JPS6013250A - Controlling method of rubber vulcanization process - Google Patents

Controlling method of rubber vulcanization process

Info

Publication number
JPS6013250A
JPS6013250A JP12064783A JP12064783A JPS6013250A JP S6013250 A JPS6013250 A JP S6013250A JP 12064783 A JP12064783 A JP 12064783A JP 12064783 A JP12064783 A JP 12064783A JP S6013250 A JPS6013250 A JP S6013250A
Authority
JP
Japan
Prior art keywords
vulcanization
temperature
rubber
time
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12064783A
Other languages
Japanese (ja)
Other versions
JPH0363488B2 (en
Inventor
Tsutomu Shioyama
務 塩山
Yosuke Matsui
洋介 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP12064783A priority Critical patent/JPS6013250A/en
Publication of JPS6013250A publication Critical patent/JPS6013250A/en
Publication of JPH0363488B2 publication Critical patent/JPH0363488B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • G01N25/04Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of melting point; of freezing point; of softening point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/445Rubber

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To elevate the control accuracy of the vulcanization process by controlling the vulcanization process depending on the equivalent vulcanization time and vulcanization level at a set point inside rubber from a detection value obtained when the temperature at a plurality of points of a rubber surface changing with time during the vulcanization is detected at a specified time interval. CONSTITUTION:At the step 1, the temperature at a plurality of point on the surface of a rubber 10 varying with time is detected at DELTAt interval. At the step 2, the temperature detected at the step 1 is used as restricting condition to compute the temperature at the set point inside a rubber after DELTAt time by the solution of heat diffusion. Then, at the step 3, the arithmetic processing is performed on the equivalent vulcanization time toi and the vulcanization level x1 at the set reference temperature T0 based on Arrhenius' equation from the temperature computed at the step 2. At the step 4, the computed value toi is compared with the set values toc and xc to judge. At the step 5, a control signal is outputted to a vulcanizer based on the results of the judgement at the step 4 and thus, a higher control accuracy is achieved.

Description

【発明の詳細な説明】 本発明はゴム加硫工程の制御方法に関するものである。[Detailed description of the invention] The present invention relates to a method of controlling a rubber vulcanization process.

ゴムの加硫反応をその加硫度に従って制御するにあたっ
て、上記加硫度の検出には、アレニウス式を利用した加
硫積算計が従来より採用されている。この加硫積算計の
原理は次のようなものである。
In controlling the vulcanization reaction of rubber according to its degree of vulcanization, a vulcanization totalizer using the Arrhenius equation has conventionally been employed to detect the degree of vulcanization. The principle of this vulcanization totalizer is as follows.

(イ)加硫時のゴム温度を熱電対により直接検出する。(a) Directly detect the rubber temperature during vulcanization using a thermocouple.

(口〕 アレニウス式(後述する(1)式)に基いて、
実際の加硫時間を予め設定しておいた基準温度TOにお
ける等価加硫時間toに変換して出力する。
(mouth) Based on the Arrhenius formula (formula (1) described later),
The actual vulcanization time is converted into an equivalent vulcanization time to at a preset reference temperature TO and output.

(ハ)等価加硫時間toが設定値に達した時に加硫装置
に対して制御信号を出力する。
(c) A control signal is output to the vulcanizer when the equivalent vulcanization time to reaches a set value.

に)上記(イ)〜(ハ)を加硫中、一定時間間隔て繰り
返す。
B) Repeat steps (a) to (c) above at regular intervals during vulcanization.

k:反応速度定数 A:頻度因子 E:活性化エネルギー R:ガス定数 T:反応温度 反応温度Toのときの反応速度定数をkoとすると、 −」L− kO= A −e RT。k: reaction rate constant A: Frequency factor E: Activation energy R: gas constant T: reaction temperature If the reaction rate constant at reaction temperature To is ko, then -”L- kO= A −e RT.

であり、したがって反応速度定数の比に/koは、とな
る。
Therefore, the ratio of reaction rate constants is /ko.

