JPS6013361B2 - Regeneration control method for AC electric vehicles - Google Patents

Regeneration control method for AC electric vehicles

Info

Publication number
JPS6013361B2
JPS6013361B2 JP8017977A JP8017977A JPS6013361B2 JP S6013361 B2 JPS6013361 B2 JP S6013361B2 JP 8017977 A JP8017977 A JP 8017977A JP 8017977 A JP8017977 A JP 8017977A JP S6013361 B2 JPS6013361 B2 JP S6013361B2
Authority
JP
Japan
Prior art keywords
current
voltage
main
field
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8017977A
Other languages
Japanese (ja)
Other versions
JPS5413915A (en
Inventor
幸雄 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8017977A priority Critical patent/JPS6013361B2/en
Publication of JPS5413915A publication Critical patent/JPS5413915A/en
Publication of JPS6013361B2 publication Critical patent/JPS6013361B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は交流電気車に用いられる回生制動の制御方式に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a regenerative braking control system used in AC electric vehicles.

第1図は交流電気車の回生制動回路の代表例を示す回路
図であって、回生制動時には、直流直巻電動機の電機子
巻線M,,2と界磁巻線MF,,2を分離独立させて、
いわゆる他励磁分巻制御を行う。
FIG. 1 is a circuit diagram showing a typical example of a regenerative braking circuit for an AC electric vehicle. During regenerative braking, the armature windings M, 2 and field windings MF, 2 of a DC series motor are separated. Be independent,
So-called separately excitation shunt control is performed.

電機子巻線回路は、サィリスタブリツジにより構成され
る主整流流装置MRf,,2、直流回略しや断器L及び
主平滑リアクトルMSLにより構成される。そして、発
電機として運転される主電動機の電機子巻線M,,2の
発生電圧が主整流装置の直流出力電圧、いわゆるィンバ
ータ電圧に打ち勝って主変圧器MTの2次側巻線に電流
を流し込む。これにより主変圧器MTの1次側巻線にも
電圧が誘起されて電源とは逆方向の電流を交流回路しや
断器CB及びパンタグラフ(Pan)を経由して架線に
流し込むいわゆる回生動作を行なう。一方、界磁巻線回
路MF,,2は主変圧器MTの専用巻線に接続されたサ
ィリスタ及びダイオードから構成される界磁整流装置B
Rfにより励磁される。
The armature winding circuit is composed of a main rectifier MRf, 2 composed of a thyristor bridge, a DC circuit or disconnector L, and a main smoothing reactor MSL. Then, the voltage generated in the armature windings M, 2 of the main motor operated as a generator overcomes the DC output voltage of the main rectifier, the so-called inverter voltage, and supplies current to the secondary winding of the main transformer MT. Pour. As a result, a voltage is induced in the primary winding of the main transformer MT, causing a so-called regenerative operation in which the current in the opposite direction to the power source is passed through the AC circuit and into the overhead wire via the disconnector CB and the pantograph (Pan). Let's do it. On the other hand, the field winding circuit MF, 2 is a field rectifier B composed of a thyristor and a diode connected to the dedicated winding of the main transformer MT.
It is excited by Rf.

第2図は制御ブロックの一例を示すものであって、通常
一般に知られているように、肌パターン発生器1、IA
比較器2、IF最大検出器3、IA検出器4、位相器5
、IF検出器6、電気ブレーキトルク検出器7、IFパ
ターン発生器8、IF比較器9、位相器10およびブレ
ーキトルク演算器11とから構成されている。
FIG. 2 shows an example of a control block, in which the skin pattern generator 1, IA
Comparator 2, IF maximum detector 3, IA detector 4, phase shifter 5
, an IF detector 6, an electric brake torque detector 7, an IF pattern generator 8, an IF comparator 9, a phase shifter 10, and a brake torque calculator 11.

次に、第2図を用いてブレーキ弁などによりブレーキト
ルクが指令された場合の制御を説明すると、ブレーキ弁
などより所定のブレーキトルクが指令されると、それに
応じてIAパターン発生器1からは電機子電流パターン
(限流値とも言う)が発生され、またIFパターン発生
器2からは界磁電流パターンが発生される。
Next, using FIG. 2 to explain the control when a brake torque is commanded by a brake valve or the like, when a predetermined brake torque is commanded by a brake valve or the like, the IA pattern generator 1 will respond accordingly. An armature current pattern (also referred to as a current limit value) is generated, and an IF pattern generator 2 generates a field current pattern.

