単に圧力のi化量のみならず、圧力の増加
、減少も知りたい場合には。
However, by simply counting the number of interference fringes, even if it is possible to know the amount of change in pressure, it is not possible to know its increase or decrease. Therefore, if you want to know not only the amount of i conversion of pressure, but also the increase or decrease in pressure.

干渉縞数を計数するのみでは不十分であった。Merely counting the number of interference fringes was not sufficient.

ぐ→日自勺 この発明の目的は、上記に鑑み、防爆性、デジタル信号
出力を確保した」−で、圧力の変化量に加えて、その増
減の別をも検出し得る圧力伝送器を提供することである
In view of the above, the purpose of this invention is to provide a pressure transmitter that is explosion-proof and has digital signal output, and is capable of detecting not only the amount of change in pressure but also its increase and decrease. It is to be.

に)構成 上記目的を達成するために、この発明の圧力1ム送器は
、光源と、光源よりの光を分岐する光分岐器と、この光
分岐器で分岐される一方の光を伝送し、導入される圧力
に応じて長さが変化する第1の単一モード光ファイバと
、前記光分岐器で分岐される他方の光を伝送し、導入圧
力の如何にかかわらず長さの変化しない第2の単一モー
ド光ファイハト、前記第1と第2の単一モード光ファイ
バよりの光を受けて合波し、光の干渉縞を出力する光合
波器と、この光合波器よりの光の干渉縞を近接する2点
で受光する2個の受光器と、これら受光器よりの出ノJ
に基づき、干渉縞数をt′l敵する計の移動方向を判別
する手段とから構成され、前記計数手段から圧力の変化
量を、前記判別手段の判別出力により圧力の増減を区別
するようにしている。
B) Structure In order to achieve the above object, the 1-m pressure transmitter of the present invention includes a light source, a light splitter that branches the light from the light source, and transmits one of the lights branched by the light splitter. , transmitting a first single mode optical fiber whose length changes depending on the introduced pressure and the other light branched by the optical splitter, and whose length does not change regardless of the introduced pressure. a second single-mode optical fiber; an optical multiplexer that receives and combines light from the first and second single-mode optical fibers and outputs interference fringes; and an optical multiplexer that outputs interference fringes of light; Two light receivers that receive the interference fringes of
and a means for determining the moving direction of the meter that corresponds to the number of interference fringes t'l based on the number of interference fringes t′l, and the amount of change in pressure is determined from the counting means, and an increase or decrease in pressure is distinguished from the discrimination output of the discriminating means. ing.

(ホ)実施例 以下、実施例にょシこの発明をさらに詳細に説明する。(e) Examples The present invention will be explained in more detail by way of examples below.

第1図、第2図はこの発明の一実施例圧力伝送器を示し
、第1図は光学系で形成される圧力検出部の(概略図、
第2図は信号処即部の回路ブロック図である。
1 and 2 show a pressure transmitter according to an embodiment of the present invention, and FIG. 1 is a (schematic diagram,
FIG. 2 is a circuit block diagram of the signal processing section.

第1図において1は外形が円柱状に形成される圧)J導
入体であり、この圧力導入体1の外周面に密着して、光
ファイバ2,3が巻回されている。
In FIG. 1, reference numeral 1 denotes a pressure introducing body having a cylindrical outer shape, and optical fibers 2 and 3 are wound around the outer peripheral surface of this pressure introducing body 1 in close contact with it.

これらの光ファイバ2.3は、いずれも単一モード光フ
ァイバが使」されるが、光ファイバ2は圧力導入体1に
圧力が導入されると、圧力に応じて径が変化する部分に
巻回されており、圧力導入体1とともに受圧部4を構成
している。光ファイバろは、圧力導入体1の圧力が導入
されても、径が変化しない部分に巻回されており、参照
光部5を構成している。
These optical fibers 2.3 are all single-mode optical fibers, but when pressure is introduced into the pressure introducing body 1, the optical fiber 2 is wound around a portion whose diameter changes depending on the pressure. The pressure introducing body 1 constitutes a pressure receiving part 4. The optical fiber filter is wound around a portion whose diameter does not change even when the pressure of the pressure introducing body 1 is introduced, and constitutes a reference light section 5.

