JPS60135730A - Double beam spectrophotometer - Google Patents

Double beam spectrophotometer

Info

Publication number
JPS60135730A
JPS60135730A JP24680883A JP24680883A JPS60135730A JP S60135730 A JPS60135730 A JP S60135730A JP 24680883 A JP24680883 A JP 24680883A JP 24680883 A JP24680883 A JP 24680883A JP S60135730 A JPS60135730 A JP S60135730A
Authority
JP
Japan
Prior art keywords
ratio
sample
wave number
light
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24680883A
Other languages
Japanese (ja)
Other versions
JPH0476056B2 (en
Inventor
Kenji Nakamura
健次 中村
Yasutaka Tokuhara
徳原 康隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP24680883A priority Critical patent/JPS60135730A/en
Publication of JPS60135730A publication Critical patent/JPS60135730A/en
Publication of JPH0476056B2 publication Critical patent/JPH0476056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To remove influence of absorption, etc. due to atmospheric components and to make a high speed wavelength scanning possible by integrating respective optical signals of a control and sample to obtain the ratio, and obtaining the ratio, of both signals from the obtained ratio at front and rear ends of the integral interval in the midway thereof by interpolating method. CONSTITUTION:Each luminous flux R, S of the control and the sample from a light source L are intermitted at frequencies f1, f2 by choppers 1, 2, mixed by a beam mixer 3, made incident to a spectroscope M, detected by a detector D and discriminated by selective amplifiers Sr, Ss. Said lights are integrated by integrators Ir, Is and taken into a CPU. Scanning and data processings of the spectroscope M are performed by wave number unit, integer times of wave number is taken as an integral interval, outputs of the amplifiers Sr, Ss are integrated to obtain the ratio i.e. a transmissivity, and the transmissivity is obtained at every wave number by interpolating method from values of front and rear ends of the integral interval in the midway thereof. Thus, the influence of absorption, etc. of atmospheric components can be eliminated.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は測定試料に対する測光信号と対照試料に対する
測光信号の両側光信号の比をめる北側光方式の複光束分
光光度計に関する。
Detailed Description of the Invention A. Field of Industrial Application The present invention relates to a north-light type double-beam spectrophotometer that measures the ratio of both side optical signals of a photometric signal for a measurement sample and a photometric signal for a reference sample.

複光束分光光度計で試料光と対照光の測光信号の比をめ
る方式として、対照光の測光信号が一定値を示すように
測光回路の利得を制御したり、検出器の感度を制御した
シ、或は光学系のスリット幅を制御する等の負帰還方式
と、試料光、対照先夫々の測光出力を直接割算する直接
化方式とがあるが、何れの方式におい七も、試料光束と
対照光束とを夫々交互或は異る周期でチョッピングしで
一つの光検出器に入射させ、回路上の処理によって試料
光と対照光の各測光信号を弁別している。
A method for calculating the ratio of the photometric signals of the sample light and reference light using a double-beam spectrophotometer is to control the gain of the photometric circuit and the sensitivity of the detector so that the photometric signal of the reference light shows a constant value. There is a negative feedback method, such as controlling the slit width of the optical system, and a direct method, which directly divides the photometric output of the sample light and the reference target. The sample light beam and the reference light beam are chopped alternately or at different cycles and made incident on one photodetector, and each photometric signal of the sample light and the reference light is discriminated by processing on the circuit.

口・従来技術 上述した複光束分光光度計で大気中成分の吸収の影響を
受けるような場合、高速で波長走査を行うとS/N比が
低下すると゛云う問題があって、高速波長走査ができな
かった六このよ□うな問題は特にチ・るピ・グ周期を門
り短かくできない赤外分光分析の場合に大きく表れる。
- Prior Art When the above-mentioned double-beam spectrophotometer is affected by the absorption of atmospheric components, there is a problem that the S/N ratio decreases when wavelength scanning is performed at high speed. Problems like these are especially noticeable in infrared spectroscopy, where the chirping period cannot be shortened.

