JPS6013525A - Manufacture of heat shrinkable tube with inner layer - Google Patents

Manufacture of heat shrinkable tube with inner layer

Info

Publication number
JPS6013525A
JPS6013525A JP12093383A JP12093383A JPS6013525A JP S6013525 A JPS6013525 A JP S6013525A JP 12093383 A JP12093383 A JP 12093383A JP 12093383 A JP12093383 A JP 12093383A JP S6013525 A JPS6013525 A JP S6013525A
Authority
JP
Japan
Prior art keywords
tube
diameter
expanded
expander
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12093383A
Other languages
Japanese (ja)
Inventor
Yusuke Mizuno
裕介 水野
Minoru Fushimi
伏見 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12093383A priority Critical patent/JPS6013525A/en
Publication of JPS6013525A publication Critical patent/JPS6013525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To produce heat shrinkable tube with a rubber or plastic inner layer by a method wherein a diameter expander is inserted inside the inner layer tube being inserted into the inside of an outer layer tube to apply inner pressure and to make a hollow tubular body with a specified outer diameter. CONSTITUTION:In expanding the diameter of tube 20 to be expanded with which inner layer tube 12 is incorporated previously in a unitary body with the inside of outer layer tube 11, the tube 20 to be expanded is heated to a necessary temperature and softened, then taken out of a hot atmosphere to insert diameter expander 10 with one previously sealed end into the inside of the tube 20. Then, when compressed air is introduced from a compressed air inlet mounted at the opening end of the expander 10 to apply inner pressure and expand a fin part, hollow body 10'' with a circular cut-section is while forming the tube 20 expanded to a desired shape to prepare an expanded tube that is composed of outer layer tube 11'' and inner layer tube 12''. This tube is cooled and hardened, the inner pressure is reduced and the expander is removed from the inner part of the tube.

Description

【発明の詳細な説明】 本発明はケーブルのジヨイント部あるいは鋼管などの金
薦体の保護カバー用に適したゴムまたは1・・プラスチ
ック製内層付き熱収縮性チューブの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a heat-shrinkable tube with an inner layer made of rubber or plastic, suitable for use as a protective cover for joints of cables or metal fittings such as steel pipes.

ここに「熱収縮性」とは、拡径された部材が熱の作用に
より収縮してほぼ拡径前の形状に回復する性質、即ち「
熱回復性」を意味するものとするる熱収縮性チューブを
ケーブルのジヨイント部あるいは鋼管などの全団体の保
護カバー用として使用する場合には、防水あるいは防食
性をより完全なものとするために、予め熱収縮性を付与
した外層用チューブの内側に対象物に良く接着する内層
る。
Here, "heat shrinkability" refers to the property of a member whose diameter has been expanded to contract due to the action of heat and recover almost to its shape before diameter expansion.
When heat-shrinkable tubes are used as protective covers for joints of cables or for entire bodies such as steel pipes, heat-recoverable tubes are used to provide more complete waterproof or corrosion-proof properties. An inner layer that adheres well to the object is placed inside the outer layer tube, which has been given heat shrinkability in advance.

従来、上述のような保護カバー用に使用される熱収縮性
チューブを製造するには、先ず(1)熱収縮性付与可能
な材料からなる外層用チューブを熱収縮性付与可能な温
度に加熱した状態で成る種の拡径手段により所定の大き
さまで拡径し、次いでこれを冷却・固化して熱収縮性外
層チューブを製造する工程と、(2)この熱収縮性外層
チューブの内面に所望の接着性を有する内層材を塗布す
る工程とからなる二段階法が用いられている。しかし、
かかる方法には熱収縮性外層チューブの内面に内層材を
均一な厚さに形成するのが困難であると云う欠点がある
。更に、特にケーブルのジヨイント部などに使用するチ
ューブでは、使用温度(70〜90°C)程度で流出し
ないような高軟化点の内層材が必要になるが、このよう
な高軟化点の内層材を熱収縮性外層チューブの内面に塗
布するには、内層はを予め加熱して溶融状態にしておき
、これを(イ)常温の熱収縮性外層チューブの内面に塗
布するか、あるいは(ロ)予め加熱しておいた熱収縮性
外層チューブに塗布した後に冷却・固化する方法がとら
れている。
Conventionally, in order to manufacture a heat-shrinkable tube used for the above-mentioned protective cover, first (1) an outer layer tube made of a material capable of imparting heat-shrinkability was heated to a temperature capable of imparting heat-shrinkability. (2) expanding the diameter to a predetermined size using a diameter expanding means of the type, and then cooling and solidifying it to produce a heat-shrinkable outer layer tube; (2) forming a desired shape on the inner surface of this heat-shrinkable outer layer tube A two-step process is used consisting of applying an adhesive inner layer material. but,
This method has the disadvantage that it is difficult to form the inner layer material to a uniform thickness on the inner surface of the heat-shrinkable outer tube. Furthermore, especially for tubes used for cable joints, etc., an inner layer material with a high softening point that will not flow out at the operating temperature (70 to 90°C) is required. To apply the inner layer to the inner surface of the heat-shrinkable outer layer tube, the inner layer is heated in advance to a molten state, and then (a) this is applied to the inner surface of the heat-shrinkable outer layer tube at room temperature, or (b) The method used is to apply it to a heat-shrinkable outer layer tube that has been heated in advance, and then cool and solidify it.