6は、レーザ光源であって9発射された光は。6 is a laser light source, and 9 the emitted light is.

光ファイバ7を経て光分岐器8に入力される。光分岐器
8では、レーザ光源6よりの光が分岐され。
The signal is input to an optical splitter 8 via an optical fiber 7. In the optical splitter 8, the light from the laser light source 6 is split.

光ファイバ2.乙に加えられるようになっている。Optical fiber 2. It is now possible to add it to Party B.

1だ、光ファイバ2.乙よりの光は光合波器9て合波さ
れ、受光部1Oに入射されるようになっている。受光部
10には、入射される光の中心に極わめて近接する2点
に、2個の受光器(受光素子)il、12が配設されて
いる。
1. Optical fiber 2. The light from B is multiplexed by an optical multiplexer 9, and is made to enter the light receiving section 1O. In the light receiving section 10, two light receivers (light receiving elements) il and 12 are arranged at two points extremely close to the center of the incident light.

この受光器11.1’2は第2図に示すように。This light receiver 11.1'2 is as shown in FIG.

それぞれプリアンプ15..1.4に接続されている。Preamplifier 15. .. 1.4 is connected.

プリアンプ13の出力aは、モノステーブルマルチバイ
ブレータ マルチバイブレータ16のイネーブlし入力端ENに加
えられ,プリアンプ14の出力すは,逆に七ノステーブ
ルマルチバイブV−夕16の入力端■とモノステーブル
マルチバイブレータ15のイネーブル入力端ENに加え
られるようになっている。
The output a of the preamplifier 13 is applied to the enable input terminal EN of the monostable multivibrator multivibrator 16, and the output a of the preamplifier 14 is applied to the input terminal EN of the monostable multivibrator V-16 and monostable multivibrator 16. It is adapted to be applied to the enable input terminal EN of the multivibrator 15.

七ノステーブルマルチハイブソーク1.5.16は,プ
リアンプ1ろ,14の出力a,bのうち。
Seven Stable Multihive Soak 1.5.16 is among the outputs a and b of preamplifiers 1 and 14.

先に出力される方に対応して出力端Qより.一定幅の出
カバ)Vスを導.出するものである、モノステーブルマ
ルチバイブレータ15の出力d.カウンク17のUP入
力端に,モノステーブルマルチバイブレーク16の出力
はカウンタ17のDoXvN入力端に加えられ,カウン
タ1フでそれぞれアップカウント、あるいはダウンカウ
ントされるようになっている。18はD/A変換器,1
9は出力アンプである。
From the output end Q corresponding to the one that is output first. (output cover of a certain width) Vs is derived. output of the monostable multivibrator 15 d. The output of the monostable multi-by-break 16 is applied to the UP input terminal of the counter 17 and the DoXvN input terminal of the counter 17, so that the counter 1 counts up or down, respectively. 18 is a D/A converter, 1
9 is an output amplifier.

次に.以上のように構成される実施例圧力伝送器の動作
について説明する。
next. The operation of the embodiment pressure transmitter configured as above will be explained.

圧力導入体1に,、圧力が導入されない状.態では。No pressure is introduced into the pressure introducing body 1. In the state.

圧力導入体1の受圧部4の径が何ら大きくならないので
,光ファイバ2は伸びない。したがって光ファイ/.く
2と光ファイバ乙に光路差が生じず,光合波器9を経て
受光部1Oに入射される光には。
Since the diameter of the pressure receiving part 4 of the pressure introducing body 1 does not increase at all, the optical fiber 2 does not stretch. Therefore, optical fiber/. There is no optical path difference between the optical fiber 2 and the optical fiber 2, and the light that passes through the optical multiplexer 9 and enters the light receiving section 1O.

干渉縞が生じず,受光器11.12には出力変化が得ら
れない。
No interference fringes occur, and no output change is obtained in the photoreceivers 11, 12.

