JPS60133769A - Thermopower generation element - Google Patents

Thermopower generation element

Info

Publication number
JPS60133769A
JPS60133769A JP58241529A JP24152983A JPS60133769A JP S60133769 A JPS60133769 A JP S60133769A JP 58241529 A JP58241529 A JP 58241529A JP 24152983 A JP24152983 A JP 24152983A JP S60133769 A JPS60133769 A JP S60133769A
Authority
JP
Japan
Prior art keywords
amorphous
substrate
thermoelectric semiconductor
raw material
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58241529A
Other languages
Japanese (ja)
Inventor
Hirofumi Yamanaka
山中 弘文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP58241529A priority Critical patent/JPS60133769A/en
Publication of JPS60133769A publication Critical patent/JPS60133769A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To offer the titled element of high sensitivity having a practically sufficient thickness by a method wherein a polycrystalline or amorphous thermoelectric semiconductor is constructed by using flame spraying. CONSTITUTION:A cooling body 3 cooled by a coolant 2 is provided in a closed container 1, and a cooling substrate 4 of glass or the like is placed on its surface. A plasma torch generator 5 is used to eject plasma to the substrate 4, and this generator is supplied with an actuation gas and the powder raw material of a thermoelectric material. The container 1 is exhausted by a vacuum pump 6 and then kept in an inert pressure reduction atmosphere. When the actuation gas and the powder raw material are supplied to a plasma torch 7 produced by the generator 5 by the use of such a pressure reduction flame spraying device, liquid drip fine particles attach on the substrate 4 by the fusion of the powder raw material, and are rapidly cooled at the same time, resulting in the formation of an amorphous thermoelectric semiconductor.

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は、溶射により得た多結晶又は非晶質の熱電半導
体を用いた熱発電素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to a thermoelectric generating element using a polycrystalline or amorphous thermoelectric semiconductor obtained by thermal spraying.

(技術の背景) 熱電材料は、太陽電池等と異なり単結晶より粒界を含ん
だ多結晶構造の方が熱起電力の特性が良いという特徴を
有している。これは、材料特性術χ (χ:熱伝導率、α:ゼーベック係数、σ:導電率)と
いう式で表わされるため、χが粒界における7オメンの
散乱により小さくなる一方、σが密度に依1− 存するため、粒界の存在によってはそれほど低下しない
ことによるからである。さらに、熱電材料の結晶粒子が
小さくなれば、7オメンの散乱はより大きくなり、非晶
質構造とすれば7オメンの散乱は最大となる。
(Technical Background) Unlike solar cells and the like, thermoelectric materials have a characteristic that a polycrystalline structure containing grain boundaries has better thermoelectromotive force characteristics than a single crystal structure. This is expressed by the material property technique χ (χ: thermal conductivity, α: Seebeck coefficient, σ: electrical conductivity), so while χ becomes smaller due to scattering of 7 Omen at grain boundaries, σ depends on density. 1-, so the presence of grain boundaries does not reduce it much. Furthermore, as the crystal grains of the thermoelectric material become smaller, the scattering of 7 omene becomes larger, and if the thermoelectric material has an amorphous structure, the scattering of 7 omene becomes the maximum.

それらのことから、熱発電素材として必要な条件は、粒
界を多数含む多結晶の構造やさらに好ましくは非晶質の
構造を有していることであるといえる。
From these facts, it can be said that a necessary condition for a thermoelectric power generation material is that it has a polycrystalline structure containing many grain boundaries, or more preferably an amorphous structure.

ところで、非晶質熱電材料は、厚さ数mm程度のバルク
を必要とするが、通常の融体急冷法では冷媒に接するの
が表面のみで内部は冷えにくく、そのため結晶化がおこ
りやすく、厚いものが得られない問題点があった。
By the way, amorphous thermoelectric materials require a bulk material with a thickness of several mm, but in the normal melt quenching method, only the surface is in contact with the refrigerant and the inside is difficult to cool, so crystallization easily occurs and thick There was a problem with not being able to get anything.