回生動作時の主電動機の発生電圧FMと電流山などは次
式(1)■及び職の関係になっている。主電動機発生電
圧 EM:乙星ノ亥.(E,十E2)・COSY十Ex十E
s十R・IA……‘1}E,,2:主変圧器2次各巻線
の交流実効電圧〔V〕y :サィリスタの制御進み角〔
0〕 Ex:主変圧器の転流リアクタンス降下 〔V〕 Es:主整流装置の順電圧降下〔V〕 R :直流回路の内部抵抗〔Q〕 仏:主電動機の電機子爵流〔A〕 EMの?×Nの『×N ……■ブレーキ
トルクBEの?×lAMIF×山 ……‘3’? :主
電動機の界滋磁束〔Wb〕び三主電動機の界磁電流〔A
〕 N :車両速度〔鼠/n〕 主整流装置のィンバータ運転を行う為にはある一定以上
の制御進み角(最小転流余裕角とも言う)が必要である
ため、速度の高い領域では主電動機の発生電圧EMを小
さくして上記{1}式を満足させる必要がある。
The voltage FM generated by the main motor during regenerative operation and the current peak are related to the following equation (1). Main motor generated voltage EM: Otoboshi no I. (E, 10E2)・COSY10Ex10E
s1R・IA...'1}E,, 2: AC effective voltage of each secondary winding of the main transformer [V] y: Control advance angle of thyristor [
0] Ex: Commutation reactance drop of the main transformer [V] Es: Forward voltage drop of the main rectifier [V] R: Internal resistance of the DC circuit [Q] France: Electrical viscous current of the main motor [A] EM ? ×N's "×N......■ Brake torque BE? ×lAMIF×Mountain...'3'? : Field magnetic flux of the main motor [Wb] and field current of the three main motors [A
] N: Vehicle speed [rat/n] In order to perform inverter operation of the main rectifier, a control advance angle (also called minimum commutation margin angle) of a certain level or more is required, so in high speed regions the main motor It is necessary to reduce the generated voltage EM to satisfy the above equation {1}.

従って、主電動機の界滋露流ぼを制御して、主電動機の
発生電圧EMを制御することになる。そこで、ブレーキ
指令が出ると、イ小‐タ電圧〔空ね.(E,十E2)・
COWを最大に維持した状態で界滋電流を最小値から最
大値になるよう界磁整流装置BRfのサィリスタを位相
制御することになる。そして、界磁電流が最大になった
ことをIF最大検出器3で検出した後は「界磁電流を一
定のまま速度の低下につれて弦磯子電流を一定にすべ〈
、ィンバータ電圧を制御する為に主整流装置MRf,,
2のサィリスタを位相制御することになる。この様子を
第3図のブレーキ曲線図で説明すると、最大ブレーキを
指令した場合は曲線■の如くになり、弱いブレーキを指
令した場合は曲線■の如くになる。そして一般には、最
大ブレーキ指令時の最大磁界電流IF,とそのの痔の電
機子爵流山,が同一(IF,=IA,)になるよう設定
される。ところで、弱いブレーキ指令した時も曲線■の
如く最大界磁電流IF,になるまで界滋用整流装置を制
御した後、ィソバータ電圧を制御することになり、速度
の低い領域では主電動機の電機子爵流が小さい状態1ん
で運転されることになり、非常に過励磁状態くび,)>
IA2)になったり、電機子電流1んが断続するという
現象が生じる恐れがある。そこで本発明においてはIF
/山比較器を設けて、速度の低い領域でィンバータ電圧
の制御中は蟹磯子電茨五Aと界滋電流IFを同一にしよ
うとするものである。
Therefore, the field voltage EM of the main motor is controlled to control the voltage EM generated by the main motor. Therefore, when a brake command is issued, the small motor voltage [empty] is applied. (E, 10E2)・
The phase of the thyristor of the field rectifier BRf is controlled so that the field current changes from the minimum value to the maximum value while maintaining the maximum COW. After the IF maximum detector 3 detects that the field current has reached its maximum, the string Isogo current should be kept constant as the speed decreases while keeping the field current constant.
, the main rectifier MRf,, to control the inverter voltage.
The phase of the second thyristor is controlled. This situation will be explained using the brake curve diagram in FIG. 3. When maximum braking is commanded, the curve becomes like curve 2, and when weak braking is commanded, the curve becomes like curve 2. In general, the maximum magnetic field current IF at the time of the maximum brake command is set to be the same as the electric field current IF (IF,=IA,). By the way, even when a weak brake command is issued, the field rectifier is controlled until the maximum field current IF is reached as shown in curve (2), and then the isoverter voltage is controlled. It will be operated in state 1 where the current is small, resulting in a very overexcited state.
IA2) or the armature current may become intermittent. Therefore, in the present invention, if
A / peak comparator is provided to make the Kanisogo electric current IF and the Kaiji current IF the same during inverter voltage control in a low speed region.