しかし、これらの従来方法には次のような重大な欠点が
ある。すなわち、予め成型した長い外層チューブの内面
に内層材を均一に塗布するのは困難であり、しかも(イ
)常温の熱収縮性外層チューブの内面に予め加熱して溶
融状態にした内層材を塗布する方法では、内層材の温度
が外層チューブの熱収縮開始温度以上になっていると、
塗布された内層材により加熱された外層チューブは熱収
縮を起す。従って、かかる外層チューブの熱収縮を回避
するためには、内層材を極めて薄く塗布するか、あるい
は外層チューブの熱収縮開始温度より低い温度の内層材
を用いる必要があるなどの制約が生ずる。また、(ロ)
予め加熱した熱収縮性外層チューブの内面に、予め加熱
して溶融状態とした内層はを塗布する方法では、外層チ
ューブ及び内層材を外層チューブの熱収縮開始温度より
低い湿度に維持する必要があり、このため外層゛チュー
ブの熱収・縮開始温度以上の高軟化点を有−する内層材
は使用できない。また、かかる高軟化点の内層材を塗布
する場合には、かかる塗布によって外層チューブが熱収
縮を起すので、外層チューブの元径を維持するために特
殊な装置及び操作が必要になる。このように、特に高軟
化点の内層けを熱収縮性外層チューブの内面に塗布する
には、塗膜厚さの均一化の問題に加えて種々の制約があ
り、非常に困難であるのが現状である。
However, these conventional methods have the following serious drawbacks. In other words, it is difficult to uniformly apply the inner layer material to the inner surface of a long preformed outer tube, and (a) it is difficult to apply the inner layer material that has been preheated to a molten state on the inner surface of a heat-shrinkable outer tube at room temperature. In this method, if the temperature of the inner layer material is higher than the thermal contraction start temperature of the outer layer tube,
The outer layer tube is heated by the applied inner layer material and undergoes thermal contraction. Therefore, in order to avoid such thermal shrinkage of the outer layer tube, restrictions arise such as the need to apply the inner layer material extremely thinly or to use an inner layer material whose temperature is lower than the temperature at which the outer layer tube starts to shrink. Also, (b)
In the method of applying a preheated and molten inner layer to the inner surface of a preheated heat-shrinkable outer layer tube, it is necessary to maintain the outer layer tube and inner layer material at a humidity lower than the heat shrinkage start temperature of the outer layer tube. Therefore, it is not possible to use an inner layer material that has a softening point higher than the thermal contraction start temperature of the outer layer tube. Further, when applying such an inner layer material with a high softening point, the outer layer tube undergoes thermal contraction due to such application, and special equipment and operations are required to maintain the original diameter of the outer layer tube. In this way, it is extremely difficult to apply an inner layer with a particularly high softening point to the inner surface of a heat-shrinkable outer layer tube, as there are various constraints in addition to the problem of uniform coating thickness. This is the current situation.

本発明の目的は、これらの欠点を有していない広範囲の
ゴムまたはプラスチック製内層付き熱収縮性チューブを
簡単に製造し得る方法を提供するにある。
It is an object of the present invention to provide a simple method for manufacturing a wide range of rubber or plastic lined heat-shrinkable tubes that does not have these drawbacks.

本発明は、熱収縮性の付与された外層材より低い熱軟化
温度を有する材料からなる内層を具えたゴムまたはプラ
スチック製内層付き熱収縮性チューブを製造するに当り
、 (1) 熱収縮性付与可能なゴムまたはプラスチック材
料からなる外層用チューブの内面に、該外層用チューブ
より低い熱軟化温度を有するゴムまたはプラスチックI
llからなる内層が一体に設けられた被拡径チューブ、
または熱収縮性付与可能なゴムまたはプラスチック材料
からなる外層用チューブの内側に、前記外層用チューブ
とほぼ同一形状に予備形成され前記外層用チューブより
低い熱軟化温度を有するゴムまたはプラスチック材料か
らなる内層用チューブを挿入してなる被拡径チューブの
内側に、半径方向に突出する少くとも8個の同じ長さの
フィン部力(円周方向に互に等角度間隔の位置で長手方
向の軸1・・線に平行に延在し、長手方向の一端が直接
密封され、あるいは長手方向の一端に閉鎖端を形成する
ように折り返されて二重壁購造となされ、内圧を加える
ことにより前記フィン部を膨張させて所定の太さの中空
状体となし得るようにした拡径子を挿入する工程と、 (2)的記被拡径チューブを加熱して軟化させる工程と
、 (8) この軟化した被拡径チューブに挿入された前記
拡径子の開口端から前記拡径手内に内圧を加えて前記フ
ィン部を膨張させて前記拡径子を前記所定の太さの中空
状体とすることにより、前記拡径子の外側の軟化状態に
ある前記被拡径チューブを所望の形状に拡径する工程と
、(4) この所望の形状に拡径された被拡径チューブ
を、前記拡径子が挿入されている状態にて、冷却・固化
する工程と、 (5) 前記拡径子の内圧を減じて前記拡径子を膨張前
の形状に戻し、前記所望の形状に拡径された被拡径チュ
ーブを前記拡径子から引き抜く工程と からなることを特徴とするゴムまたはプラスチック製内
層付き熱収縮性チューブの製造方法である。
In manufacturing a heat-shrinkable tube with an inner layer made of rubber or plastic, which has an inner layer made of a material having a lower heat softening temperature than the outer layer material imparted with heat-shrinkability, the present invention provides: (1) Imparting heat-shrinkability. On the inner surface of the tube for the outer layer made of a possible rubber or plastic material, a rubber or plastic I having a lower thermal softening temperature than the tube for the outer layer is added.
A tube to be expanded in diameter integrally provided with an inner layer consisting of
or an inner layer made of a rubber or plastic material that is preformed in substantially the same shape as the outer layer tube and has a heat softening temperature lower than that of the outer layer tube, inside an outer layer tube made of a rubber or plastic material that can be heat-shrinkable. At least eight fins of the same length projecting in the radial direction (at equal angular intervals in the circumferential direction and extending along the longitudinal axis 1) The fins extend parallel to the line and are sealed directly at one longitudinal end or folded back to form a closed end at one longitudinal end to form a double-walled structure, and by applying internal pressure, the fins are sealed. (2) a step of heating and softening the diameter-expanded tube; (8) this softening; By applying internal pressure into the diameter expanding arm from the open end of the diameter expander inserted into the expanded diameter tube, the fin portion is expanded, and the diameter expander is made into a hollow body having the predetermined thickness. , a step of expanding the diameter of the tube to be expanded into a desired shape in a softened state outside the diameter expander, and (4) inserting the tube to be expanded into the desired shape by the diameter expander. (5) reducing the internal pressure of the diameter expander to return the diameter expander to its pre-expansion shape, and returning the diameter-expanded tube to the desired shape; A method for producing a heat-shrinkable tube with an inner layer made of rubber or plastic, comprising the step of pulling it out from the diameter expander.