□ この点を具体的に説明する。複光束分光光度計で対照光
と試料光とを同一光検出器で受光する場合、前述したよ
うに両方の光を識別するため夫々の光束をチョッピング
して光検出器に互に異るタイミングで入射するようにし
ている。このため対照光と試料光の夫々の測光値はサン
プリング時点が異っている。今人気中成分の吸収スペク
トルが第1図のようであるとする。この吸収の影響は対
照光束も試料光束も全く同じに現れるので、波長走査速
度がおそくて、対照光測光値も試料光測光値も同じ波長
位置でサンプリングされたものとみなせるときは比をめ
ることでこの吸収の影響は消去される(これが複光束と
することの効果)のであるが、波長走査が高速になると
、対照光と試料光のサンプリング時点の時間差Δtの間
の波長変化が大となシ、夫々のタイミングでの吸収が大
幅に異って、割算をしても大気成分の吸収の影響は消去
されず、測定上の誤差となる。高速走査に応じてチョッ
ピングの周波数を高めれば、この問題は回避できるが、
赤外分光の場合、応答速度の速い光検出器が得られない
ので、チョッピング周波数を高めることはできない。従
って上の問題を避けるには波長走査速度を低く抑えてお
く他なかったのであるっ ハ、目 0勺 本発明は複光束分光光変則において、大気中成分による
吸収等の影響を除き高速波長走査を可能にすることを目
的とする。
□ Explain this point in detail. When a double-beam spectrophotometer uses the same photodetector to receive the reference light and the sample light, each light beam is chopped and sent to the photodetector at different times in order to identify both lights, as described above. I am trying to make it incident. For this reason, the photometric values of the control light and the sample light are sampled at different times. Assume that the absorption spectrum of a currently popular ingredient is as shown in Figure 1. The effect of this absorption appears in exactly the same way in both the reference and sample light fluxes, so if the wavelength scanning speed is slow and the reference and sample light photometric values can be considered to have been sampled at the same wavelength position, compare them. This eliminates the effect of absorption (this is the effect of using a double beam), but as wavelength scanning becomes faster, the wavelength change between the time difference Δt between the sampling points of the reference light and the sample light becomes large. However, the absorption at each timing is significantly different, and even division does not eliminate the influence of absorption of atmospheric components, resulting in measurement errors. This problem can be avoided by increasing the chopping frequency according to high-speed scanning, but
In the case of infrared spectroscopy, it is not possible to increase the chopping frequency because a photodetector with a fast response speed cannot be obtained. Therefore, in order to avoid the above problem, there was no choice but to keep the wavelength scanning speed low. The purpose is to make it possible.

ニ、構 成 本発明複光束分光光度計は、上述した誤差の原因となる
吸収スペクトルの波長幅よシも広い範囲について、対照
光信号及び試料光信号を夫々積分し、積分値間で比をめ
ると共に、比がまるのは積分区間毎に飛びとびになるの
で、積分区間の途中については補間法で試料光信号と対
照光信号の比を算出するようになっている。
D. Configuration The double-beam spectrophotometer of the present invention integrates the reference optical signal and the sample optical signal over a range wider than the wavelength width of the absorption spectrum that causes the above-mentioned error, and calculates the ratio between the integrated values. At the same time, since the ratio is not perfect for each integral interval, the ratio between the sample optical signal and the reference optical signal is calculated by interpolation in the middle of the integral interval.

ホ、実施例 第2図は本発明の一実施例を示す。Lは光源で、ミラー
mr、m5(yよって対照光束Rと試料光束Sが取出さ
れる。Crは対照試料、Csは測定試料であり、1. 
2はチョッパで、対照光束Rを周波数fl、試料光束を
周波数f2で断続する。3はビームミキサーで対照光及
び試料光を混合し七分光器Mに入射させる。Dは分光器
Mの出射光を受光する検出器である。検出器りの出力は
プリアンプPAで増幅された後選択増幅器Sr及びSs
で周波数f1の成分とf2の成分とに弁別される。
E. Embodiment FIG. 2 shows an embodiment of the present invention. L is a light source, mirrors mr, m5 (y, so that a control light flux R and a sample light flux S are taken out; Cr is a control sample; Cs is a measurement sample; 1.
A chopper 2 cuts off the reference light flux R at a frequency fl and the sample light flux at a frequency f2. 3 is a beam mixer that mixes the reference light and the sample light and makes them enter the seven spectrometer M. D is a detector that receives the light emitted from the spectrometer M. The output of the detector is amplified by a preamplifier PA and then sent to selection amplifiers Sr and Ss.
The signal is separated into a frequency f1 component and a frequency f2 component.

周波数f1の成分は対照光測光信号であり、f2の成分
は試料光測光信号である。両信号は積分画工r、工Sで
積分される。積分を行っている時間はコンピュータCP
Uから発せられるリセット信号のタイミングで制御され
てお9、一定時間の積取 分結果がA/D変換されてCPUに擦込まれる。
The component at frequency f1 is a reference light photometric signal, and the component at frequency f2 is a sample light photometric signal. Both signals are integrated by integral fractions r and s. The time during which the integration is performed is calculated by the computer CP.
It is controlled by the timing of a reset signal issued from U, and the integration results for a certain period of time are A/D converted and fed into the CPU.

