JPS5988656A - Apparatus for inspecting thermosetting resin - Google Patents

Apparatus for inspecting thermosetting resin

Info

Publication number
JPS5988656A
JPS5988656A JP19894482A JP19894482A JPS5988656A JP S5988656 A JPS5988656 A JP S5988656A JP 19894482 A JP19894482 A JP 19894482A JP 19894482 A JP19894482 A JP 19894482A JP S5988656 A JPS5988656 A JP S5988656A
Authority
JP
Japan
Prior art keywords
resin
pressure
plunger
mold
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19894482A
Other languages
Japanese (ja)
Other versions
JPH033908B2 (en
Inventor
Junichi Saeki
準一 佐伯
Shigeharu Tsunoda
重晴 角田
Aizo Kaneda
金田 愛三
Ataru Yokono
中 横野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19894482A priority Critical patent/JPS5988656A/en
Publication of JPS5988656A publication Critical patent/JPS5988656A/en
Publication of JPH033908B2 publication Critical patent/JPH033908B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/442Resins; Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To accurately and rapidly detect the fluidized and cured state of the resin in each part of a mold, by detecting resin pressure during fluidization, a plunger falling speed and a fluidized leading end position. CONSTITUTION:A resin tablet thrown in a mold 1 is pressed by a plunger 3 to be converted to molten resin and carried to a cavity 7 through a gate 6. Pulse voltage is outputted from a pulse generator 16 by the order of a microcomputer 14 to cyclically open and close the electromagnetic relief valve 17 of a molding machine. Resin pressure and the displacement of the plunger 3 are detected by pressure detectors 8, 9, 10 and a displacement detector 11 and the data in the following state of pressure change is stored in a computer 14. At the point of time when the signal from the pressure detector 10 is not followed to the signal of the pulse generator 16, the computer 14 performs the operation of viscosity and a gate seal state on the basis of the stored data and the result thereof is outputted by a printer 18.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は樹脂成形金型内における樹脂の流動および砂
化状態を検出する熱硬化性樹脂検査装置に関1°′るも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a thermosetting resin inspection device for detecting the flow and sanding state of resin in a resin mold.

〔従来技術〕[Prior art]

従来、熱硬化性樹脂の流動性を検知するためには、高化
式フローテスタによる最低溶融粘度の値やスパイラルフ
ロー金型内における流動距離の値が用いられている。前
者は非常に細いノズルを用(・、一定圧力条件化におい
て樹脂を流動させてその粘度を算出するものであるが、
実際の金型内とは伝熱状態が太き(異なっているため、
金型内の流動状態の予測には殆ど役立たなかった。、ま
た後者は極めて小さな断面積を持・つ流路内における樹
脂の流動距離を検出する方式であるため、前者同様、実
際の金型内とは伝熱状態が太きく異なり、支パイラルフ
ロー長から金型内の樹脂の充填容易度を定量的に予測す
ることができなかつ1こ。
Conventionally, in order to detect the fluidity of a thermosetting resin, the value of the minimum melt viscosity measured by a Koka type flow tester or the value of the flow distance in a spiral flow mold has been used. The former uses a very thin nozzle (・, the viscosity is calculated by flowing the resin under constant pressure conditions,
The heat transfer state is thicker (different than that in the actual mold),
It was of little use in predicting the flow state inside the mold. In addition, since the latter method detects the flow distance of the resin in a flow path with an extremely small cross-sectional area, the heat transfer state is significantly different from that in the actual mold, and the supporting spiral flow length is However, it is not possible to quantitatively predict the ease of filling the resin in the mold.

一方、硬化性を調べる手段としては、熱板法< J I
 8 K 5905 )、キニラストメータ、成形品の
熱時硬度測定等がある。熱板法は熱板の上圧樹脂を置き
、金属棒で該樹脂を攪拌して該金属棒が動きにく(なる
までの時間を測定するもので、該時間と金型内における
樹脂の硬化状態との関連を知ることは不可能である。ま
たプラスチコーダによる方法は、樹脂の硬化によって生
じる液体から固体への相変化を測定器により、トルク変
化として検知する方法であるが、この結果も金型内にお
ける樹脂の硬化状態との関連性は明確でない。さらに成
形品の熱時硬度の測定は、金型内において行うものであ
るが、この測定値は金型を開いてから測定するまでの経
過時間により変化するため、測定誤差が人ぎ(、かつ樹
脂が液体から同化する過程がわからないという欠点があ
った。
On the other hand, as a means to examine hardenability, hot plate method < J I
8 K 5905), kinilastometer, hot hardness measurement of molded products, etc. In the hot plate method, the upper pressure resin is placed on a hot plate, the resin is stirred with a metal rod, and the time until the metal rod becomes immovable is measured, and this time and the hardening of the resin in the mold are measured. It is impossible to know the relationship with the state.In addition, the plastic coder method uses a measuring device to detect the phase change from liquid to solid caused by curing of the resin as a torque change, but this result also The relationship with the hardening state of the resin inside the mold is not clear.Furthermore, the hot hardness of molded products is measured inside the mold, but this measurement value is not measured until after the mold is opened. This has the drawback that the measurement error varies depending on the elapsed time, and the process by which the resin is assimilated from the liquid cannot be understood.