本発明方法では上述の工程を順次行ってもよく、また第
1工程より前に第2工程を行ってもよい0本発明方法で
は、熱収縮性付与可能なゴムまたはプラスチック材料か
らなる外層用チューブの内側に所定の形状の内層用チュ
ーブを予め配置してなる被拡径チューブを素材とし、こ
れを特殊な拡径子を用いて拡径することにより、外層用
チューブに熱収縮性を付与するための拡径と、拡径され
た外層用チューブの内面への内層用チューブの被着とを
同時に行うことができるため、上述の従来方法に見られ
たような外層チューブ内面における内層Hのj8厚の不
均−fヒなどの問題が著しく改善されるほか、かなり高
い軟化温度の内層1才層を持った内層付き熱収縮性チュ
ーブでも製造することができる。
In the method of the present invention, the above-mentioned steps may be performed sequentially, or the second step may be performed before the first step. The material is a diameter-expanded tube with an inner layer tube of a predetermined shape placed inside the tube, and this is expanded using a special diameter expander to impart heat shrinkability to the outer layer tube. The diameter of the inner layer H can be expanded at the same time as the inner layer tube is attached to the inner surface of the outer layer tube whose diameter has been expanded. In addition to significantly improving problems such as unevenness of heat shrinkage, heat-shrinkable tubes with an inner layer having a fairly high softening temperature can also be produced.

本発明方法では、外層用チューブとしては通常使用され
ているゴム系、プラスチック系の熱収縮性付与可能な材
料であれで何れでもよく、また内層用チューブとしては
外層用チューブに熱収縮性を付与し得る温度範囲内で流
出しない通常使用されているポリオレフィン系、変性ポ
リオレフィン系、ポリアミド系、ポリエステル系などの
材料の何れでもよく、外層用チューブとの組み合わせ及
び拡径手順によって適宜選択できる。
In the method of the present invention, the outer layer tube may be any commonly used rubber-based or plastic-based material that can be heat-shrinkable, and the inner layer tube may be any material that can be heat-shrinkable to the outer layer tube. Any of the commonly used materials such as polyolefins, modified polyolefins, polyamides, and polyesters that do not flow out within the possible temperature range may be used, and can be appropriately selected depending on the combination with the outer layer tube and the diameter expansion procedure.

本発明方法に用いる拡径子を偏成する材料は、拡径の際
に所定め拡大された径及び形状を保持するのに必要な熱
及び圧力に十分に耐え、かつ全体が所定の径以上には膨
張せず、しかも拡径された部材の長手軸線方向の沖び及
び歪を小さくしかつ寸法安定性を得るのに十分な強度を
有するけ料であって、膨張可能なフィン部は繰返し使用
に耐える強度、折り曲げ性及びある程度の柔軟性を有し
、かつ減圧後に原形に復元するものが望ましい。
The material that makes up the diameter expander used in the method of the present invention must sufficiently withstand the heat and pressure necessary to maintain the predetermined enlarged diameter and shape during diameter expansion, and the material as a whole must have a diameter larger than the predetermined diameter. is a brace that does not expand and has sufficient strength to reduce distortion and distortion in the longitudinal axis direction of the expanded member and provide dimensional stability, and the expandable fin portion can be used repeatedly. It is desirable that the material has strength, bendability, and a certain degree of flexibility to withstand this, and that can be restored to its original shape after being decompressed.

かかる材料としては、プラスチック系或いはゴム系の材
料のシート、及びかかるシートの片面、両面又は両面間
の中間位置に少くとも1層以上の補強用クロス層を設け
た補強シートなどがある。
Examples of such materials include sheets of plastic or rubber materials, and reinforcing sheets having at least one reinforcing cross layer on one side, both sides, or an intermediate position between the two sides of such sheets.

補強用クロス層は天然繊維、無機繊維及び合成繊維から
なる群から選定した繊維のクロス居であって、この捕り
用クロス層は拡径子の半径方向及び長手方向の軸線に平
行な織方向に配置されているのが好ましい。この理由は
、かかる補強用クロス層で補強したけ料からなる拡径子
を用いると、半径方向の膨張が規定の倍率通りで、長手
軸線方向の伸び及び歪のない熱収縮性チューブが得られ
るからである。なお、プラスチック系材料シートは、例
えばポリエステル樹脂、ざリアミド樹脂、フツ紫樹脂、
アクリル樹脂、ポリイミド樹脂等のような耐熱性プラス
チック樹脂のシートであり、ゴム系材料シートは、例え
ば非加硫型又は加硫型の天然ゴム、及びSBR,OR,
工R,IIRSBR。
The reinforcing cloth layer is a cross layer of fibers selected from the group consisting of natural fibers, inorganic fibers, and synthetic fibers, and the catching cloth layer is arranged in a weave direction parallel to the radial and longitudinal axes of the expander. It is preferable that the The reason for this is that when a diameter expander made of a material reinforced with such a reinforcing cross layer is used, a heat-shrinkable tube can be obtained that expands in the radial direction according to the specified magnification and has no elongation or distortion in the longitudinal axis direction. It is. In addition, plastic material sheets include, for example, polyester resin, zaryamide resin, purple resin,
It is a sheet of heat-resistant plastic resin such as acrylic resin, polyimide resin, etc., and the rubber material sheet is, for example, non-vulcanized or vulcanized natural rubber, SBR, OR,
Engineering R, IIRSBR.