(発明の目的) 本発明は、上記の点に鑑み、溶射を用いて多結晶もしく
は非晶質の熱電半導体を構成することにより、実用上充
分な厚みを有する高感度の熱発電素子を提供しようとす
るものである。
(Objective of the Invention) In view of the above points, the present invention aims to provide a highly sensitive thermoelectric power generation element having a practically sufficient thickness by constructing a polycrystalline or amorphous thermoelectric semiconductor using thermal spraying. That is.

(発明の実施例) 2− 以下、本発明に係る熱発電素子の実施例を図面に従って
説明する。
(Embodiments of the Invention) 2- Hereinafter, embodiments of the thermoelectric power generating element according to the present invention will be described according to the drawings.

まず、第1図に示す如ぎ減圧溶射装置を用意する。この
図において、密閉容器1内には水、液体窒素等の冷媒を
通すパイプ2で冷却された冷却体3が設置され、該冷却
体3上にガラス等の冷却基板4が配置されている。一方
、該冷却基板4に対向する如く、プラズマトーチ発生器
5が設けられ、これには作動ガス(アルゴン等の不活性
ガス)及び熱電材料の粉末原料が供給される。粉末原料
は、カルフゲン系化合物半導体材料、硅化物系半導体材
料、それ以外の化合物半導体材料もしくはシリコン単体
、ゲルマニウム単体等である。なお、前記容器1内は真
空ポンプ6で排気され、0.1T orr程度の不活性
な減圧雰囲気に維持され、容器全体も冷却されている。
First, a reduced pressure thermal spraying apparatus as shown in FIG. 1 is prepared. In this figure, a cooling body 3 cooled by a pipe 2 through which a refrigerant such as water or liquid nitrogen passes is installed in a closed container 1, and a cooling substrate 4 made of glass or the like is placed on the cooling body 3. On the other hand, a plasma torch generator 5 is provided so as to face the cooling substrate 4, and is supplied with a working gas (an inert gas such as argon) and a powder raw material of a thermoelectric material. The powder raw material is a carfugen-based compound semiconductor material, a silicide-based semiconductor material, other compound semiconductor materials, simple silicon, simple germanium, or the like. The inside of the container 1 is evacuated by a vacuum pump 6 to maintain an inert reduced pressure atmosphere of about 0.1 Torr, and the entire container is also cooled.

上記第1図に示した装置を用い、作動〃スと前述した如
き粉末原料とをプラズマトーチ発生器5によるプラズマ
トーチ7に供給し、冷却基板4に噴射し、基板上に堆積
させる。このとき、粉末原料が溶融した液滴微粒子は冷
却基板4に付着する際急冷され非晶質状態の熱電半導体
となる。
Using the apparatus shown in FIG. 1, the operating gas and the powder raw material as described above are supplied to the plasma torch 7 by the plasma torch generator 5, and are injected onto the cooling substrate 4 and deposited on the substrate. At this time, when the droplet fine particles of the melted powder raw material adhere to the cooling substrate 4, they are rapidly cooled and become an amorphous thermoelectric semiconductor.

このような減圧溶射を所定期間実行することにより、第
2図の如く基板4上に数mm以上堆積された非晶質熱電
半導体8のバルクが得られる。
By performing such low-pressure spraying for a predetermined period of time, a bulk of the amorphous thermoelectric semiconductor 8 deposited several mm or more on the substrate 4 can be obtained as shown in FIG.

第3図はその非晶質熱電半導体8の拡大断面を示すもの
で、粉末原料が溶融した個々の液滴微粒子が冷却基板4
に付着したときの境界が粒界9を構成していることがわ
かる。従って、従来の融体急冷法による場合に比べ溶射
により構成した非晶質熱電半導体は、溶射特有の粒界を
多数含むことになり、よりいっそう7オメンの散乱を増
加させ、熱伝導率を小さくすることができる。
FIG. 3 shows an enlarged cross section of the amorphous thermoelectric semiconductor 8, in which individual droplet fine particles of melted powder raw material form a cooling substrate 4.
It can be seen that the boundary when adhered to constitutes a grain boundary 9. Therefore, compared to the conventional melt quenching method, an amorphous thermoelectric semiconductor formed by thermal spraying contains many grain boundaries unique to thermal spraying, which further increases the scattering of 7 Omen and reduces thermal conductivity. can do.