分光器の波長走査及び測光信号のデータ処理は波数単位
で行われている。分光器Mの波数走査はパルスモータ駆
動で波数ΔW飛びに駆動される。
Wavelength scanning of a spectrometer and data processing of photometric signals are performed in wavenumber units. The wave number scanning of the spectrometer M is driven by a pulse motor in steps of wave numbers ΔW.

積分区間の波数幅はΔWの整数N倍にとる。今対照光の
測光信号である選択増幅器Srの出力をSr、試料光の
測光信号である選択増幅器SSの出力をSsとし、積分
が夫々波長W1とW 2 = W 1+NΔWの間で行
われたとして、そのときの積分1 値を夫々工r、工S
とする。即ち こ\で波数W’l+NΔWにおける試料の透過率Tw2
を Tw2−1B/工r・・・・・・・・・・・・・甲・・
・・・・・・(2)とする。この構成においては分光器
の波数走査がW2=W1+NΔWまで進行した所で、波
数W2における透過率T、 72がまる。
The wave number width of the integration interval is set to an integral number N times ΔW. Now let Sr be the output of the selective amplifier Sr, which is the photometric signal of the reference light, and Ss be the output of the selective amplifier SS, which is the photometric signal of the sample light, and assume that the integration is performed between the wavelengths W1 and W 2 = W 1 + NΔW, respectively. , the integral 1 value at that time is expressed as kr and s, respectively.
shall be. In other words, the transmittance Tw2 of the sample at the wave number W'l+NΔW is
Tw2-1B/Engr・・・・・・・・・・A・・
......(2). In this configuration, when the wave number scanning of the spectrometer has progressed to W2=W1+NΔW, the transmittance T, 72, at wave number W2 becomes complete.

上述構成で透過率は波数NΔW飛びに得られるので、そ
の間の透過率は補間εl[によりΔW飛びに算出して表
示する。この補間計算は次のように行われる。
With the above configuration, the transmittance is obtained at wave numbers NΔW jumps, so the transmittances between them are calculated and displayed at ΔW jumps by interpolation εl[. This interpolation calculation is performed as follows.

Twl :波数Wlにおける透過率 Tw2:波数W2における透過率 W 2 = W 1 +NΔW T w x :波数W 1 +X ΔV/又は整数でl
〜N−N −1Tコ□X X + Twl こ\で前記(11,(2)式を参照すると、Tw2がま
るのは分光器の波数走査がW2まで進んだ時であるから
WlからW2までの間の補間計算は分光器の波数走査が
W2からW3へと進行して行く間に行われる。従って表
示装置4においては分光器Mの波数位置よ!llNΔW
だけ遅れた波数に対応する透過率を表示する。
Twl : Transmittance at wave number Wl Tw2: Transmittance at wave number W2 W 2 = W 1 +NΔW T w x : Wave number W 1 +X ΔV/or l as an integer
~N-N -1T□X The interpolation calculation between is performed while the wave number scanning of the spectrometer progresses from W2 to W3.Therefore, in the display device 4, the wave number position of the spectrometer M is !llNΔW.
Displays the transmittance corresponding to the wave number delayed by .

第3図はCPUの動作のフローチャートである。FIG. 3 is a flowchart of the operation of the CPU.