EPR,シリコーンゴム、ウレタンゴム等のヨウな合成
ゴムのシートである。
This is a sheet of synthetic rubber such as EPR, silicone rubber, or urethane rubber.

次に本発明を図面を参照して例について説明する。The invention will now be explained by way of example with reference to the drawings.

本発明の好適方法では、第1a及びb図に示すような、
半径方向に外方に突出する少くとも3個、例えば8個の
同じ長さのフィン部lが円周方向に巨に等角度間隔の位
置で長手方向の軸線に平行に延在し、内圧を加えること
によりフィン部lを膨張させて第8C図または第4f図
にlθ″で示すような所定の太さの中空体となし得るよ
うにした拡径子を、その長手方向の一端を密封し、他端
すなわち開口端に圧縮空気導入口を設けて使用に供する
In a preferred method of the invention, as shown in Figures 1a and b,
At least three, for example eight, radially outwardly projecting fins l of equal length extend parallel to the longitudinal axis at substantially equiangularly spaced positions in the circumferential direction, and The expander is made into a hollow body having a predetermined thickness as shown by lθ″ in FIG. 8C or FIG. A compressed air inlet is provided at the other end, that is, the open end, for use.

本発明方法の他の例は、第2a及びb図に示すような、
半径方向に突出する少くとも8個、例え等角変間隔の位
置で長手方向の軸線に平行に延在に空間5が設けられ、
この空間に内圧を加えることによりフィン部lを膨張さ
せて所定の太さの二重壁の中空状体となし得るようにし
た拡径子10を、その他端である開口端7に圧縮空気導
入口を設けて使用に供する。
Another example of the method of the invention is as shown in Figures 2a and b.
at least eight radially projecting spaces 5, e.g. extending parallel to the longitudinal axis at equiangularly spaced positions;
By applying internal pressure to this space, the fin portion l is expanded to form a double-walled hollow body having a predetermined thickness. A diameter expander 10 is connected to the open end 7, which is the other end, through a compressed air inlet. shall be provided and used.

第ia及びb図に示す拡径子を用いて拡径を行うプロセ
スを第aa、b及び0図並びに第4a。
The process of expanding the diameter using the diameter expander shown in FIGS. IA and B is shown in FIGS. AA, B, and 0, and FIG.

b、c、a、e及び1図について説明する。第8a図に
示すような外層用チューブllの内面に内層用チューブ
12が予め一体化されている被拡径チューブ20を拡径
する場合には、先ず被拡径チューブ20をm9温度、す
なわち外層用チューブは熱収縮性を得ることができるが
内層用チューブは流出しないような拡径可能な温度に加
熱して軟化させ、次いでこれを加熱雰囲気から取り出し
、直ちに予め一端が密封された拡i子1’0を第8b図
・に示すようにこの被拡径チューブ20の内側に挿入し
、この拡径子の開口端に設けた圧縮空気導入口から拡径
子lOに圧縮空気を導入して内圧を加えてこの拡径子の
フィン部lを膨張させると、拡径子10は第3C図に示
すような横断面円形の中空状体t o’となり、拡径子
lOの外側の軟化状態にある被拡径チューブ20は所望
の形状に拡径されて外層用チューブ11’と内層用チュ
ーブ12//とからなる拡径された被拡径チューブ20
′が生成する。この所望の形状に拡径された被拡径チュ
ーブ20′を、拡径子が挿入されている状態にて、冷却
・固化し、次いで拡径子の内圧を減じて拡径子を膨張前
の形状に戻し、拡径された被拡径チューブ20′内から
拡径子を引き抜く。このようにして、予め一体化された
外層用チューブと内層用チューブとが同時に均一に拡径
され一体化された内層付き熱収縮性チューブ20′が容
易に得られる。なお、拡径子の挿入は、所要に応じて、
被拡径チューブ20を所要温度区加熱する前に行うこと
ができる。
Figures b, c, a, e and 1 will be explained. When expanding the diameter of the tube 20 to be expanded, in which the inner layer tube 12 is preliminarily integrated into the inner surface of the outer layer tube 11 as shown in FIG. The tube for the inner layer is heated to a temperature that allows it to be heat-shrinkable, but the tube for the inner layer is expandable so that it does not flow out. Then, it is removed from the heated atmosphere and immediately placed in an expansion tube with one end sealed in advance. 1'0 is inserted into the inside of the diameter-expanded tube 20 as shown in Fig. 8b, and compressed air is introduced into the diameter expander IO from the compressed air inlet provided at the open end of the diameter expander to increase the internal pressure. In addition, when the fin portion l of this diameter expander is expanded, the diameter expander 10 becomes a hollow body to' having a circular cross section as shown in FIG. The tube 20 is expanded into a desired shape to form an expanded tube 20 consisting of an outer layer tube 11' and an inner layer tube 12.
′ is generated. The tube 20' to be expanded into the desired shape is cooled and solidified with the expander inserted, and then the internal pressure of the expander is reduced to return the expander to the shape before expansion. , the expander is pulled out from inside the diameter-expanded tube 20'. In this way, the inner layered heat-shrinkable tube 20' is easily obtained, in which the outer layer tube and the inner layer tube, which have been integrated in advance, are uniformly expanded in diameter at the same time and integrated. Note that the diameter expander can be inserted as required.
This can be done before heating the diameter-expanded tube 20 to a required temperature range.