しかし、圧力導入体1に入力される圧力に変化が生じる
と、その圧力に応じて受圧部4の径が変化し9例えば圧
力増加の場合には、圧力導入体1の受圧部4の径が人と
なる。これによシ、光ファイバ2の長さも変化し1例え
ば伸びる。一方、参照光部5の光ファイバ3は圧力導入
されても長さが変化しないので光ファイバ2.3に光路
差が生じる。そのだめ、光合波器9の出力光に干渉が生
じ、受光部10には干渉縞が生じる。この場合光路差は
導入される圧力が大なる程大とな9.また光路差が光の
波長の1倍で1本の干渉縞が生じ。
However, when a change occurs in the pressure input to the pressure introduction body 1, the diameter of the pressure receiving part 4 changes according to the pressure. Become a person. As a result, the length of the optical fiber 2 also changes, e.g., elongates. On the other hand, since the length of the optical fiber 3 of the reference light section 5 does not change even when pressure is introduced, an optical path difference occurs in the optical fiber 2.3. As a result, interference occurs in the output light of the optical multiplexer 9, and interference fringes occur in the light receiving section 10. In this case, the optical path difference increases as the introduced pressure increases9. Also, when the optical path difference is 1 times the wavelength of the light, one interference fringe occurs.

光路差が犬なる程多くの干渉縞が生じる。The larger the optical path difference, the more interference fringes will occur.

この干渉縞が生じる様子を第2図の受光部10」二に光
の強度変化曲線Aとして示している。また。
The manner in which these interference fringes occur is shown as a light intensity change curve A in the light receiving section 10''2 of FIG. Also.

圧力が増加する場合には、干渉縞は、受光中心より周辺
に、逆に圧力が減少する場合に、干渉縞は周辺よシ受光
中心に向って移動する。したがって。
When the pressure increases, the interference fringes move from the light reception center to the periphery, and when the pressure decreases, the interference fringes move from the periphery toward the light reception center. therefore.

受光部10の受光中心より周辺に向けて、近接して配t
1”1される受光器11.12で干渉縞を受光してパル
ス信号に変換し、そのパルス数をカウントすれば、干渉
縞数すなわち圧力の変化量を検出し得るし、どちらの受
光器に先に干渉縞が受光されるかにより、圧力の増加あ
るいは減少を区別することができる。
Distributed closely from the light receiving center of the light receiving unit 10 toward the periphery.
If the interference fringes are received by the receivers 11 and 12, which are 1"1, and converted into pulse signals, and the number of pulses is counted, the number of interference fringes, that is, the amount of change in pressure can be detected. Depending on whether the interference fringes are received first, it is possible to distinguish whether the pressure is increasing or decreasing.

今9例えば圧力が増加方向に変化し、1個の干渉縞が受
光中心から周辺に移動したとすると、この干渉縞による
光パルスを先ず、受光器11が受光し、続いて受光器1
2が受光することになる。
For example, if the pressure changes in an increasing direction and one interference fringe moves from the light receiving center to the periphery, the light pulse due to this interference fringe is first received by the light receiver 11, and then by the light receiver 1.
2 will receive light.

そのだめ、プリアンプ13の出力a及びプリアンプ14
の出力すは第5図の左半分に示すように。
Otherwise, the output a of the preamplifier 13 and the preamplifier 14
The output is as shown in the left half of Figure 5.

先ず出力aが立上り続いて出力すが立上る。したがって
、七ノヌテーブルマルチバイプンータ15は、端子EN
に信号すを受けない状態で、信号aを受けるのでトリガ
され、出力端Qに一定扇のパルス信号を出力し、これを
カウンタ17のUP入力端に加える(第6図のUP参照
)。しかし、七ノヌテーブルマルチバイブレータ16に
信号すが入力されるタイミングでは、自身の端子τNに
信号aが入力されているので、トリガされない。しだが
って、カウンタ17のDOWN入力端には信号が人力さ
れない。続いて圧力増加が進み、干渉縞が連続的に生じ
ても、その移動方向は受光中心から周辺に向けてなので
、常に信号aが光に立上シ。
First, the output a rises, followed by the output A. Therefore, the seven table multivibrator 15 has terminal EN
Since it receives the signal a without receiving any signal, it is triggered, outputs a constant fan pulse signal to the output terminal Q, and adds this to the UP input terminal of the counter 17 (see UP in FIG. 6). However, at the timing when the signal a is input to the seven-number table multivibrator 16, the signal a is input to its own terminal τN, so it is not triggered. Therefore, no signal is input to the DOWN input terminal of the counter 17. Even if the pressure continues to increase and interference fringes occur continuously, the direction of movement is from the center of light reception to the periphery, so signal a always rises in the light.