したがって、(2)式をTにおける反応時間tで積分す
れば、(3)式のようになる。
Therefore, if equation (2) is integrated over the reaction time t at T, equation (3) is obtained.

この式によって得られる値toはある定められた温度T
o (以下、基準温度という。)における単位時間当り
の反応量の何倍lこなっているかを表わし、一般に等価
加硫時間と呼ばれる。
The value to obtained by this formula is given at a certain temperature T
It represents how many times the amount of reaction occurs per unit time at o (hereinafter referred to as reference temperature), and is generally called equivalent vulcanization time.

要するに、上記従来の方式は、温度測定を行なった点(
ゴム内部)についてのみの情報を与え、それにより加硫
装置の制御を行なうものであり、実際の加硫工程に適用
する場合には、以下の問題点を有している。
In short, the conventional method described above does not measure temperature (
This method provides information only about the inside of the rubber and controls the vulcanizer using this information, and when applied to an actual vulcanization process, it has the following problems.

(a) 温度検出用の熱電対が製品内部に残るか、ある
いは引き抜いてもその引き抜いた部分に空孔が残るため
、適用できる製品の種類が限られてぐる。
(a) The thermocouple for temperature detection remains inside the product, or even if it is pulled out, a hole remains in the part where it is pulled out, so the types of products to which it can be applied are limited.

(ハ)金型あるいは熱盤部に温度検出端子を取り付け、
ゴム表面部の加硫度から加硫工程を制御する方法をとる
ことも考えられる−が、ゴム表面とゴム内部との加硫度
の対応関係は経験的に判断しなければならないので、加
硫工程を厳密に制御することができない。
(c) Attach a temperature detection terminal to the mold or heating plate,
It may be possible to control the vulcanization process based on the degree of vulcanization on the rubber surface, but the correspondence between the degree of vulcanization between the rubber surface and the inside of the rubber must be determined empirically. It is not possible to strictly control the process.

(C) 多数個取りの金型では、ゴム内部の加硫度をみ
るためにダミーキャビティを設ける方法もとられている
が、材料の損失が大きくなり、また、生産性も低くなる
(C) In multi-cavity molds, a method is used in which a dummy cavity is provided to check the degree of vulcanization inside the rubber, but this increases material loss and lowers productivity.

本発明は、かかる点に鑑み、金型等に取り付ける温度検
出端子によりゴム表面部の温度を測定し、その測定値に
基いてゴム内部の温度変化を演算し、その演算値をもと
lこしてアレニウス式に基づく加硫度をめるようになし
、製品を傷つけることなく、また、ダミーキャビティを
設けることなくゴム加硫工程を高い精度でもって制御で
きるようにすることを目的とするものである。
In view of this, the present invention measures the temperature of the rubber surface using a temperature detection terminal attached to a mold, etc., calculates the temperature change inside the rubber based on the measured value, and calculates the calculated value. The purpose is to increase the degree of vulcanization based on the Arrhenius formula, and to control the rubber vulcanization process with high precision without damaging the product or creating a dummy cavity. be.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明にかかるゴム加硫工程の制御方法は第1図に示す
如くjつのステップト5からなる。
The method of controlling the rubber vulcanization process according to the present invention comprises j steps 5 as shown in FIG.

−表面温度検出ステップト このステップは加硫中のゴム表面温度を所定時間間隔Δ
を毎に検出するステップである。この温度検出は、加硫
装置の金型あるいは熱盤部に複数個の温度検出端子を取
り付けて行なう。つまり、加硫中、経時的に変化するゴ
ム表面部の複数点の温度を経時的に検出する。
−Surface temperature detection step: This step measures the rubber surface temperature during vulcanization at predetermined time intervals Δ.
This step is to detect each time. This temperature detection is carried out by attaching a plurality of temperature detection terminals to the mold or heating plate of the vulcanizer. That is, during vulcanization, the temperature at multiple points on the rubber surface, which changes over time, is detected over time.