上記のように従来の手法では、樹脂の流動性と硬化性の
相対的な比較はできても、実際の金型内における流動、
硬化状態との対応がつかめず、また従来の上記手段で樹
脂の特性値が規格内に入っでいても、成形品の品質が大
きく変つC来るという現実との関連をつかむことはでき
なかった。上記のように、従来、樹脂に対する適切な管
理法がなかったため、製品の歩出りが悪く、信頼性の向
上を図る上で大きな障害となっていた。
As mentioned above, with conventional methods, although it is possible to make a relative comparison of the fluidity and curing properties of resins, the actual flow in the mold,
It was not possible to grasp the relationship with the curing state, and even if the characteristic values of the resin were within the specifications using the conventional methods described above, it was not possible to grasp the relationship with the reality that the quality of the molded product would change significantly. . As mentioned above, in the past, there was no appropriate management method for resins, which resulted in poor product yields, which was a major obstacle in improving reliability.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、上記した従来技術の欠点をな(し、
金型各部の樹脂の流動および硬化の状態を正確かつ迅速
に検知できる熱硬化性樹脂検査装置を提供するにある。
The object of the present invention is to overcome the above-mentioned drawbacks of the prior art.
It is an object of the present invention to provide a thermosetting resin inspection device that can accurately and quickly detect the state of flow and hardening of resin in each part of a mold.

〔発明の概要〕[Summary of the invention]

上記の[I的ya1′達成するために、この発明は、つ
ぎのよりに構成しである。すなわち、実際の量産型の金
型にほぼ近い構造の金課流路内における樹脂の流動およ
び硬化の状態を定量的に検出できる」、うにしたもので
、金型は2ンナ、ゲートおよびキャピテイを備えており
、金型内に設げた圧力検出器によって流動中の樹脂圧力
検出器 ンジャ降下速度および流動先端位置を検出することによ
り、上記各検出値から未光填や外観不良発生と関連する
ランナ部分のレジン粘度および金線的り不良発生と関連
するキャビティ部分のレジン粘度を演算することができ
る。また。
In order to achieve the above [I-ya1', the present invention is constructed as follows. In other words, it is possible to quantitatively detect the flow and hardening state of the resin in the metal channel, which has a structure that is almost similar to that of an actual mass-produced mold. By using a pressure detector installed in the mold to detect the falling speed of the resin pressure detector during flow and the position of the flow tip, the above detection values can be used to determine whether the runner is not filled with light or has a poor appearance. It is possible to calculate the resin viscosity of the part and the resin viscosity of the cavity part that is associated with the occurrence of poor wire alignment. Also.

キャビティ内に樹脂の充填が完了した後&ま、成形品内
部のボイドの発生と密接に関連するゲート部分の樹脂硬
化状態ケ直接調べることカーできる。上記のように、こ
の発明によって、従来の手法では全熱不明であった成形
品の不良発生要因が明確となり、材料のロット管理のみ
ならず新しイ樹脂の選定および金型の最適樹n旨流路設
計に対して上記測定結果をフィード)(ツクすることが
できるものである。
After filling the cavity with resin, we can directly examine the resin curing condition at the gate, which is closely related to the occurrence of voids inside the molded product. As mentioned above, this invention clarifies the causes of defects in molded products, which were unknown in the conventional method, and enables not only lot management of materials but also the selection of new resins and the optimization of molds. The above measurement results can be fed into the flow path design.

〔発明の実施例〕[Embodiments of the invention]

以下−図面に基づいて、この発明を説明する。 In the following - the invention will be explained on the basis of the drawings.