以下、図面を用いて詳細に説明する。第4図は本発明に
よる制動方式の一実施例を示すブロック図であり、第2
図との相違点は、『最大検出器3をIFノ山比較器12
としたことである。
Hereinafter, it will be explained in detail using the drawings. FIG. 4 is a block diagram showing one embodiment of the braking system according to the present invention, and
The difference from the figure is that "maximum detector 3 is replaced by IF peak comparator 12".
This is what happened.

このように構成された回路において、ブレーキ指令が出
ると、ィンバータ電圧を最大に維持した状態で界磁電流
を最小値から徐々に増大することは従来と同じであるが
、速度の低下につれて界磁電流と電機子爵流が一致する
。すなわちF/IA比較器12より出力が出ると、界磁
電流びはその状態に維持しながら、電機子電流山が一定
になる様主整流装置MRfのサィリスタを位相制御して
ィソバータ電圧を速度に応じて制御する。このようにす
れば電機子爵流〔IA〕が極度に小さくならないので、
電機子電流が断続したり、主電動機の過励磁が解消でき
る。以上説明したように、本発明による交流電気車の回
生制動方式はIF/IA比較器を設けて速度の低い領域
でかつィンバータ電圧の制御中は電機子爵流と界磁電流
を同一になるように制御するものであるために、電機子
電流の断続を防止することができるとともに、主電動機
の過励磁を解消することができる優れた効果を有する。
In a circuit configured in this way, when a brake command is issued, the field current is gradually increased from the minimum value while maintaining the inverter voltage at the maximum, as in the past, but as the speed decreases, the field current increases gradually. Electric current and Denki Viscount style match. In other words, when the F/IA comparator 12 outputs an output, the field current is maintained at that state, and the thyristor of the main rectifier MRf is phase-controlled so that the armature current peak is constant, and the isobverter voltage is adjusted to the speed. Control accordingly. In this way, the Denki Viscount flow [IA] will not become extremely small, so
Intermittent armature current and over-excitation of the main motor can be resolved. As explained above, the regenerative braking system for an AC electric vehicle according to the present invention is provided with an IF/IA comparator so that the electric current and the field current become the same in the low speed range and while the inverter voltage is being controlled. Since it is controlled, it has an excellent effect of being able to prevent the armature current from intermittent, and also being able to eliminate overexcitation of the main motor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は交流電気車の回生制動方式の一例を示
す回路図、第3図はその特性図、第4図は本発明による
交流亀山気圧夏の回生制動方式の一実施例を示す回路図
である。 なお、図中同一符号は同一もしくは相当部分を示す。P
an・・・パンタグラフ、CB・・・交流回略しや断器
、MT・・・主変圧器、MRf,,2…主整流装置、L
,,2・・・直流回離しや断器、MSL・・・主平滑リ
アクトル、BRf・・・界滋用整流装置、M,.2・・
・主電動機の電機子、MF,,2・・・主電動機の界磁
巻線、1・・・1んぐ夕−ン発生器、2・・・IA比較
器、4・・・IA検出器、5…位相器、6…IF検出器
、7・・・電気プレ−キトルク検出器、8…IFパタ−
ン発生器、9…IF比較器、10・・・位相器、11…
ブレーキトルク演算器。 第1図 第2図 第3図 第4図
Figures 1 and 2 are circuit diagrams showing an example of a regenerative braking system for an AC electric vehicle, Figure 3 is a characteristic diagram thereof, and Figure 4 is an embodiment of an AC Kameyama pressure summer regenerative braking system according to the present invention. FIG. Note that the same reference numerals in the figures indicate the same or corresponding parts. P
an...Pantograph, CB...AC circuit and disconnector, MT...Main transformer, MRf,, 2...Main rectifier, L
,,2...DC separation or disconnector, MSL...main smoothing reactor, BRf...rectifier for field energy, M,. 2...
・Armature of main motor, MF, 2... Field winding of main motor, 1... 1st evening generator, 2... IA comparator, 4... IA detector , 5...Phase shifter, 6...IF detector, 7...Electric brake torque detector, 8...IF pattern
generator, 9...IF comparator, 10...phase shifter, 11...
Brake torque calculator. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 サイリスタブリツジのインバータ運転により回生制
動を行う交流電気車において、ブレーキ指令が出るとイ
ンバータ電圧を最大に維持した状態で主電動機の界磁電
流と主電動機の電機子電流を比較して両者が一致すると
出力する比較手段、この比較手段の出力により上記主電
動機の界磁電流を一定に保持するように界磁整流装置の
サイリスタの位相制御を行う制御手段、上記比較手段の
出力により上記電機子電流が一定になるように主整流装
置のサイリスタの位相制御を行つてインバータ電圧を速
度に応じた電圧に制御する制御手段を備えてなる交流電
気車の回生制御方式。
1 In an AC electric vehicle that performs regenerative braking by inverter operation of a thyristor bridge, when a brake command is issued, the field current of the traction motor is compared with the armature current of the traction motor while maintaining the inverter voltage at maximum, and the a comparison means for outputting an output when they match; a control means for controlling the phase of the thyristor of the field rectifier so as to keep the field current of the main motor constant by the output of the comparison means; A regeneration control system for an AC electric vehicle that includes a control means that controls the inverter voltage to a voltage that corresponds to the speed by controlling the phase of the thyristor in the main rectifier so that the current is constant.
JP8017977A 1977-07-04 1977-07-04 Regeneration control method for AC electric vehicles Expired JPS6013361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8017977A JPS6013361B2 (en) 1977-07-04 1977-07-04 Regeneration control method for AC electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8017977A JPS6013361B2 (en) 1977-07-04 1977-07-04 Regeneration control method for AC electric vehicles