一内部温度演算ステップ2− このステップは、ステップ1で検出された温度を拘束条
件としてΔを時間後のゴム内部の設定点における温度を
熱拡散の解法を用いて演算するステップである。熱拡散
の解法としては、階差法あるいは有限要素法を変形した
方法を用いることができる。
1. Internal temperature calculation step 2 - This step is a step of calculating the temperature at the set point inside the rubber after a time period of Δ using the temperature detected in step 1 as a constraint condition using a thermal diffusion solution method. As a method for solving thermal diffusion, a difference method or a modified version of the finite element method can be used.

階差法を利用する場合について説明すれば、第2図に示
す如く、ゴム10の表面と内部にいくつかの節点を!次
元において以下に示す条件で決定する。
To explain the case of using the difference method, as shown in Fig. 2, several nodes are set on the surface and inside of the rubber 10! The dimensions are determined under the conditions shown below.

a)節点を結ぶ線が鋭角または直角三角形となる。a) The line connecting the nodes forms an acute or right triangle.

b)節点を結ぶ線が長方形または正方形となる。b) The line connecting the nodes becomes a rectangle or square.

C)節点は同心円と放射線の交点にある。C) The node is at the intersection of the concentric circles and the radial line.

上記ゴム表面の節点11aは温度検出端子による温度検
出位置であり、本ステップにおいて、ゴム内部の節点1
1bの温度を演算によってめることになる。
The node 11a on the rubber surface is the temperature detection position by the temperature detection terminal, and in this step, the node 11a inside the rubber
The temperature of 1b is determined by calculation.

第3図に示す如く、各節点1 、1 +/ + 1 +
 −2゜i+J、nを結ぶ線分の垂直2等分線によって
囲まれたm角形の要素12における熱バランスの式%式
% TJ:時刻t=PΔtにおける第n節点の温度Ql)’
第n節点を含む多角形の単位厚さ尚たりの体積 C:比熱 γ:比重 q(j):多角形の第(j−i)辺を通過する平均熱流
束 An、(i−1):多角形の第(j−i)辺の単位厚さ
当たりの面積 そして、多角形の辺が別の多角形に接しているときの上
記平均熱流束q(j)は次の(II)式の如くなる。
As shown in Figure 3, each node 1 , 1 +/ + 1 +
-2゜ i + J, the formula for the heat balance in the m-gonal element 12 surrounded by the perpendicular bisector of the line segment connecting n % Formula % TJ: Temperature at the n-th node at time t = PΔt Ql)'
Volume C per unit thickness of the polygon including the nth node: Specific heat γ: Specific gravity q(j): Average heat flux An passing through the (ji)th side of the polygon, (i-1): The area per unit thickness of the (j-i)th side of a polygon, and the above average heat flux q(j) when a side of a polygon is in contact with another polygon is given by the following equation (II): It becomes like this.

q (j) −λ (T(j)−T(n))/Ln 、
(j −i ) (II)λ:熱伝導率 T(1節点jの温度 Lzl 、 (j−i ) :節点jと節点nとの距離
また、ゴム表面にある辺では次のような境界条件を入れ
る。
q (j) −λ (T(j)−T(n))/Ln,
(j − i ) (II) λ: Thermal conductivity T (temperature Lzl of one node j, (ji − i): Distance between nodes j and n Put in.

断熱条件の場合 q=o (囮 表面熱流束を与える場合 q=qo (ロ)線形熱伝達
条件の場合 q−α(Too−T(ロ))(V)α:熱
伝達率、Tc−o; 周囲流体温度上Re、 Qll)
 〜(V)式ヲ(1)式に代入L’ −c Tff y
=−右辺に〈p p p くり出すことにより、T(1) r T(2) +・・
・・・・、T(ハ)からp+I p+I p+] Δを時間後のT(]) 、T(2) ・・・・・・、T
(ロ) 、つまり、各節点の温度が演算できる。
In the case of adiabatic conditions q=o (When giving the decoy surface heat flux q=qo (b) In the case of linear heat transfer conditions q-α (Too-T (b)) (V) α: Heat transfer coefficient, Tc-o ; Ambient fluid temperature Re, Qll)
~ Substitute equation (V) into equation (1) L' -c Tff y
=- By extracting 〈p p p on the right side, T(1) r T(2) +...
..., T(c) to p+I p+I p+] Δ after time T(]), T(2) ......, T
(b) In other words, the temperature at each node can be calculated.