第2図の基板4に非晶質熱電半導体8のバルクが付着し
た状態より、非晶質熱電半導体8のバルクを剥し、第4
図に示すように非晶質熱電半導体8を所定の寸法に切断
し、さらに第5図の如く切断された非晶質熱電半導体8
Aの一対の面に熱起電力取出用の電極10を形成する。
From the state in which the bulk of the amorphous thermoelectric semiconductor 8 is attached to the substrate 4 in FIG. 2, the bulk of the amorphous thermoelectric semiconductor 8 is peeled off, and the fourth
As shown in the figure, the amorphous thermoelectric semiconductor 8 is cut into predetermined dimensions, and the amorphous thermoelectric semiconductor 8 is further cut as shown in FIG.
Electrodes 10 for extracting thermoelectromotive force are formed on a pair of surfaces of A.

上記実施例によれば、次のような効果をあげる3− ことができる。According to the above embodiment, the following effects can be achieved 3- be able to.

(1)溶射法を用いているため、出発原料が液滴微粒子
であり、溶けた1つ1つの粒子が冷却基板に付着する形
となり、冷却速度が大きくとれ、これにより厚いものが
得られると同時に従来非晶質化しにくかった高感度材を
バルクの形状で得られる。
(1) Since the thermal spraying method is used, the starting material is droplet particles, and each melted particle adheres to the cooling substrate, allowing for a high cooling rate and the ability to obtain thick particles. At the same time, high-sensitivity materials that were previously difficult to become amorphous can be obtained in bulk form.

(2)溶射法を用いることにより、非晶質熱電半導体中
にも個々の液滴微粒子が基板に付着した際に生ずる粒界
を含ませることができ、熱伝導率を著しく低下させるこ
とができる。この結果、熱発電素子として利用したとき
の高温側と低温側との温度差を大きくとることがで鰺、
素子厚みを小さくできるとともに電気抵抗も小さくでき
、熱発電素子として優れた特性のものが得られる。
(2) By using the thermal spraying method, grain boundaries that occur when individual droplet particles adhere to the substrate can be included in the amorphous thermoelectric semiconductor, making it possible to significantly reduce thermal conductivity. . As a result, when used as a thermoelectric generator, it is possible to create a large temperature difference between the high temperature side and the low temperature side.
The device thickness can be reduced and the electrical resistance can also be reduced, providing excellent characteristics as a thermoelectric power generation device.

なお、上記実施例では、溶射により非晶質熱電半導体を
得たが、溶射により少なくとも一部分に多結晶構造を含
んだ熱電半導体を得るようにしてもよい。
In the above embodiment, an amorphous thermoelectric semiconductor was obtained by thermal spraying, but a thermoelectric semiconductor containing at least a portion of a polycrystalline structure may also be obtained by thermal spraying.

(発明の効果) 5− 4− 以上説明したように、本発明によれば、溶射を用いて多
結晶もしくは非晶質の熱電半導体を構成することにより
、実用上充分な厚みを有する高感度の熱発電素子を得る
ことができる。
(Effects of the Invention) 5-4- As explained above, according to the present invention, by forming a polycrystalline or amorphous thermoelectric semiconductor using thermal spraying, a highly sensitive material having a thickness sufficient for practical use can be produced. A thermoelectric power generating element can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例において非晶質熱電半導体を作
成するための減圧溶射装置を示す断面図、第2図は基板
上に非晶質熱電半導体のバルクを構成した状態の正面図
、第3図は非晶質熱電半導体の断面を顕微鏡でみた拡大
断面図、第4図は基板よりはがした状態の非晶質熱電半
導体のバルクを示す正面図、第5図はバルクを分割して
一対の電極を形成した熱発電素子を示す正面図である。 4・・・基板、7・・・プラズマトーチ、8・・・非晶
質熱電半導体、10・・・電極。 特許出願人 ティーディーケイ株式会社 代理人 弁理士 村 井 隆 6一
FIG. 1 is a sectional view showing a reduced pressure spraying apparatus for producing an amorphous thermoelectric semiconductor in an embodiment of the present invention, and FIG. 2 is a front view of a state in which a bulk of an amorphous thermoelectric semiconductor is formed on a substrate. Figure 3 is an enlarged cross-sectional view of the cross-section of the amorphous thermoelectric semiconductor viewed through a microscope, Figure 4 is a front view showing the bulk of the amorphous thermoelectric semiconductor after it has been peeled off from the substrate, and Figure 5 is the bulk divided. FIG. 2 is a front view showing a thermoelectric generating element in which a pair of electrodes are formed. 4... Substrate, 7... Plasma torch, 8... Amorphous thermoelectric semiconductor, 10... Electrode. Patent applicant TDC Co., Ltd. Patent attorney Takashi Murai 61