第3a図に示すような予め二体化されている被拡径チュ
ーブ20において、例えば外層用チューブ11は予め電
子線照射などによる架橋処理を必要とするが、内層用チ
ューブ12の架橋が好ましくないなどの特性上の制約条
件がある場合には、予め単独で架橋処理した外層用チュ
ーブ11(第4a図)を作り、これとは別個に外層用チ
ューブllの内径より若干小さい外径を有する内層用チ
ューブ12(第4b図)を成型し、この内層用チューブ
12を外層用チューブ11に第4C図に示すように挿入
して被拡径チューブ20を構成し、この被拡径チューブ
の内側に一端が密封された拡径子IOを第4d図に示す
ように挿入し、この拡径子の開口端に設けた圧縮空気導
入口から拡径子lO内に圧縮空気を導入して若干内圧を
加え、この拡径子のフィン部lを若干膨張させて拡径子
10が第4e図のto’で示すように若干膨張した状襲
において、所要温間、すなわち外層用チューブは熱収縮
性を得ることができるが内層用チューブは流出しないよ
うな拡径可能な温度に加熱して軟化させると、加熱過程
で第4e図に示すように内層用チューブ12′が外層用
チューブ11’に密着保持される。次いでこれを加熱雰
囲気から取り出し、直ちに拡径子io’に更に圧縮空気
を導入して更に高い内圧を加えてフィン部1を膨張さぜ
ると、拡径子10’は第4f図に示すように横断面円形
の中空状体10′となり、拡径子lOの外側の軟化状態
にある外層用チューブtt’と内層用チューブ12’と
は同時に所望の倍率に拡径されると共に一体化されて、
所望の倍率に拡径された外層用チューブ11’と内層用
チューブ12′とからなる拡径された被拡径チューブ2
0′が生成する。この所望の形状に拡径された被拡径チ
ューブ20′を上述と同様に冷却・固化し、拡径子の内
圧を減じた後にチューブ20′から拡径子を引き抜く。
In the diameter-expanded tube 20 which has been made into two pieces in advance as shown in FIG. 3a, for example, the outer layer tube 11 needs to be cross-linked in advance by electron beam irradiation, but cross-linking of the inner layer tube 12 is not preferable. If there are constraints on the characteristics such as, the outer layer tube 11 (Fig. 4a) is made in advance by independently cross-linking, and the inner layer having an outer diameter slightly smaller than the inner diameter of the outer layer tube 11 is prepared separately. The inner layer tube 12 is inserted into the outer layer tube 11 as shown in FIG. 4C to form the diameter-expanded tube 20. The expander IO with one end sealed is inserted as shown in Figure 4d, and compressed air is introduced into the expander IO from the compressed air inlet provided at the open end of the expander to apply a slight internal pressure. In a situation where the fin portion l of the diameter expander is slightly expanded and the diameter expander 10 is slightly expanded as shown by to' in Fig. 4e, the required temperature, that is, the outer layer tube can obtain heat shrinkability. When the inner layer tube is softened by heating to a temperature that allows its diameter to expand without flowing out, the inner layer tube 12' is held in close contact with the outer layer tube 11' during the heating process, as shown in FIG. 4e. Next, this is taken out from the heated atmosphere and immediately further compressed air is introduced into the expander io' to apply even higher internal pressure to expand the fin portion 1, so that the expander 10' crosses as shown in Fig. 4f. The outer layer tube tt' and the inner layer tube 12', which are in a softened state on the outside of the diameter expander 1O, are simultaneously expanded to a desired magnification and integrated into a hollow body 10' having a circular surface.
Expanded diameter tube 2 consisting of an outer layer tube 11' and an inner layer tube 12' expanded to a desired magnification.
0' is generated. The diameter-expanded tube 20', which has been expanded to a desired shape, is cooled and solidified in the same manner as described above, and after the internal pressure of the diameter expander is reduced, the diameter expander is pulled out from the tube 20'.

このようにして、別個に成型された外層用チューブと内
層用チューブとが同時に均一に拡径されると共に一体化
された内層付き熱収縮チューブ20′が容易に得られる
In this way, the inner layered heat-shrinkable tube 20' can be easily obtained, in which the outer layer tube and the inner layer tube, which have been separately molded, are simultaneously and uniformly expanded in diameter and integrated.

第2a及びb図に示す拡径子を使用する場合には、フィ
ン部1の外敵3と内じ壁4との間の空間5に内圧を加え
る点を除き、上述・同様にして拡径を行2′。
When using the diameter expander shown in Figures 2a and 2b, the diameter is expanded in the same manner as described above, except that internal pressure is applied to the space 5 between the outer wall 3 and the inner wall 4 of the fin portion 1. 2′.

うことができる。I can.

本発明により達成される最大拡径倍率は、フィン部lの
半径方向の長さがhであってフィン部の数がX個である
拡径子を用い、かつこの拡径子を挿入できて内径が2h
より若干大きい部材を拡径する場合には、次式で表わさ
れる。
The maximum diameter expansion ratio achieved by the present invention is achieved by using a diameter expander in which the radial length of the fin part l is h and the number of fin parts is X, and the inner diameter is 2h
When expanding the diameter of a slightly larger member, it is expressed by the following equation.

最大拡径倍率中(x x gh/yr ) / 2h例
えば、第ia及びb図並びに第2a及びb図に示す拡径
子では、X=8であるから最大拡径倍率は約2.6倍で
ある。上式から明らかなように、本発明では拡径子のフ
ィン部の半径方向の長さh及び数Xを増減することによ
り最大拡径倍率を増減できる。
Maximum diameter expansion magnification (x x gh/yr) / 2h For example, in the diameter expanders shown in Figures IA and B and Figures 2A and B, since X = 8, the maximum diameter expansion magnification is approximately 2.6 times. be. As is clear from the above equation, in the present invention, the maximum diameter expansion magnification can be increased or decreased by increasing or decreasing the radial length h and the number X of the fin portion of the diameter expander.