−演算処理ステップ6− このステップは、ステップ2で演算された温度からアレ
ニウス式に基いて設定基準温度Toにおける等価加硫時
間1o(i)と加硫度χ(i)とを演算処理するステッ
プである。
-Calculation processing step 6- This step is a step of calculating the equivalent vulcanization time 1o(i) and the degree of vulcanization χ(i) at the set reference temperature To from the temperature calculated in step 2 based on the Arrhenius equation. It is.

すなわち、各節点の演算温度をΔtの間隔で取込み、Δ
tに等価のΔ1o(i)をアレニウスの式に基fi オ
・T (i)は取込回数i、つまり、t (i)時の温
度である。
That is, the calculated temperature of each node is taken in at intervals of Δt, and Δ
Based on the Arrhenius equation with Δ1o(i) equivalent to t, fi o T (i) is the temperature at the number of times of intake i, that is, at t (i).

そして、Δi (o) iの積算値、すなわち、等価加
硫時間to(i)を演算する。
Then, the integrated value of Δi (o) i, that is, the equivalent vulcanization time to(i) is calculated.

次いで、等価加硫時間jo(i)に対応する加硫度χ(
i)を算出する。
Next, the degree of vulcanization χ(
i).

一比較判定ステップ4− このステップlet、ステップ6て得られた等価加硫時
間fo(i)あるいは加硫度χ(i)が予め設定された
側脚信号の出力を要する等価加硫時間toe あるいは
加硫度χCに達しているか否かを比較判定するステップ
である。つまり、fo(i)≧toe であるか否か、
χ(i)≧χCであるか否かを判定する。この判定が否
であれば、表面温度検出ステップ1に戻り、上記ステッ
プト4を所定の時間間隔Δtで繰返す。
Comparison and Judgment Step 4 - This step let, the equivalent vulcanization time fo (i) obtained in step 6 or the equivalent vulcanization time toe which requires the output of the side leg signal in which the degree of vulcanization χ (i) is set in advance, or This is a step of comparing and determining whether the degree of vulcanization χC has been reached. In other words, whether fo(i)≧toe or not,
It is determined whether χ(i)≧χC. If this determination is negative, the process returns to surface temperature detection step 1, and step 4 is repeated at predetermined time intervals Δt.

一出力ステップ5− このステップは、ステップ4での判定結果をもとにして
加硫装置へ制御信号を出力するステップである。
1. Output step 5 - This step is a step of outputting a control signal to the vulcanizer based on the determination result in step 4.

すなわち、to(i)≧toc あるいはχ(i)≧χ
Cであれは、加硫装置に加硫停止あるいは加硫温度変更
の指令信号を加硫装置に出力する。
That is, to(i)≧toc or χ(i)≧χ
If it is C, a command signal to stop vulcanization or change the vulcanization temperature is output to the vulcanizer.

次に、本発明にかかる制御方法をコンピュータを用いて
実際の加硫工程に応用する場合について説明する。
Next, a case will be described in which the control method according to the present invention is applied to an actual vulcanization process using a computer.

第7図には本発明方法を達成するコンビーータのフロー
チャートが示されて因る。ます、ステップS1において
、加硫すべきゴムの形状および物理定数(熱伝導率、比
熱および比重)のへカを行ない、ステップS2で熱伝導
マトリクス(MJを作成してコンビーータの記憶部に記
憶せしめる。
FIG. 7 shows a flowchart of a conbeater implementing the method of the present invention. First, in step S1, the shape and physical constants (thermal conductivity, specific heat, and specific gravity) of the rubber to be vulcanized are determined, and in step S2, a heat conduction matrix (MJ) is created and stored in the storage section of the converter. .