分光器の波数走査の始点の波数をWoとすると、整数N
はNΔWが第1図における大気成分の吸収等のピーク幅
を充分含むと共にWoがNΔWで割切れるように選択さ
れる。このようにしておくと、各積分区間の境界の波数
w1. 、w ’2・・・は全てHΔWで割切れる。以
上の点を前提として第3図のフローチャートを説明する
。Wlは分光器の現在の波数位置である。ステップ(イ
)でW i / NΔWの試算を行い、ステップ(ロ)
でこれが割切れるかどうかを調べる。割切れる場合(Y
ES)はその波数Wiは積分区間の境界であるから、そ
のときの積分画工r、工Sの出カニr、工S を読込む(ハ)。次いでT w i = 工s / I
 rを算出に)し、数Mを0とおき(ホ)、各積分器を
リセット(へ)し、(Twi−Twi−1)/’N−α
を計算(卜)シ、Tw i−1−1−Mαを算出する(
チ)。(卜)(チ)のステップは補間計算を行っている
のであシ、Mは当初Oである。次のステップ〈す)で波
数送りモータを駆動し、分光器の波数をΔWだけ進め、
WlをW1+ΔWにしくヌ)、表示器4における表示彼
来をWi−NΔWにする(ノリ。このし1のステップに
おけるWlは先の(イ)のステップのWlよシΔWたけ
プラスされた波数であり、動作は(イ)に戻る。(ロ)
のステップが割切れない(NO)のは積分区間の途中で
あることを意味し、動作はステップ例でMKIを加え、
動作は(チ)に飛ぶ。かくして分光器は波数ΔW飛びに
、駆動され、その都度補間計算が行われ、表示がなされ
、再び積分区間の境界に来ると、W i / NΔWが
割切れて動作は(ハ)に)・・(ル)と進行する。
If the wave number at the starting point of the wave number scan of the spectrometer is Wo, then the integer N
is selected such that NΔW sufficiently includes the peak width of absorption of atmospheric components in FIG. 1, and Wo is divisible by NΔW. By doing this, the wave number w1 at the boundary of each integral interval. , w'2... are all divisible by HΔW. The flowchart in FIG. 3 will be explained based on the above points. Wl is the current wavenumber position of the spectrometer. In step (a), make a trial calculation of Wi / NΔW, and in step (b)
Check whether this is divisible by If divisible (Y
Since the wave number Wi of ES) is the boundary of the integral interval, read the integral fraction r, the output r of S, and S at that time (c). Then T w i = engineering s / I
Set r to calculation), set the number M to 0 (e), reset each integrator (to), and calculate (Twi-Twi-1)/'N-α
, calculate Twi-1-1-Mα (
blood). Steps (B) and (H) perform interpolation calculations, so M is initially O. In the next step, the wave number feed motor is driven to advance the wave number of the spectrometer by ΔW.
Set Wl to W1 + ΔW), and set the display value on display 4 to Wi-NΔW (Nori. Now, Wl in step 1 is the wavenumber of Wl in the previous step (a) plus ΔW). Yes, the operation returns to (a). (b)
If the step is not divisible (NO), it means that it is in the middle of the integral interval, and the operation is to add MKI in the step example,
The action jumps to (ch). In this way, the spectrometer is driven at wave numbers ΔW, and interpolation calculations are performed and displayed each time. When the boundary of the integration interval is reached again, W i /NΔW is divisible and the operation is (c)... Proceed with (ru).

へ、効 果 本発明によれば、積分動作によりNΔWの区間のサンプ
リングデータが平均化されて試料光信号、対照光信号の
比がめられるので、個々の信号のサンプリングのタイミ
ングが異っていても、全体としては同じ時間インターバ
ルにおける試料光信号と対照光信号の比になっており、
両信号に共通に現われる変化ヲ玉相殺され、高速走査に
おいても大気成分の吸収等の影響は現れない。なお本発
明によると波数NΔWの間のデータの平均をその区間の
サンプリングデータとしていることになるから、波長分
解能が低下していることになるが、高速走査を行うのは
、赤外線分光の場合等、正規の測定には数十分もか\る
ので、2〜3分で試料スペクトルの全体のおよその形を
知りたいと云うような場合であるから、高い波長分解能
はめていないのであり、むしろノイズが少く全体として
正しいスペクトルの形が表示される方が望ましいのであ
り、本発明はそのような要求に適合しているのである。
Effects According to the present invention, the sampling data in the NΔW interval is averaged by the integral operation and the ratio between the sample optical signal and the reference optical signal is determined, so even if the sampling timing of the individual signals is different. , the total is the ratio of the sample optical signal and the reference optical signal in the same time interval,
Changes that commonly appear in both signals are canceled out, and effects such as absorption of atmospheric components do not appear even during high-speed scanning. According to the present invention, the average of the data between the wave numbers NΔW is used as the sampling data for that section, which means that the wavelength resolution is reduced, but high-speed scanning is performed in the case of infrared spectroscopy, etc. , a regular measurement takes several tens of minutes, so in a case where you want to know the approximate shape of the entire sample spectrum in 2 to 3 minutes, high wavelength resolution is not included. It is desirable to display a correct spectrum shape as a whole with less noise, and the present invention meets such requirements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の問題点を説明するグラフ、第2図は本
発明の一実施例装置のブロック図、第3図は同装置の動
作のフローチャートである。 L・・・光源、R・・・対照光束、S・・・試料光束、
1.2・・・チョッパ、3・・・ビームミキサ、M・・
・分光器、D・・・光検出器、Sr、Ss・・・選択増
幅器、Ir、I8・・・積分器、CPU・・・コンピュ
ータ、4・・・表示R”4゜代理人 弁理士 縣 浩 
介 欠l圏 大?図
FIG. 1 is a graph explaining the problems of the conventional example, FIG. 2 is a block diagram of an apparatus according to an embodiment of the present invention, and FIG. 3 is a flowchart of the operation of the apparatus. L...Light source, R...Control light flux, S...Sample light flux,
1.2...Chopper, 3...Beam mixer, M...
・Spectrometer, D...Photodetector, Sr, Ss...Selective amplifier, Ir, I8...Integrator, CPU...Computer, 4...Display R"4゜Agent Patent attorney Agata Hiroshi
Is it too large for intervention? figure