1発註の干渉縞と同様にして、カウンタ17のUP入力
端にパルス信号が順次入力され、カウンタ17はアップ
カラン1−を継続する。
As in the case of one interference fringe, pulse signals are sequentially input to the UP input terminal of the counter 17, and the counter 17 continues the up-run 1-.

一方、圧力が減少方向に変化する場合には、干渉縞が周
辺から受光中心に向けて移動するので。
On the other hand, when the pressure changes in a decreasing direction, the interference fringes move from the periphery toward the center of light reception.

先ず1個の干渉縞の発生で、その光パルスが受光器12
で先に受光され、続いて受光器11で受光される。その
ため、プリアンプ13.14の出力a、小出力は第3図
の右半分に示すように、先ず出力すが立上り続いて出力
aが立上る〜したがってモノステーブルマルチパインレ
ータ 子ENに信号aを受けない状態で,信号すを受けるので
,トリガされ出力端Qに一定幅のパルヌ信号を出力し,
これをカウンタ17のDOWN入力端に加える(第6図
のり.OWN参照)。しかしモノステーブルマルチパイ
ンレータ15に信号aが入力されるタイミングでは,自
身の端子ENに信号すが入力されているので七ノステー
ブルマルチバイプレーク15はトリガされない。したが
って、カウンタ17のUP入力端には信号が入力されな
い。
First, one interference fringe is generated, and the optical pulse is transmitted to the receiver 12.
The light is first received by the light receiver 11, and then the light is received by the light receiver 11. Therefore, as shown in the right half of Fig. 3, the output a and small output of the preamplifiers 13 and 14 rise first and then the output a rises.Therefore, the monostable multi-pin inverter EN receives the signal a. Since it receives a signal in the state of
This is added to the DOWN input terminal of the counter 17 (see OWN in FIG. 6). However, at the timing at which the signal a is input to the monostable multi-layer circuit 15, the signal a is input to its own terminal EN, so the seven-stable multi-by-layer circuit 15 is not triggered. Therefore, no signal is input to the UP input terminal of the counter 17.

続いて圧力減少が進むと,同様にして,モノステーブル
マルチパインレータ16の1−リガのみがなされ,対応
してカウンタ17のダウンカラン1−がR)Y続される
Subsequently, as the pressure decreases, only the 1- trigger of the monostable multi-pin regulator 16 is performed in the same manner, and the down-run 1- of the counter 17 is correspondingly connected to R)Y.

以上のようにして,七ノステーブルマルチバイプV−り
15.16で干渉縞の移動方向,すなわち圧力の増加・
減少が検出され,またモノヌテーグlレマルチバイプレ
ータ15.16の出力をカウンタ17でアップあるいは
ダウンカラン:・することにより圧力変化量を得ている
。カウンタ17のカウント値は必要に応じ,D/A変換
器18でアナログ値に変換され,出力アンプ19を通し
て出ノJされる。
As described above, in the Nannostable Multi-Vipe V-Li 15.16, the movement direction of the interference fringes, that is, the increase in pressure and
The decrease is detected, and the amount of pressure change is obtained by increasing or decreasing the output of the mononuclear multiviprator 15, 16 with the counter 17. The count value of the counter 17 is converted into an analog value by a D/A converter 18 as required, and outputted through an output amplifier 19.