この熱伝導マトリクス fMJ については後述する。This thermal conduction matrix fMJ will be described later.

ステップS3では、スタートか否か、つまり、熱伝導マ
トリクス(M)が作成されてゴム表面温度の測定をスタ
ートさせてよい状態となっているか否かの判断を行なう
。YESの場合はステップS4へ進み、ゴム表面温度の
測定端の取込みをΔtの間隔で行なう。
In step S3, it is determined whether or not to start, that is, whether or not the thermal conduction matrix (M) has been created and the measurement of the rubber surface temperature can be started. In the case of YES, the process advances to step S4, and the measurement end of the rubber surface temperature is taken in at intervals of Δt.

次いで、ステップS5ては、コム表面での熱流束qoの
計算を行ない、ステップs6でこの熱流束(Ioが拘束
条件となるように熱伝導マトリクス(M)の書き換えを
行なう。
Next, in step S5, the heat flux qo on the comb surface is calculated, and in step s6, the heat conduction matrix (M) is rewritten so that this heat flux (Io) becomes a constraint condition.

ステップS7では、各要素温度計算を行なう。In step S7, each element temperature is calculated.

十Δt (T ) = fM) X (T) (T):現在の要素温度 十Δt (T ):Δを後の要素温度 ステップS8では、基準とすべき要素、つまり、ゴム内
部の設定点における等価加硫時間1o(i)お十Δt よび加硫度χ(i)を上記ステップS7の(T )より
める。
1Δt (T) = fM) The equivalent vulcanization time 1o(i) Δt and the degree of vulcanization χ(i) are calculated from (T) in step S7 above.

ステップS9では、設定点における加硫度χ(i)を出
力し、ステップSIOでは、予め設定された加硫度χ。
In step S9, the degree of vulcanization χ(i) at the set point is output, and in step SIO, the degree of vulcanization χ(i) set in advance is output.

とステップs9で出力された加硫度χ(i)との比較、
つまり、χ(i)≧χCか否かを判断し、YESの場合
はステップS】に進んで加硫装置に制御信号を出力し、
Noの場合はステップS4 lこ戻る。
and the degree of vulcanization χ(i) output in step s9,
In other words, it is determined whether χ(i)≧χC, and if YES, the process proceeds to step S and outputs a control signal to the vulcanizing device.
If No, return to step S4.

ここで、上記熱伝導マトリクス(M)の作成手順につい
て、第5図のフローチャートに基いて説明すれば、ます
、ステップ501で節点座標の読込み、ステップ502
で節点関係の読込み、ステップSo3で加硫すべきゴム
の物理定数(熱伝導率、比熱、比重ンの読込みをそれぞ
れ行なう。そして、ステップS04で要素の各辺ごとに
温度の変化量ΔTを計算し、ステップ505でこの変化
量Δtを(節点数×節点数)の大きさのマトリクスに書
込んで熱伝導マ)IJクス(M)を作成する。
Here, the procedure for creating the thermal conduction matrix (M) will be explained based on the flowchart of FIG.
In step S03, the nodal relationship is read, and in step S03, the physical constants (thermal conductivity, specific heat, and specific gravity) of the rubber to be vulcanized are read.Then, in step S04, the amount of change in temperature ΔT is calculated for each side of the element. Then, in step 505, this amount of change Δt is written in a matrix of size (number of nodes x number of nodes) to create a heat conduction matrix (IJ) (M).

次に、本発明の実施例を比較例との比較において説明す
る。
Next, examples of the present invention will be described in comparison with comparative examples.

第3図に示すゴム製品15をプレスにて加硫するにあた
り、ゴム内部の中心点の温度を本発明方法によってシー
ミレートした場合と、この中心点温度を熱電対によって
実測した場合とを比較した。
When vulcanizing the rubber product 15 shown in FIG. 3 in a press, a comparison was made between the case where the temperature at the center point inside the rubber was seamed by the method of the present invention and the case where the center point temperature was actually measured with a thermocouple.

