JPS60135441A - Semiconducting resin composition - Google Patents

Semiconducting resin composition

Info

Publication number
JPS60135441A
JPS60135441A JP24284683A JP24284683A JPS60135441A JP S60135441 A JPS60135441 A JP S60135441A JP 24284683 A JP24284683 A JP 24284683A JP 24284683 A JP24284683 A JP 24284683A JP S60135441 A JPS60135441 A JP S60135441A
Authority
JP
Japan
Prior art keywords
carbon black
resin composition
black
conductive carbon
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24284683A
Other languages
Japanese (ja)
Inventor
Toshio Shiina
椎名 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP24284683A priority Critical patent/JPS60135441A/en
Publication of JPS60135441A publication Critical patent/JPS60135441A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce easily the titled composition having an electrical resistivity of 10<3>-10<6>OMEGA.cm, by incorporating a conductive carbon black in combination with a thermal carbon black having a larger particle size into an ethylenic polymer. CONSTITUTION:100pts.wt. ethylenic polymer (e.g. polyethylene or an ethylene- vinyl acetate copolymer), a conductive carbon black (preferably acetylene black or furnace black) in a prescribed amount, and about 5-20pts.wt. thermal carbon black (e.g. MI carbon) are kneaded in a Banbury mixer, etc. to give a semiconducting resin composition with a required resistivity.

Description

【発明の詳細な説明】 1発明の背端と目的J 本発明は半導電性樹脂組成物に係り、特に電気抵抗を1
03〜1O6Ω/axとずるのに好適な半S電性樹脂組
成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1. Background and Objectives of the Invention The present invention relates to a semiconductive resin composition, and particularly to a semiconductive resin composition that has an electrical resistance of 1.
The present invention relates to a semi-S conductive resin composition suitable for achieving a resistance of 03 to 106 Ω/ax.

従来、半導電性樹脂組成物どして、ポリオレフィン、例
えば、ポリエチレン、エチレン酢酸ビニルコポリマー、
Jチレンエブルアクリレ−トまたはエチレン−プロピレ
ンゴムに導、電性カーボンブラックを充填したものが用
いられていた。
Conventionally, semiconductive resin compositions have been made using polyolefins such as polyethylene, ethylene vinyl acetate copolymers,
J-ethylene blue acrylate or ethylene-propylene rubber filled with conductive and electrically conductive carbon black has been used.

この場合、電気抵抗が1030/ cm以上のものは、
充填するカーボンブラック量を多くずるにしたがい電気
抵抗が低くなるので、充填づるカーボンブラック団の加
減によって得られる。また、電気抵抗が10”Ω/CI
n以上のものは、カーボンブラックと無機充填剤の併用
によって容易に得ることができる。
In this case, those with electrical resistance of 1030/cm or more,
The electrical resistance decreases as the amount of carbon black filled increases, so it can be obtained by controlling the amount of carbon black packed. Also, the electrical resistance is 10”Ω/CI
Those of n or more can be easily obtained by using carbon black and an inorganic filler in combination.

しかし、103〜10lIΩ/ cmのfLNJIIの
電気抵抗のものは抵抗値の調節が困難であり、カーボン
ブラックの充填量を増減したたりでは、電気抵抗の変化
が大きく、所望の電気抵抗のものを得るのが容易でなか
った。混線条件が僅かに変っただけでも電気抵抗が大ぎ
くばらつき、所望の電気抵抗のものが得られにくいとい
う欠点があった。
However, it is difficult to adjust the resistance value of fLNJII electrical resistance of 103 to 10 lIΩ/cm, and increasing or decreasing the amount of carbon black filled causes a large change in electrical resistance, and it is difficult to obtain the desired electrical resistance. It wasn't easy. Even a slight change in the crosstalk conditions causes large variations in electrical resistance, making it difficult to obtain a desired electrical resistance.

本発明は上記に鑑みてなされたもので、その目的とする
ところは、電気抵抗が103− 106Ω/ cmの範
囲において任意の電気抵抗のものを容易に得ることがで
きる半導電性樹脂組成物を提供4ることにある。
The present invention has been made in view of the above, and its purpose is to provide a semiconductive resin composition that can easily have any electrical resistance within the range of 103-106 Ω/cm. There are 4 things to offer.