次に本発明を実施例について説明する。これらの実施例
では1層のポリエステルクロスの両面をシリコーンゴム
で被ツし、加硫硬化した材料からなる拡径子を使用した
。ポリエステルクロスの織方向は拡径子の半径方向及び
軸線方向に一致させた。実施例1及び2では先に第1a
及びb図について説明したような8個のフィン部を有し
ていて、膨張径が40鴎である拡径子を使用し、使用の
際には拡径子の長手方向の一端を予め密封し、他端に予
め圧縮空気導入口を取り付けた。
Next, the present invention will be explained with reference to examples. In these examples, an expander made of a material made of a single layer of polyester cloth covered on both sides with silicone rubber and cured by vulcanization was used. The weaving direction of the polyester cloth was made to match the radial and axial directions of the expander. In Examples 1 and 2, first
A diameter expander having eight fins and an expansion diameter of 40 mm as described in FIGS. A compressed air inlet was attached to the end in advance.

実施例1 a、o m厚の低密度ポリエチレンである外層用チュー
ブと、2 a Ocm厚のダイマー酸系ポリアミド(R
&B軟化点165°C)である内層用チューブとからな
る第8a図に示すような内径20cmの予め一体に成型
した被拡径内層付きチューブを、20メガランドの電子
線を照射して架橋処理した後に長さ39cmに切断し、
130℃の加熱雰囲気内で全体が均一な温度になるまで
加熱して軟化させた。
Example 1 An outer layer tube made of low-density polyethylene with a thickness of a, 0m and a tube made of dimer acid-based polyamide (R
A tube with an inner layer with an inner layer having a softening point of 165° C. and an inner layer tube having an inner diameter of 20 cm and an enlarged inner layer, as shown in FIG. Then cut it to a length of 39cm,
The whole was heated in a heating atmosphere of 130° C. until the temperature reached a uniform temperature to soften it.

次いでこの被拡径チューブを加熱雰囲気から取り出し、
直ちにこの被拡径チューブの内側に拡径子を第8b図に
示すように挿入し、この拡径子に圧縮空気導入口から圧
縮空気を導入して内EE20ky/c−にて拡径子を第
8c図に示すように膨張させて、拡径子の外側の軟化状
態にある被拡径チューブを所望の形状に拡径した。次い
でこの所望の一形状″に拡径された被拡径チューブを、
拡径子が挿入されている状態にて水冷・固化した。しか
る後に拡径子の内圧を減じて拡径子を膨張前の形状に戻
し、拡径された被拡径チューブを拡径子から引き抜いた
。このチューブは所望の形状に均一に拡径された内面の
平滑な内層付き熱収縮性チューブで、第80図に示すよ
うに横断面円形で、内径49m+、外層厚さlJm、内
層厚さ[、l簡、長さ99 cmであった。
Next, this diameter-expanded tube is removed from the heated atmosphere,
Immediately insert a diameter expander inside this diameter-expanded tube as shown in Figure 8b, introduce compressed air into this diameter expander from the compressed air inlet, and expand the diameter expander at an internal EE of 20ky/c- as shown in Figure 8c. The diameter of the tube to be expanded, which was in a softened state outside the diameter expander, was expanded into a desired shape by expanding it as shown in FIG. Next, the diameter-expanded tube that has been expanded into the desired shape is
Water-cooled and solidified with the expander inserted. Thereafter, the internal pressure of the expander was reduced to return the expander to its pre-inflated shape, and the expanded tube was pulled out from the expander. This tube is a heat-shrinkable tube with a smooth inner layer that has been uniformly expanded to a desired shape, and has a circular cross section as shown in Figure 80, an inner diameter of 49 m+, an outer layer thickness of lJm, and an inner layer thickness of [, It was 99 cm long.

実施例2 実施例1の外層用チューブと同材質で、別個に成型し、
2.0メガランドで電子線架橋した内径ハ闘、肉厚8.
0鰭の第4a図に示すような外層用チューブを、別個に
成型したEVA(R&B軟化点155°C)からなる内
径19闘、肉厚2.0鰭の第14b図に示すような内層
用チューブと共に長さ80闘に切断し、この内層用チュ
ーブを外層用チューブに第40図に示すように挿入して
被拡径チューブを作り、次いでこのチューブの内側に拡
径子を第4d図に示すように挿入し、この拡径子に圧縮
・空気導入口から圧縮空気を導入して内圧0 、3 $
/crn”にて拡径子を第40図に示すように若干膨張
させ、そのままの状態で130°Cの加熱雰囲気内で全
体が均一になるまで加熱して軟化させることにより内層
用チューブを外層用チューブに密着保持させた。次いで
これを加熱雰囲気から取り出し、直ちに圧縮空気を更に
導入して内圧2.0〜/Cm”にて拡径子を第4f図に
示すように彦脹させて、拡径子の外側の軟化状態にある
被拡径チューブを所望の形状に拡径した。次いでこの拡
径されたチューブを、拡径子が挿入されている状態にて
水冷・固化した。しかる後に拡径子の内圧を減じて拡径
子を膨張前の形状に戻し、拡径された被拡径チューブを
拡径子から引き抜いた。このチューブは所望の形状に均
一に拡径された内面の平滑な内層付き熱収縮性チューブ
で、実施例1のものと同□□□な構造及び寸法を有し、
拡径された外層用チューブの内面と拡径された内層用チ
ューブの外面とは強固に接着して一体化していた。
Example 2 A tube made of the same material as the outer layer tube of Example 1, molded separately,
2.0 Megaland electron beam cross-linked inner diameter, wall thickness 8.
A tube for the outer layer as shown in Figure 4a for the 0 fin is separately molded for the inner layer as shown in Figure 14b for the fin with an inner diameter of 19 mm and a wall thickness of 2.0 mm made of EVA (R&B softening point 155°C). Cut the tube together with the tube to a length of 80mm, insert this inner layer tube into the outer layer tube as shown in Figure 40 to create a tube to be expanded in diameter, and then insert a diameter expander inside this tube as shown in Figure 4d. Insert compressed air into this expander from the compressed/air inlet to reduce the internal pressure to 0.3$.
/crn'' to slightly expand the diameter expander as shown in Figure 40, and in that state, heat it in a heated atmosphere of 130°C until the entire body becomes uniform to soften it, thereby converting the tube for the inner layer into the tube for the outer layer. The tube was held in close contact with the tube.Then, the tube was removed from the heated atmosphere, and compressed air was immediately further introduced to create an internal pressure of 2.0~/Cm'', causing the expander to expand as shown in Figure 4f. The diameter of the tube to be expanded, which was in a softened state on the outside, was expanded into a desired shape. Next, this diameter-expanded tube was water-cooled and solidified with the diameter expander inserted. Thereafter, the internal pressure of the expander was reduced to return the expander to its pre-inflated shape, and the expanded tube was pulled out from the expander. This tube is a heat-shrinkable tube with a smooth inner layer whose diameter has been expanded uniformly into a desired shape, and has the same structure and dimensions as those in Example 1,
The inner surface of the diameter-expanded outer layer tube and the outer surface of the diameter-expanded inner layer tube were firmly adhered and integrated.