なお、1起実施例の圧力導入体1としては,例えば第4
図に示す構造のものが使用される。この圧力導入体1は
,肉薄の弾性壁21で形成される内空部22をイ]する
円筒部23と、圧力導入口24゜この圧力導入口24と
前記内空部22を連通ずる連通路25をイ」する円柱部
26とから一体的に1イ4成されている。そして円筒部
23に光ファイバ2が巻回され2円柱部26に光ファイ
バろが巻回されている。円筒部2ろは内空部22に圧力
が導入されると弾性壁21が11〆らみ、これにより光
ファイバ2は長さが伸びるようになっているが9円柱部
26は肉厚なので圧力が導入されても、外周は何ら変形
せず、したがって光ファイバジは長さに変化が牛しない
ようになっている。
In addition, as the pressure introduction body 1 of the first embodiment, for example, the fourth
The structure shown in the figure is used. This pressure introduction body 1 includes a cylindrical portion 23 that defines an inner space 22 formed by a thin elastic wall 21, a pressure introduction port 24, and a communication path that communicates the pressure introduction port 24 with the inner space 22. 25 is integrally formed with a cylindrical portion 26 which has a cylindrical portion 26. The optical fiber 2 is wound around the cylindrical portion 23, and the optical fiber 2 is wound around the cylindrical portion 26. When pressure is introduced into the inner space 22 of the cylindrical portion 2, the elastic wall 21 tightens, and as a result, the length of the optical fiber 2 is extended.However, since the cylindrical portion 26 is thick, the pressure Even when the optical fiber is introduced, the outer periphery does not change at all, so the length of the optical fiber does not change.

(へ)効果 この発明によれば、圧力変化にE応する光ファイバの光
路差により生じる干渉縞数を計数することにより圧力変
化量を、干渉縞の移動方向検出により、圧力の増減判別
を行なうものであるから。
(F) Effect According to the present invention, the amount of pressure change is determined by counting the number of interference fringes caused by the optical path difference of the optical fiber corresponding to the pressure change, and the increase or decrease in pressure is determined by detecting the moving direction of the interference fringes. Because it is a thing.

防爆性良好r f?ij単にデジタル出力が可という光
ファイバと光干渉応用による圧力検出の利点を確保しつ
つ、圧力変化量のみならずその増減の区別をも同時にな
すことができる。
Good explosion proof r f? ij It is possible to simultaneously distinguish not only the amount of pressure change but also its increase/decrease while ensuring the advantage of pressure detection using an optical fiber and optical interference application that digital output is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一火施例を示す圧力伝送器の圧力検
出部の腹略図、第2図は同圧力伝送器の信号処理部の回
路ブロック図、第ろ図は同圧力伝送器の動作を説明する
だめの信号波形図、第4図は同圧力伝送器に使用される
圧力導入体の一例を具体的に示す断面図である。 1:圧力導入体。 2・5:単一モード光ファイバ。 6:レーザ光源、 8:光分岐器。 9:光合波器、 11・12−受光器。 15・16:モノヌテーブルマルチバイブレーク、17
:カウンタ。 特許出願人 株式会U゛島津製作所 代坤人 弁理士 中 村 茂 信 第1図 第3図 第4図 2
FIG. 1 is a schematic diagram of the pressure detection section of a pressure transmitter showing a one-fire embodiment of the present invention, FIG. 2 is a circuit block diagram of the signal processing section of the pressure transmitter, and FIG. FIG. 4 is a signal waveform diagram for explaining the operation, and is a sectional view specifically showing an example of a pressure introducing body used in the pressure transmitter. 1: Pressure introducing body. 2.5: Single mode optical fiber. 6: Laser light source, 8: Optical splitter. 9: Optical multiplexer, 11/12-light receiver. 15/16: Mononu table multi-by break, 17
:counter. Patent applicant U Shimadzu Corporation Patent attorney Shigeru Shin Nakamura Figure 1 Figure 3 Figure 4 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)光源と、光源よ、りの光を分岐する光分岐器と。 この光分岐器で分岐される一方の光を伝送し。 導入される圧力一応じて長さが変化する第1の単一モー
ド光フ□ァイバと、前記光分岐器で分岐される他方の光
を伝送し、導入圧力の如何にかかわらず長さの変化しな
い第2の単一モード光ファイバと、前記第1と第2の単
一モード光ファイバよシの光を受けて合波し、光の干渉
縞を出力する光合波器と、この光合波器よりの光の干渉
縞を近接する2点で受光する2個の受光器と、これら受
光器よりの出力に基づき、干渉縞数を計数する計数手段
と、前記受光器よりの出力に甚づき干渉縞の移動方向を
判別する手段とを備え、前記計数手段から圧力の変化量
を、前記判別手段の判別出力から圧力の増減を区別し得
るようにした圧力伝送器。
(1) A light source and a light splitter that branches the light from the light source. This optical splitter transmits one of the split lights. A first single mode optical fiber whose length changes depending on the introduced pressure and the other light branched by the optical splitter are transmitted, and the length changes regardless of the introduced pressure. an optical multiplexer that receives and combines light from the first and second single mode optical fibers and outputs interference fringes of light; and the optical multiplexer. two light receivers that receive interference fringes of light at two adjacent points; a counting means that counts the number of interference fringes based on the outputs from these light receivers; means for determining the direction of movement of the stripes, the pressure transmitter being capable of distinguishing the amount of change in pressure from the counting means and the increase or decrease in pressure from the discrimination output of the discriminating means.
JP24860083A 1983-12-23 1983-12-23 Pressure transmitter Pending JPS60135737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24860083A JPS60135737A (en) 1983-12-23 1983-12-23 Pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24860083A JPS60135737A (en) 1983-12-23 1983-12-23 Pressure transmitter