[発明の概要」 木光明の特徴は、1チレン系ポリマに導電性カーボンブ
ラックとこの導電性カーボンブラックよりも粒径が大き
いサーマルカーボンブラックとを添加した組成物どした
点にある。
[Summary of the Invention] Kikomei is characterized by a composition in which conductive carbon black and thermal carbon black, which has a larger particle size than the conductive carbon black, are added to a 1-tyrene polymer.

エチレン系ポリマに導電性カーボンブラックを添加する
方法としては、パンバリミキサーやロール練機などによ
り混練する方法があるが、混線条件によって電気抵抗が
容易に変化し、安定した値が得られにくいという問題が
ある。これは、カーボン粒子のつながり(ストラフチャ
−)が切断されるためであるといわれている。
One way to add conductive carbon black to ethylene polymer is to knead it using a panburi mixer or roll kneader, but the electrical resistance changes easily depending on the cross-wire conditions, making it difficult to obtain a stable value. There's a problem. It is said that this is because the connections (straftures) of carbon particles are cut.

そこで、本発明においては、上記の問践点を解決するた
め、カーポンストラクチャ−の間隙に粒子径の大きい4
ノーマルカーボンブランクを添加Jることにより導電性
の低下を少なくするようにした。なお、導電性カーボン
ブラックとサーマルカーボンブラックとを4Jl用する
ことにより、押出成形時の流れが均一化し、これによっ
てカーボンブラックの分散が均一となり、電気抵抗のば
らつきが少なくなるという利点を生す゛る。
Therefore, in the present invention, in order to solve the above-mentioned problems, a large particle diameter 4
By adding a normal carbon blank, it was possible to reduce the decrease in conductivity. In addition, by using 4 Jl of conductive carbon black and thermal carbon black, the flow during extrusion molding becomes uniform, resulting in uniform dispersion of carbon black, which has the advantage of reducing variations in electrical resistance.

ここで用いる導電性カーボンブラックとじCは、アセヂ
レンブラック、ファーネスブラックかよく、ケッチェン
ブラックECは、カーボン粒子のトンネル効果やジャン
プ効果のため、電気41U抗が小さくなり過ぎるので適
当でない。
The conductive carbon black Toji C used here may be acetylene black or furnace black. Ketjen black EC is not suitable because the electric 41U resistance becomes too small due to the tunnel effect and jump effect of carbon particles.

L実施例J 次に、具体的実施例と比較例につい(説明りる、。L Example J Next, specific examples and comparative examples will be explained.

第1表は、実施例と比較例とを表記したちのCある。と
ころで、体積抵抗を測定づるためのモj゛ルケーブルの
作製および体積抵抗の測定は、次のようにした。各配合
組成のコンパウンドをパンバリミキサーにより混練し、
押出機を通してj9さ1 mm、幅35mの押出ベルl
−を作製し、次に、これをノフルミパイプの長さ方向に
沿って16さ、(の十に架橋剤添加ポリエチレンテーブ
を1/3ラッゾ巻さで10回重ね巻きし、絶縁厚さを5
 mmにしC[ゲルケーブルとした。その後、この[7
゛ルケーゾルを蒸気圧13に!/ciの高圧釜で10分
間架橋し、端末を切り出して両端にリード線を巻き、導
電性第 1 表 ペイントで固定して接触抵抗をなくした。、体積抵抗の
測定は、ホイートストンブリッジで抵抗値の測定を行い
、体積抵抗(Ω/ cm )に換算しj(。
Table 1 shows examples and comparative examples. By the way, the fabrication of a module cable for measuring volume resistance and the measurement of volume resistance were carried out as follows. Knead the compounds of each composition using a Pan Bali mixer,
Pass the extruder through an extrusion bell with a diameter of 1 mm and a width of 35 m.
Next, this was wrapped 10 times along the length of the noflumi pipe with 1/3 razo wrapping of polyethylene tape containing a cross-linking agent, and the insulation thickness was 5 times.
It was made into a gel cable in mm. Then this [7
The vapor pressure of the kaesol is 13! /ci high pressure cooker for 10 minutes, cut out the terminal, wrapped lead wires around both ends, and fixed with conductive paint to eliminate contact resistance. To measure the volume resistance, measure the resistance value with a Wheatstone bridge and convert it to volume resistance (Ω/cm).