Claims (1)

【特許請求の範囲】[Claims] (1)溶射により多結晶又は非晶質の熱電半導体を構成
し、該熱電半導体に一対の熱起電力取出用の電極を設け
たことを特徴とする熱発電素子。
(1) A thermoelectric generating element characterized in that a polycrystalline or amorphous thermoelectric semiconductor is formed by thermal spraying, and a pair of electrodes for extracting thermoelectromotive force is provided on the thermoelectric semiconductor.
JP58241529A 1983-12-21 1983-12-21 Thermopower generation element Pending JPS60133769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58241529A JPS60133769A (en) 1983-12-21 1983-12-21 Thermopower generation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58241529A JPS60133769A (en) 1983-12-21 1983-12-21 Thermopower generation element

Publications (1)

Publication Number Publication Date
JPS60133769A true JPS60133769A (en) 1985-07-16

Family

ID=17075702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58241529A Pending JPS60133769A (en) 1983-12-21 1983-12-21 Thermopower generation element

Country Status (1)

Country Link
JP (1) JPS60133769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013161523A1 (en) * 2012-04-26 2015-12-24 東洋鋼鈑株式会社 Cermet covering material, alloy powder for producing cermet covering material, and method for producing cermet covering material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013161523A1 (en) * 2012-04-26 2015-12-24 東洋鋼鈑株式会社 Cermet covering material, alloy powder for producing cermet covering material, and method for producing cermet covering material

Similar Documents

Publication Publication Date Title
US4320251A (en) Ohmic contacts for solar cells by arc plasma spraying
US5959341A (en) Thermoelectric semiconductor having a sintered semiconductor layer and fabrication process thereof
US9065014B2 (en) Thermoelectric material including coating layers, method of preparing the thermoelectric material, and thermoelectric device including the thermoelectric material
JP2002076452A (en) Thermoelectric transducing material and manufacturing method thereof
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
JPS59156998A (en) Boron nitride film and its manufacture
WO1990016086A1 (en) Thermoelectric semiconductor material and method of producing the same
US3297436A (en) Method for making a novel solid metal alloy and products produced thereby
US5886292A (en) Thermoelectric material
Krajnovich et al. Impurity-driven cone formation during laser sputtering of graphite
US4394210A (en) Process for forming a lead film
Zhao et al. Protective properties of magnetron-sputtered Ti coating on CoSb3 thermoelectric material
JPS60133769A (en) Thermopower generation element
JP3572939B2 (en) Thermoelectric material and method for manufacturing the same
Amin et al. Thermoelectric properties of fine grained (75% Sb 2 Te 3-25% Bi 2 Te 3) p-type and (90% Bi 2 Te 3-5% Sb 2 Te 3-5% Sb 2 Se 3) n-type alloys
JP3510384B2 (en) Manufacturing method of thermoelectric conversion element
JPH10209508A (en) Thermoelectric transducer and its manufacture
Nishimura et al. Microanalysis of silicon protrusions with a titanium cap formed via surface melting and solidification under applied tensile stress
JP2516251B2 (en) Manufacturing method of oxide superconducting film
Yamashita et al. Enhancement of the thermoelectric figure of merit in p-and n-type Cu/Bi-Te/Cu composites
EP0177110A1 (en) Process for accelerating amorphization of intermetallic compounds by a chemical reaction using lattice defects
JP2813691B2 (en) Laser deposition target
Horio et al. Microstructure and thermoelectric properties of hot-pressed p-type Bi0. 5Sb1. 5Te3 alloys prepared by rapid solidification technique
JP3570821B2 (en) How to make thermoelectric materials
Bunton et al. The chemical and thermal etching of antimony