Publications (2)

Publication Number Publication Date
JPS5413915A JPS5413915A (en) 1979-02-01
JPS6013361B2 true JPS6013361B2 (en) 1985-04-06

Family

ID=13711119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8017977A Expired JPS6013361B2 (en) 1977-07-04 1977-07-04 Regeneration control method for AC electric vehicles

Country Status (1)

Country Link
JP (1) JPS6013361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741692Y2 (en) * 1986-03-07 1995-09-27 三菱鉛筆株式会社 Parts transfer device

Also Published As

Publication number Publication date
JPS5413915A (en) 1979-02-01

Similar Documents

Publication Publication Date Title
JP3746334B2 (en) Permanent magnet type synchronous motor drive control apparatus and method
US5583406A (en) Control method and system for regeneration braking of an electric vehicle
US6262555B1 (en) Apparatus and method to generate braking torque in an AC drive
US6262896B1 (en) Auxiliary power conversion for an electric vehicle using high frequency injection into a PWM inverter
JPS5920275B2 (en) Electric motor control device
KR20160087363A (en) Bi-directional dc-dc power converter for a vehicle system
JPS6013361B2 (en) Regeneration control method for AC electric vehicles
JPH07107613A (en) Method and system for braking electric vehicle
JP2672911B2 (en) Blackout detection method for AC electric vehicles
JP3750681B2 (en) Permanent magnet type synchronous motor drive control apparatus and method
JPS5935573A (en) Constant margin angle control system for multistage cascade thyristor converter
JP3085406B2 (en) Power converter for AC electric vehicles
JP7082700B1 (en) Drive system
JPS6115642B2 (en)
JP2671415B2 (en) AC electric vehicle control device
JPH04322107A (en) Controller for ac electric vehicle
JPS6117231B2 (en)
SU849397A2 (en) Device for control of series dc motor
JP2569016B2 (en) Induction machine control device
JPS62290302A (en) Induction motor-type electric rolling stock controller
JP2766584B2 (en) AC electric vehicle control device
Allan et al. Rheostatic stabilisation of a chopper-controlled brake for traction drives
JPH08251707A (en) Power conversion equipment for ac electric car
JPH0435962B2 (en)
JPS6130480Y2 (en)