ゴム製品は長さ犯が/ 、20 +nm、巾Wが、!;
0ran、高さhが72mであり、物理定数は比熱Cが
θグ2C耐殉、比重γが//2q/錨、熱伝導率λがl
、、、!; X /θ−4Ca立A苗である。
The length of rubber products is / , 20 + nm, and the width W is! ;
0ran, height h is 72m, the physical constants are specific heat C is θg2C resistance, specific gravity γ is //2q/anchor, thermal conductivity λ is l
,,,! ; X/θ-4Ca standing A seedling.

要素分割の態様は第7図に示されており、ゴムを断面に
おいて長方形の各要素に分割した。第7図中、1]Wl
 は、l!6Mrl、高さh】は2血であり、16は設
定点(ゴム内部中心に位置する節点)である。なお、金
型の温度は730℃、本発明方法における表面温度の取
込み間隔Δtは02分である。比較試験の結果を第2図
に示す。
The mode of element division is shown in FIG. 7, in which the rubber was divided into rectangular elements in cross section. In Figure 7, 1]Wl
Ha, l! 6 Mrl, height h] is 2 blood, and 16 is a set point (a node located at the center inside the rubber). The temperature of the mold was 730° C., and the interval Δt for measuring the surface temperature in the method of the present invention was 0.2 minutes. The results of the comparative test are shown in Figure 2.

第2図はゴムの温度と経過時間との関係を示すもので、
線Aはゴム表面温度の実測値、線Bは本発明方法で得た
ゴム内部中心点の温度の演算値、線Cはゴム内部中心点
の温度の実測値である。この第2図に示されている如く
、本発明方法によるゴム内部中心点の温度の演算値は実
測値と略一致していることがわかる。
Figure 2 shows the relationship between rubber temperature and elapsed time.
Line A is the actual measured value of the rubber surface temperature, line B is the calculated value of the temperature at the center point inside the rubber obtained by the method of the present invention, and line C is the actual measured value of the temperature at the center point inside the rubber. As shown in FIG. 2, it can be seen that the calculated value of the temperature at the center point inside the rubber according to the method of the present invention substantially coincides with the actually measured value.

なお、アレニウス式に基づく等価加硫温度および加硫度
の演算にあたって、以上の説明では活性化エネルギーが
全加硫反応過程で一定とし、また、等価加硫時間を加硫
度に比例する数値としてとらえているが、活性化エネル
ギーおよび加硫度を基準温度における加熱時間の関係と
して取扱うようにして1jlJ御の制度を高めることも
できる。
In addition, in calculating the equivalent vulcanization temperature and degree of vulcanization based on the Arrhenius equation, in the above explanation, the activation energy is assumed to be constant during the entire vulcanization reaction process, and the equivalent vulcanization time is assumed to be a value proportional to the degree of vulcanization. However, the accuracy of 1jlJ can also be improved by treating activation energy and degree of vulcanization as a relationship between heating time at a reference temperature.

つまり、予め、基準温度における加熱開始から加熱終了
に至るまでの途中の加熱時間toとそのtoでの加硫度
χに関する複数組のデータから、χ−f+(to) という連続関数をめる。
That is, a continuous function χ-f+(to) is calculated in advance from multiple sets of data regarding the heating time to during the period from the start of heating to the end of heating at the reference temperature and the degree of vulcanization χ at that time to.

また、活性化エネルギーEに関しては、基準温度以外の
温度で一定の加硫度に達する加熱時間を測定し、加硫開
始から加硫終了に至る複数点(3点以上)のχにおける
活性化エネルギーEをアレニウス式より算出し、このE
を算出したχに対応する加熱時間toをめ、このEとt
oに関する複数組のデータから、 E=f’ 2 (to) という連続関数をめる。
Regarding the activation energy E, we measured the heating time to reach a certain degree of vulcanization at a temperature other than the reference temperature, and the activation energy at χ at multiple points (3 or more points) from the start of vulcanization to the end of vulcanization. E is calculated using the Arrhenius equation, and this E
Taking the heating time to corresponding to the calculated χ, this E and t
A continuous function E=f' 2 (to) is calculated from multiple sets of data regarding o.