本発明の内層付き熱収縮性チューブの製造方法するので
、予め成型した長い外層チューブに内層材を均一に塗布
する必要がなく、シかも外層チューブの収縮開始温度以
上における加工が可能で、熱収縮性を付与された外層チ
ューブが内層は塗布が無く極めて簡単に高軟化点の内層
ffき熱収縮性チューブを製造することができる。また
外層用チューブ及び内層用チューブのけ質は、外層用チ
ューブは熱収縮性を得ることができるが内層用チューブ
は流出しないような拡径可能な温度範囲内で適宜選定で
きると共に、外層用チューブと内層用チューブとを予め
一体化した被拡径チューブを拡別個に成型した外層用チ
ューブと内層用チューブとを組み合わせて拡径時に拡径
と同時に一体化することも可能であり、また拡径子、内
層用チューブと外層用チューブとのけ質の組み合わせ、
拡径、手順等を適宜選択することが可能で、応用範囲が
広い極めて有用な方法である。
Since the method for manufacturing a heat-shrinkable tube with an inner layer of the present invention is used, there is no need to uniformly apply the inner layer material to a long pre-formed outer layer tube, and processing can be performed at a temperature higher than the shrinkage start temperature of the outer layer tube. A heat-shrinkable tube with a high softening point inner layer ff can be manufactured very easily since the outer layer tube has a high softening point and no coating is required for the inner layer. In addition, the material of the outer layer tube and the inner layer tube can be selected as appropriate within the temperature range where the outer layer tube can obtain heat shrinkability, but the inner layer tube can be expanded without flowing out. It is also possible to combine the outer layer tube and inner layer tube, which are separately molded, and integrate them at the same time as the diameter expander. , combination of inner layer tube and outer layer tube,
This is an extremely useful method with a wide range of applications, as diameter expansion and procedures can be selected as appropriate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a及びb図はそれぞれ本発明方法に用いる拡径子の
一例の横断面図及び斜視図、 第2a及びb図はそれぞれ本発明方法に用いる拡径子の
他の例の横断面図及び斜視図、第8a図は外層用チュー
ブと内層用チューブとが予め一体化されている被拡径チ
ューブの一例の横断面図、 第8b及び0図はそれぞれ第1a図の拡径子を用いて第
aa図の被拡径チューブを拡径する本発明方法の一例に
おける拡径前及び拡径後の状態を示す横断面図、 第4a、b及び0図はそれぞれ別個に成型した外層チュ
ーブ、内層用チューブ及びこれらを組み合わせた被拡径
チューブの一例の横断面図、第4a、e及びfllはそ
れぞれ第ta図の拡径子を用いて第86図の被拡径チュ
ーブを拡径する本発明方法の一例における各段階を示す
説明図である。 ■・・・フィン部−2・・・閉鎖端 8・・・外壁 4・・・内壁 5・・−空間 6・・・開口端 10 、10’・・・拡径子 10′・・・膨張した拡
径子(中空状体) 11111’、11’・・・外層用チューブ12 、1
2’、 12’ 、・・内層用チューブ20.20’・
・・被拡径チューブ 20′・・、拡径された被拡径チューブ(内層付き熱収
縮性チューブ) h・・・フィン部の半径方向の長さ。 第1b図 第2b図
Figures 1a and b are a cross-sectional view and a perspective view, respectively, of an example of a diameter expander used in the method of the present invention; Figures 2a and b are a cross-sectional view and a perspective view, respectively, of another example of a diameter expander used in the method of the present invention; Fig. 8a is a cross-sectional view of an example of a tube to be expanded in diameter in which an outer layer tube and an inner layer tube are integrated in advance, and Figs. A cross-sectional view showing the state before and after diameter expansion in an example of the method of the present invention for expanding the diameter of a tube to be expanded. Figures 4a, e and fl1 are cross-sectional views of an example of a tube to be expanded in diameter in combination with each other, respectively, in an example of the method of the present invention for expanding the diameter of the tube in Figure 86 using the expander in Figure It is an explanatory diagram showing stages. ■...Fin part-2...Closed end 8...Outer wall 4...Inner wall 5...-Space 6...Open end 10, 10'...Expander 10'...Expanded Expander (hollow body) 11111', 11'...outer layer tube 12, 1
2', 12',...Inner layer tube 20.20'.
...Tube to be expanded 20'... Expanded diameter tube (heat-shrinkable tube with inner layer) h...Radial length of the fin portion. Figure 1b Figure 2b

Claims (1)