Publications (1)

Publication Number Publication Date
JPS60135737A true JPS60135737A (en) 1985-07-19

Family

ID=17180527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24860083A Pending JPS60135737A (en) 1983-12-23 1983-12-23 Pressure transmitter

Country Status (1)

Country Link
JP (1) JPS60135737A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027625A1 (en) * 2001-09-21 2003-04-03 Yamatake Corporation Physical quantity measuring method and device therefor
JP2016099242A (en) * 2014-11-21 2016-05-30 住友電気工業株式会社 Interference type optical fiber sensor system and interference type optical fiber sensor head
CN106404269A (en) * 2016-08-25 2017-02-15 中国科学院合肥物质科学研究院 Pressure measuring device and method of fiber difference interference

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112608A (en) * 1980-02-12 1981-09-05 Toshiba Corp Optical sensing device
JPS57186134A (en) * 1981-05-11 1982-11-16 Tsukasa Sotsuken:Kk Pressure gauge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112608A (en) * 1980-02-12 1981-09-05 Toshiba Corp Optical sensing device
JPS57186134A (en) * 1981-05-11 1982-11-16 Tsukasa Sotsuken:Kk Pressure gauge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027625A1 (en) * 2001-09-21 2003-04-03 Yamatake Corporation Physical quantity measuring method and device therefor
US7280220B2 (en) 2001-09-21 2007-10-09 Yamatake Corporation Physical quantity measuring method and device therefor
CN100380105C (en) * 2001-09-21 2008-04-09 株式会社山武 Physical quantity measuring method and its device
JP2016099242A (en) * 2014-11-21 2016-05-30 住友電気工業株式会社 Interference type optical fiber sensor system and interference type optical fiber sensor head
CN106404269A (en) * 2016-08-25 2017-02-15 中国科学院合肥物质科学研究院 Pressure measuring device and method of fiber difference interference

Similar Documents

Publication Publication Date Title
JPS58201015A (en) Distance measuring device
DE3176220D1 (en) Fibre-optical measuring equipment
KR970075902A (en) Optical measuring device of light scattering body
US4865416A (en) Optical sensing arrangements
JP2936352B2 (en) Methods for using optical fibers as sensors
JPS60135737A (en) Pressure transmitter
US5225894A (en) Spectral discrimination using temporal mapping of light pulses through optical filters
US4888480A (en) Optical sensing arrangements with wavelength and time-displacement detection
JPH0342504A (en) Light reception position detector
JPS60135736A (en) Pressure transmitter
CN209102100U (en) A kind of detection device
JPS582602A (en) Optical displacement detector
JP2022067204A (en) Ic for photoelectronic sensor and photoelectronic sensor
RU1812463C (en) Fiber-optical pressure meter
JPS61228304A (en) Optical strain measuring device
JPS601398Y2 (en) pressure gauge
JPS6050403A (en) Distance sensor
JPH01155228A (en) Optical directional coupler
RU2206097C1 (en) Fiber-optical converter of speeds of sea currents
JPS5958316A (en) Pressure detecting device
KR950005035Y1 (en) Distance counting apparauts for auto focus camera
SU1469362A1 (en) Optic frequency meter
JPH09200022A (en) Touch key
JPS6148748A (en) Optical measuring device
SU1509633A1 (en) Light-guide temperature sensitive element