以上のように、本発明によれば、ゴム加硫中に経時的に
変化するゴム表面部複数点の温度を所定時間ごとに検出
し、その検出値からゴム内部の設定点の温度をめて等価
加硫時間あるいは加硫度をめることにより、ゴム加硫工
程を制御するようにしたから、従来のような熱電対のゴ
ム内部への挿入による空洞形成等の不具合が解消され、
ダミーキャビティを設けることなく高い精度でもってゴ
ムの加硫工程を制御することができる。また、本発明方
法は、ゴムの加硫状態を経時的に知ることができるため
、加硫度あるいは加硫時間に応じて加硫温度を制御する
いわゆるステップ加硫を実施する場合に特に有効である
As described above, according to the present invention, the temperature at multiple points on the rubber surface that changes over time during rubber vulcanization is detected at predetermined intervals, and the temperature at the set point inside the rubber is determined from the detected value. Since the rubber vulcanization process is controlled by adjusting the equivalent vulcanization time or degree of vulcanization, problems such as the formation of cavities due to the insertion of thermocouples into the rubber, which were conventional, are eliminated.
The rubber vulcanization process can be controlled with high precision without providing a dummy cavity. Furthermore, since the method of the present invention allows the vulcanization state of the rubber to be known over time, it is particularly effective when performing so-called step vulcanization, in which the vulcanization temperature is controlled according to the degree of vulcanization or the vulcanization time. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発す」方法の構成を示すフロー図、第2図お
よび第3図は階差法における要素分割の説明図、第7図
は本発明方法をコノピーータで実施する場合のフロー図
、第5図は熱伝導マトリクスを作成する場合のフロー図
、第6図は実施例での供試材を示す斜視図、第7図は実
施例での要素分割の態様を示す説明図、第2図はゴム温
度の経時変化を示すグラフ図である。 1〜5・・・・・・ステップ、10・・・・・・ゴム、
11a111b・・・・・・節点、12・・・・・・要
素、15・・・・・・ゴム製品、16・・・・・・設定
点 第 5 図
Fig. 1 is a flow diagram showing the configuration of the method of the present invention, Figs. 2 and 3 are explanatory diagrams of element division in the difference method, and Fig. 7 is a flow diagram when the method of the present invention is implemented with a conopter. Fig. 5 is a flow diagram for creating a thermal conduction matrix, Fig. 6 is a perspective view showing the sample material in the example, Fig. 7 is an explanatory diagram showing the aspect of element division in the example, The figure is a graph showing changes in rubber temperature over time. 1-5...Step, 10...Rubber,
11a111b...Node, 12...Element, 15...Rubber product, 16...Setting point Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1) 加硫中のゴム表面温度を所定時間間隔Δを毎に
検出する温度検出ステップ、 温度検出ステップでの検出温度を拘束条件としてΔを時
間後のゴム内部の設定点における温度を熱拡散の解法を
用いて演算する温度演算ステップ、 温度演算ステップでの演算温度から基準温度における等
価加硫時間あるいは加硫度を演算処JM!する演算処理
ステップ、 演算処理ステップでの等価加硫時間あるいは加硫度が予
め設定された値に達しているか否かを比較判定する比較
判定ステップ、 比較判定ステップでの判定結果をもとにして加硫装置に
制御信号を送る制御信号出力ステップを包含しているこ
とを特徴とするゴム加硫工程の制御方法。
(1) Temperature detection step that detects the rubber surface temperature during vulcanization at predetermined time intervals Δ. Using the detected temperature in the temperature detection step as a constraint condition, the temperature at the set point inside the rubber after Δ time is thermally diffused. A temperature calculation step that calculates the equivalent vulcanization time or degree of vulcanization at the reference temperature from the calculated temperature in the temperature calculation step using the solution method of JM! a calculation processing step to perform the calculation, a comparison judgment step to compare and judge whether or not the equivalent vulcanization time or degree of vulcanization in the calculation processing step has reached a preset value, based on the judgment result in the comparison judgment step. A method for controlling a rubber vulcanization process, comprising the step of outputting a control signal to send a control signal to a vulcanization device.
JP12064783A 1983-07-01 1983-07-01 Controlling method of rubber vulcanization process Granted JPS6013250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12064783A JPS6013250A (en) 1983-07-01 1983-07-01 Controlling method of rubber vulcanization process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12064783A JPS6013250A (en) 1983-07-01 1983-07-01 Controlling method of rubber vulcanization process