【特許請求の範囲】 L 熱収縮性の付与された外層材より低い熱軟化温度を
有する材料からなる内層を具えたゴムまたはプラスチッ
ク製内層付き熱収縮性チューブを製造するに当り、 熱収縮性付与可能なゴムまたはプラスチック材料からな
る外層用チューブの内面に、該外層用チューブより低い
熱軟化温度を有するゴムまたはプラスチック材料からな
る内層が一体に設けられた被拡径チューブ、または熱収
縮性付与可能なゴムまたはプラスチック材料からなる外
層用チューブの内側に、前記外層用チューブとほぼ同一
形状に予備形成され前記外層用チューブより低い熱軟化
温度を有するゴムまたはプラスチック材料からなる内層
用チューブを挿入してなる被拡径チューブの内側に、半
径方向に突出する少くとも8個の同じ長さのフィン部が
円周方向に互に等角度間隔の位置で長手方向の軸線に平
行に延在し、長手方向の一端が直接密封されあるいは長
手方向の一端に閉鎖端を形成するように折り返されて二
重壁構造となされ内圧を加えることにより前記フィン部
を膨張させて所定の太さの中空状体となし得るようにし
た拡径子を挿入する工程と、 (2) 前記被拡径チューブを加熱して軟化させる工程
と、 (8) この軟化した被拡径チューブに挿入された前記
拡径子の開口端から前記拡径子内に内圧を加えて前記フ
ィン部を膨張させて前記拡径子を前記所定の太さの中空
状体とすることにより、前記拡径子の外側の軟化状態に
ある前記被拡径チューブを所望の形状に拡径する工程と
、 (4) この所望の形状に拡径された被拡径チューブを
、前記拡径子が挿入されている状態にて、冷却・固化す
る工程と、 (5) 前記拡径子の内圧を減じて前記拡径子を膨張前
の形状に戻し、前記所望の形状に拡径された被拡径チュ
ーブを前記拡径子から引き抜く工゛程と からなることを特徴とするゴムまたはプラス−・チック
製内層付き熱収縮性チューブの製造方法。
[Scope of Claims] L In manufacturing a heat-shrinkable tube with an inner layer made of rubber or plastic, the inner layer is made of a material having a lower heat-softening temperature than the outer layer material to which heat-shrinkability is added: An expanded tube in which an inner layer made of a rubber or plastic material having a lower heat softening temperature than the outer layer tube is integrally provided on the inner surface of an outer layer tube made of a rubber or plastic material, or heat shrinkable. An inner layer tube made of a rubber or plastic material, which is preformed in substantially the same shape as the outer layer tube and has a lower heat softening temperature than the outer layer tube, is inserted inside an outer layer tube made of a rubber or plastic material. At least eight radially projecting fins of equal length extend parallel to the longitudinal axis at equal angular intervals in the circumferential direction on the inside of the expanded diameter tube. One end in the direction is directly sealed or one end in the longitudinal direction is folded back to form a closed end to form a double wall structure, and the fin portion is expanded by applying internal pressure to form a hollow body of a predetermined thickness. (2) a step of heating and softening the tube to be expanded, and (8) an open end of the expander inserted into the softened tube to be expanded. The diameter-expanded tube is in a softened state on the outside of the diameter expander by applying internal pressure inside the diameter expander to expand the fin portion and making the diameter expander into a hollow body having the predetermined thickness. (4) cooling and solidifying the diameter-expanded tube into the desired shape with the diameter expander inserted; (5) ) Reducing the internal pressure of the diameter expander to return the diameter expander to its pre-inflated shape, and pulling out the diameter-expanded tube that has been expanded to the desired shape from the diameter expander. A method of manufacturing a heat-shrinkable tube with a rubber or plastic inner layer.
JP12093383A 1983-07-05 1983-07-05 Manufacture of heat shrinkable tube with inner layer Pending JPS6013525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12093383A JPS6013525A (en) 1983-07-05 1983-07-05 Manufacture of heat shrinkable tube with inner layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12093383A JPS6013525A (en) 1983-07-05 1983-07-05 Manufacture of heat shrinkable tube with inner layer

Publications (1)

Publication Number Publication Date
JPS6013525A true JPS6013525A (en) 1985-01-24

Family

ID=14798558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12093383A Pending JPS6013525A (en) 1983-07-05 1983-07-05 Manufacture of heat shrinkable tube with inner layer

Country Status (1)

Country Link
JP (1) JPS6013525A (en)

Similar Documents

Publication Publication Date Title
US5676175A (en) Plastic liner
US4093683A (en) Method for making pipe fitting coverings
JP2002541404A (en) Plastic pipe having socket and method for preparing plastic pipe with socket
JPH06507754A (en) Method of manufacturing heat recoverable articles and apparatus for expanding and contracting the articles
JPS6013525A (en) Manufacture of heat shrinkable tube with inner layer
JPH0584841A (en) Preparation of profile pipe of fiber-reinforced thermoplastic resin
CA1179468A (en) Process for the manufacture of dimensionally recoverable articles
JPS6013526A (en) Preparation of thermally shrinkable cap body with inner layer
JPS6343069Y2 (en)
KR950031452A (en) Plastic pipe manufacturing method and apparatus and plastic pipe
KR19990001611A (en) Manufacturing method of heat shrink tube
JPH0218973B2 (en)
JPS5912811A (en) Tube expander
JPS5815298B2 (en) Method for manufacturing heat-shrinkable tube with bellows structure
JP3529171B2 (en) Method of manufacturing star-shaped shrink tube
JPS5855892B2 (en) Manufacturing method for heat-shrinkable plastic molded products
JPH0613581Y2 (en) Silicone rubber composite heat-shrinkable tube
JPS5828104B2 (en) Manufacturing method of bellows tube
JPS599878Y2 (en) Synthetic resin sleeve for corrugated pipe connection
JPH012659A (en) Method for manufacturing catheter with expandable body
JPH031143B2 (en)
JPH01278330A (en) Manufacture of vinyl chloride resin group lined steel tube
JPS6315729A (en) Manufacture of heat-shrinkable tubing
JPH0120047B2 (en)
JPS5944211B2 (en) Manufacturing method of synthetic resin flexible tube