なお、パンバリミキサーによる練り条イ′1の練り回数
1回目は、最高温度130〜140″C1時間4分とし
て2,3回目は、最高温度120〜130℃、時間2分
とした。
The first time of kneading the kneading strip A'1 using the Pan Bali mixer was at a maximum temperature of 130-140''C for 1 hour and 4 minutes, and the second and third kneading times were at a maximum temperature of 120-130°C and a time of 2 minutes.

第1表において、ベースポリマは、エチレン酢酸ビニル
共重合体く酢酸ビニル船12%、MI=2)70重間%
に対して中密1哀ポリエチレン(密度0.934、MI
=2)を3重間%ブレンドした系のものを用いた。また
、ファーネスブラックは、FEF(態度#100)を用
いた。
In Table 1, the base polymer is ethylene vinyl acetate copolymer (vinyl acetate 12%, MI = 2) 70% by weight.
Medium-density polyethylene (density 0.934, MI
= 2) was used as a 3% blend. Furthermore, FEF (Attitude #100) was used as the furnace black.

第1図は第1表の各実施例、比較例毎のパンバリミキサ
ーによる練り回数と体積抵抗との関係を承した線図であ
る。第1表、第1図に示したJ、うに、エチレン酢酸ビ
ニル重合体とポリ1′Jレンとからなるベースポリマに
対し導電性カーボンブラックとMlカーボン(サーマル
カーボンブラック)とを充填した実施例1〜4は、いず
れしパンハリミキ1ノーによる練り回数を1回から3回
と増やしても、体積抵抗の変化が少なく、安定した値が
得られた。これは、混練によって導電性カーボンブラッ
クのス1へラフチャーが切断されても、粒子径の大きい
M l−カーボンブラックによる[+し効果により電気
抵抗の変化が少なくなるためである。
FIG. 1 is a diagram showing the relationship between the number of times of kneading using the Pan Bali mixer and volume resistance for each of the Examples and Comparative Examples shown in Table 1. An example in which conductive carbon black and Ml carbon (thermal carbon black) were filled into the base polymer consisting of J, uni, ethylene vinyl acetate polymer and poly 1'J shown in Table 1 and Figure 1. For Nos. 1 to 4, even if the number of times of kneading by Panhari Miki 1 No was increased from 1 to 3, there was little change in volume resistivity and a stable value was obtained. This is because even if the roughtures are cut into the conductive carbon black slivers by kneading, the change in electrical resistance is reduced due to the positive effect of the M l-carbon black having a large particle size.

一方、M1カーボンを添加しない導電性カーボンブラッ
クのみを充填した比較例1〜3の場合は、練り回数が1
回から3回へと増加づるにしたがって体積抵抗が大ぎく
上昇し、上記の場合の10倍以上どなる。、なお、M 
Tカーボンの添加用が5重量%以上になると、顕著な効
果が現われ、20重量%以上では、その効果はほとlυ
ど変わらなかった。したがって、M 1カーボンの添加
量は5〜20重量%Cあることが望ましい。
On the other hand, in the case of Comparative Examples 1 to 3 in which only conductive carbon black without M1 carbon was added, the number of kneading was 1.
As the number of times increases from 3 times to 3 times, the volume resistance increases significantly and becomes more than 10 times that in the above case. , Furthermore, M
When the amount of T carbon added is 5% by weight or more, a remarkable effect appears, and when it is 20% by weight or more, the effect is almost lυ
Nothing changed. Therefore, it is desirable that the amount of M1 carbon added is 5 to 20% by weight.

ペースポリマとじCは、上記した実施例以外に、低密境
ポリJ−チレン、高密度ポリJ−ヂレン、■ヂレンー酢
酸ビニル共Φ合体、]0チレンプ[」ピレンラバーを単
独;したはイノ1用して用いるようにし−Cもよい。
In addition to the above-mentioned examples, Pace Polymer Binding C also includes low-density polyJ-tyrene, high-density polyJ-dylene, dylene-vinyl acetate co-Φ combination, ]0 tyremp[' pyrene rubber alone; -C is also good.