Publications (2)

Publication Number Publication Date
JPS6013250A true JPS6013250A (en) 1985-01-23
JPH0363488B2 JPH0363488B2 (en) 1991-10-01

Family

ID=14791396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12064783A Granted JPS6013250A (en) 1983-07-01 1983-07-01 Controlling method of rubber vulcanization process

Country Status (1)

Country Link
JP (1) JPS6013250A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079457A (en) * 1993-06-29 1995-01-13 Bridgestone Corp Vulcanization control method and vulcanization device
JP2001062837A (en) * 1999-07-14 2001-03-13 Pirelli Pneumatici Spa Method for vulcanizing tire
WO2017183422A1 (en) * 2016-04-19 2017-10-26 横浜ゴム株式会社 Tire vulcanizing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079457A (en) * 1993-06-29 1995-01-13 Bridgestone Corp Vulcanization control method and vulcanization device
JP2001062837A (en) * 1999-07-14 2001-03-13 Pirelli Pneumatici Spa Method for vulcanizing tire
WO2017183422A1 (en) * 2016-04-19 2017-10-26 横浜ゴム株式会社 Tire vulcanizing method
JP2017193079A (en) * 2016-04-19 2017-10-26 横浜ゴム株式会社 Tire vulcanization method
US11077634B2 (en) 2016-04-19 2021-08-03 The Yokohama Rubber Co., Ltd. Tire vulcanizing method

Also Published As

Publication number Publication date
JPH0363488B2 (en) 1991-10-01

Similar Documents

Publication Publication Date Title
JP2006503307A5 (en)
EP0071988B1 (en) Apparatus for automatically measuring and controlling chemical reaction amount
US3531996A (en) Cure simulator
JP4730823B2 (en) Vulcanization control method and control system
JPS6013250A (en) Controlling method of rubber vulcanization process
US4861167A (en) Line-heat-source thermal conductivity measuring system
KR920004583B1 (en) Method and apparatus for measuring flow and curing characteristices of resin
JPH0262948A (en) Method of measuring gel point temperature
JP2771195B2 (en) Resin flow hardening characteristic measuring method, thermosetting resin viscosity prediction method using the same, and thermosetting resin flow prediction method
US5783757A (en) Methods and apparatus for measuring a speed of flow of a fluid
US20210339448A1 (en) Method for Predicting a Polymer's Pressure, Flow Rate, and Temperature Relationship While Flowing within an Injection Mold
JP3382685B2 (en) Vulcanizer mold temperature controller
JP2964186B2 (en) Thermal flow meter
JP4074102B2 (en) Flow rate measuring method and flow rate measuring device
JPH0473683B2 (en)
US3350490A (en) Inexpensive clinical thermometer
JPH0365865B2 (en)
JPS5988656A (en) Apparatus for inspecting thermosetting resin
GB2131953A (en) Measuring the viscosity and elasticity of fluids, particularly polymers
JPS58185237A (en) Detection of temperature pattern of injection molder, etc.
RU1830478C (en) Way of determination of polymers flow
JPH05312741A (en) Method and apparatus for measurement of thermal conductivity of filled resin
JPH06304938A (en) Measuring device for foam growing properties of rubber material
JPS639829A (en) Electronic clinical thermometer capable of short-time measurement
JPH054989Y2 (en)