Claims (1)

【特許請求の範囲】[Claims] 複数回のチョッピング動作を含む波長範囲を積分区間と
して対照光信号及び試料光信号を積分して両者の比をめ
ると共に、積分区間の途中においては、上記積分区間の
前後端でめられた対照光信号と試料光信号“め両積分値
の比から補間法で、対照光、試料光両光の信号の比をめ
るようにしたことを特徴とする複光束分光光度計。
The reference optical signal and the sample optical signal are integrated using the wavelength range that includes multiple chopping operations as an integral interval, and the ratio of the two is determined. A double beam spectrophotometer characterized in that the ratio of the signals of the reference light and the sample light is determined by an interpolation method from the ratio of the integral values of the optical signal and the sample light signal.
JP24680883A 1983-12-23 1983-12-23 Double beam spectrophotometer Granted JPS60135730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24680883A JPS60135730A (en) 1983-12-23 1983-12-23 Double beam spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24680883A JPS60135730A (en) 1983-12-23 1983-12-23 Double beam spectrophotometer

Publications (2)

Publication Number Publication Date
JPS60135730A true JPS60135730A (en) 1985-07-19
JPH0476056B2 JPH0476056B2 (en) 1992-12-02

Family

ID=17153984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24680883A Granted JPS60135730A (en) 1983-12-23 1983-12-23 Double beam spectrophotometer

Country Status (1)

Country Link
JP (1) JPS60135730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284227A (en) * 1986-06-02 1987-12-10 Minolta Camera Co Ltd Spectrometric instrument
US5175697A (en) * 1986-06-02 1992-12-29 Minolta Camera Kabushiki Kaisha Spectrophotometer for accurately measuring light intensity in a specific wavelength region

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284227A (en) * 1986-06-02 1987-12-10 Minolta Camera Co Ltd Spectrometric instrument
US5175697A (en) * 1986-06-02 1992-12-29 Minolta Camera Kabushiki Kaisha Spectrophotometer for accurately measuring light intensity in a specific wavelength region
US5305233A (en) * 1986-06-02 1994-04-19 Minolta Camera Kabushiki Kaisha Spectrophotometer for accurately measuring light intensity in a specific wavelength region

Also Published As

Publication number Publication date
JPH0476056B2 (en) 1992-12-02

Similar Documents

Publication Publication Date Title
EP0543160B1 (en) Optical spectrum analyzer
US3972617A (en) Spectrophotometer
JP3098768B2 (en) Spectrophotometer and its photometric method
US4225233A (en) Rapid scan spectrophotometer
JPS6132607B2 (en)
JPH0427494B2 (en)
US4223995A (en) Calibration system for spectrophotometers
JP2002243584A (en) Snr calculation method and optical spectrum measuring device
EP0822394B1 (en) Optical measuring device with wavelength-selective light source
JPS60135730A (en) Double beam spectrophotometer
US4299487A (en) Method of and device for analyzing one ingredient in a mixed solution with two light beams of different wavelengths
US5825484A (en) Optical spectrum measuring device
JP3478125B2 (en) Optical frequency spectrum calculation method
JP2002195946A (en) Atomic absorption photometer
JPS6212847B2 (en)
JPS5985918A (en) Direct ratio type spectrophotometer
JP2005147811A (en) Spectrophotometer
JP3230565B2 (en) Optical spectrum analyzer
JP2002228521A (en) Spectroscope and method of spectroscopy
JPS62147344A (en) Multiwavelength spectrophotometer
JP2581464Y2 (en) Filter evaluation device
JPH05264352A (en) Spectorophotometer
JPS59162424A (en) Phase compensating type ratio spectrophotometer
JPS58139036A (en) Spectrophotometer
JPH0522856B2 (en)