第1図は、この発明の一実施例の全体構成を示し1こも
ので、成形機に取り付けた金型1のポクト2に投入さt
’t1こv8脂タブレット(図示せす)け、プランジャ
6により押されて、溶融した樹脂4と1より、ランナ5
.ゲート6を通ってキイビテイ7に運ばれる。上記プラ
ンジャ6の底部ランナ5およびキャビティ7には、それ
ぞれ樹脂圧力検出器8* 9 y 10が埋め込まれて
おり。
Figure 1 shows the overall configuration of an embodiment of the present invention.
't1 This v8 fat tablet (shown in the figure) is pushed by the plunger 6, and from the melted resins 4 and 1, the runner 5
.. It passes through Gate 6 and is transported to Kibitei 7. Resin pressure detectors 8*9y10 are embedded in the bottom runner 5 and cavity 7 of the plunger 6, respectively.

流動中の樹脂圧力を電気信号に変換するとともに、プラ
ンジャ5の変位を変位検出器11によって電気信号に変
換する。これらの信号は、増幅器12ヲ経てディジタル
ボルトメータ16によりディジクル信号に変換され、制
御・演算用マイクロコンピュータ14に記憶される。上
記テータは、上記−1イクロコンビーータ14の記憶容
量か小さい場合には外部記憶装置15に蓄えらねる。
The pressure of the flowing resin is converted into an electric signal, and the displacement of the plunger 5 is also converted into an electric signal by a displacement detector 11. These signals are converted into digital signals by a digital voltmeter 16 via an amplifier 12, and stored in a control/arithmetic microcomputer 14. The data cannot be stored in the external storage device 15 if the storage capacity of the -1 microcon beater 14 is small.

キャビティ内に樹脂が完全に充填すると、上記マイクロ
コンピュータ14はノ(ルスジエネレーク16に所定の
波形のパルス電圧を出力するように指令し、該パルス電
圧をj増幅器12′を経て。
When the cavity is completely filled with resin, the microcomputer 14 instructs the resin generator 16 to output a pulse voltage of a predetermined waveform, and the pulse voltage is passed through the amplifier 12'.

成形機の電磁レリーフ弁17を周期的に開閉する。The electromagnetic relief valve 17 of the molding machine is opened and closed periodically.

この油圧変化は樹脂圧力検出器8,9.10によって検
出され、q!rsの圧力変化の追随状態のデ−夕ハ、マ
イクロコンビーータ14または外部記tM、装置15に
記憶される。キャビテ(内の樹脂圧力検出器10からの
信号が、パルスジェネレータ16の信号に追随しなくな
った時点でマイクロコンピュータ14はパルスジェネレ
ータ16の動作を止め、リセットの状態に戻すとともに
、記憶されたデータをもとにして、粘度、ゲートシール
状態の演算ン行い、その結果をプリンタ18によって出
力する。
This oil pressure change is detected by resin pressure detectors 8, 9, and 10, and q! Data of the tracking state of the pressure change of rs is stored in the microconbeater 14 or the external memory device 15. When the signal from the resin pressure detector 10 inside the cavity no longer follows the signal from the pulse generator 16, the microcomputer 14 stops the operation of the pulse generator 16, returns to the reset state, and saves the stored data. Based on this, calculations are performed on the viscosity and gate seal state, and the results are outputted by the printer 18.

つぎに第2図〜第6図によって、この発明の作用を具体
的に説明する。第2図は、金型1内に樹脂が充填を始め
てから完了するまでの樹脂圧力検出器8,9.10およ
びプランジャ3の変位検出器11の測定値プロフ丁イル
を示したもので、該第2図を用いてランナ5およびキャ
ビティ7の部分における樹脂の粘度の算出方法を以下に
述べる。ここに−Pp*PR*”Cはそれぞれプランジ
ャ5の底部、ランナ5およびキャビテづ7に設けられた
樹脂圧力検出器8,9,10の指示値を示し、2はプラ
ンジャ5の変位検出器11の指示値を示す。
Next, the operation of the present invention will be specifically explained with reference to FIGS. 2 to 6. FIG. 2 shows the profile of the measured values of the resin pressure detectors 8, 9, 10 and the displacement detector 11 of the plunger 3 from the time when the filling of the resin into the mold 1 is started until it is completed. A method for calculating the viscosity of the resin in the runner 5 and cavity 7 will be described below with reference to FIG. Here, -Pp*PR*"C indicates the indicated values of the resin pressure detectors 8, 9, and 10 provided at the bottom of the plunger 5, the runner 5, and the cavity 7, respectively, and 2 indicates the displacement detector 11 of the plunger 5. indicates the indicated value.