U発明の効果1 以上説明したように、本発明によれば、電気抵抗が10
3〜106Ω/ cmの範囲にJ3いて(fFf<の電
気抵抗の6のを容易に得られるという効果がある。
U Effect of the invention 1 As explained above, according to the present invention, the electrical resistance is 10
J3 is in the range of 3 to 106 Ω/cm (fFf<6), which is effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はパンバリミキザーによる練り回数と半導電性樹
脂組成物の体積抵抗どの関係の実験結果を示す線図であ
る。
FIG. 1 is a diagram showing the experimental results of the relationship between the number of times of kneading with a panburi mixer and the volume resistance of a semiconductive resin composition.

Claims (1)

【特許請求の範囲】[Claims] (1) エチレン系ボリマに導電性カーボンブラックと
該導電性カーボンブラックよりも粒径が大きいサーマル
カーボンブラックとを添加してなることを特徴とする半
導電性樹脂組成物。 (2 前記サーマルカーボンブラックの添加量は、前記
エチレン系ポリ7100重W部%に対して5・〜20重
鉛%である特許請求の範囲第1項記載の半導電性樹脂組
成物。
(1) A semiconductive resin composition characterized in that it is formed by adding conductive carbon black and thermal carbon black having a larger particle size than the conductive carbon black to an ethylene-based polymer. (2) The semiconductive resin composition according to claim 1, wherein the amount of the thermal carbon black added is 5% to 20% by weight based on 7100% by weight of the ethylene-based poly.
JP24284683A 1983-12-22 1983-12-22 Semiconducting resin composition Pending JPS60135441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24284683A JPS60135441A (en) 1983-12-22 1983-12-22 Semiconducting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24284683A JPS60135441A (en) 1983-12-22 1983-12-22 Semiconducting resin composition

Publications (1)

Publication Number Publication Date
JPS60135441A true JPS60135441A (en) 1985-07-18

Family

ID=17095160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24284683A Pending JPS60135441A (en) 1983-12-22 1983-12-22 Semiconducting resin composition

Country Status (1)

Country Link
JP (1) JPS60135441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705555A (en) * 1991-05-04 1998-01-06 Cabot Corporation Conductive polymer compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116998A (en) * 1975-04-08 1976-10-14 Dainippon Ink & Chem Inc Semiconductor resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116998A (en) * 1975-04-08 1976-10-14 Dainippon Ink & Chem Inc Semiconductor resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705555A (en) * 1991-05-04 1998-01-06 Cabot Corporation Conductive polymer compositions

Similar Documents

Publication Publication Date Title
JPH0428743B2 (en)
JPH0428744B2 (en)
SE8304042L (en) TAPE HEATER WITH ELECTRICAL DEVICES INCLUDING LEADING POLYMER COMPOSITIONS
JPS60135441A (en) Semiconducting resin composition
GB1605005A (en) Electrical heating strip
JPS59168051A (en) Electrically conductive resin composition
JPS63302501A (en) Ptc conductive polymer composition
JP3636623B2 (en) Resin composition for cable and cable
US4313101A (en) Electrically impedant articles
JPS63279503A (en) Semiconductive composition material
JPS59122524A (en) Composition having positive temperature characteristics of resistance
JPS643291B2 (en)
JPS61101554A (en) Preparation of electrically conductive resin composition
JPS5928218B2 (en) Polyethylene crosslinking method
JPH0126003Y2 (en)
JPH01304704A (en) Organic high polymer composition of ptc behavior
JPS5956441A (en) Semiconductive composition
JPH01118552A (en) Semiconductive composition
JPH0360122B2 (en)
JPS5828101A (en) Composition for semiconductor electric layer of power cable
JPS60106103A (en) Polymer temperature sensor
JPS6132382A (en) Heater wire
JPH0326706B2 (en)
JPS6045218B2 (en) conductive mixture
JPH051305B2 (en)