いま1時刻t2におけるPp+PB、Zの値をそれぞれ
PP2 m ”R2t Z2としてランナ5における樹
脂の粘度の算出方法を述べると、ランナ5における樹脂
の粘度η、は次式によつC求められる。
Let us now describe the method for calculating the viscosity of the resin in the runner 5, assuming that the values of Pp+PB and Z at time t2 are respectively PP2 m ''R2t Z2.The viscosity η of the resin in the runner 5 is calculated by the following equation.

りB= (PP2−PR2)/’βRQ  ・・・・・
・・・・・・・・・・(1)ここに、β、はボット2か
らランナ5の樹脂圧力検出器9まで距離とランナ5の断
面形状から決まる定数である。また、Qは樹脂の流量で
1次式から求められる。
riB= (PP2-PR2)/'βRQ...
(1) Here, β is a constant determined from the distance from the bot 2 to the resin pressure detector 9 of the runner 5 and the cross-sectional shape of the runner 5. Further, Q is the resin flow rate and can be determined from a linear equation.

ここに、ハ1はアナログデータなディジタル化するとき
のきざみ時間、 Zl * Z3はt2の前後において
記憶されたプランジャ5の変位のデータ、またAPはプ
ランジャ6の断面積を示す。従って樹脂の移送完了時ま
でに、at置きに記憶されたP P + P R,Zの
値を用いて、移送完了までのランナ5における樹脂の粘
度ン計算することができる。なお、上記計算は、PRの
値が出始めたところから行うように指令しておくものと
する。ts、は樹脂の移送完了時刻を示すもので、この
時刻以降のZの仙は変化しない(Zs=Zs+1)から
、樹脂の移送完了直前の流JiQsは次式によって求め
られる。
Here, C1 is the step time when analog data is digitized, Zl*Z3 is the displacement data of the plunger 5 stored before and after t2, and AP is the cross-sectional area of the plunger 6. Therefore, by the time the transfer of the resin is completed, the viscosity of the resin in the runner 5 until the transfer is completed can be calculated using the values of P P + P R,Z stored every other time. Note that the above calculation is instructed to be performed from the point where the value of PR begins to appear. ts indicates the time when the resin transfer is completed, and since the value of Z does not change after this time (Zs=Zs+1), the flow JiQs immediately before the resin transfer is completed can be determined by the following equation.

なお、Zs:Zs+1となった時点でZsを樹脂の移送
完了時の変位とし、(6)式を用いて移送完了直前の樹
脂の流量ケ求めるように指令しでお(ものとする。
Note that when Zs:Zs+1 is reached, Zs is set as the displacement at the time of completion of resin transfer, and a command is given to calculate the flow rate of resin immediately before completion of transfer using equation (6).

つぎにキャビティ7における樹脂の粘度ダ。は次式から
求められる。
Next is the viscosity of the resin in cavity 7. is obtained from the following equation.

ηc=Pcs/′Ic11QB−−−=−−−(4ンこ
こにPC8は、移送完了直前のキャピテイZ内の樹脂圧
力検出器10の指示値、β。は樹脂圧力検出器10から
キャビテづ7の端までの距離と該キャピテイ7の断面形
状とによって決まる定数7示し、Qsは上記(6)式か
ら求まる。従って記憶さねたPcs、Qsおよび予め計
算されたβ。の値を用い”(V。が計算できる。
ηc=Pcs/'Ic11QB----=----(4) Here, PC8 is the indicated value of the resin pressure detector 10 in the cavity Z immediately before the transfer is completed, and β is the value measured from the resin pressure detector 10 to the cavity Z A constant 7 is determined depending on the distance to the end of the cavity 7 and the cross-sectional shape of the cavity 7, and Qs can be found from the above equation (6). Therefore, using the memorized values of Pcs, Qs, and the previously calculated β. V. can be calculated.

第2図のZ B =Z B +1 となった時点で、マ
イクロコンピュータ14はパルスジェネレータ16に指
令ケ出して、プランジャ6の油圧を正弦的に変化させる
。この状態を示したのが第6図であって、該図において
は上記PPとPCのブロフ了イルを比較しである。図示
のように、PPの圧力振幅PPmがほぼ一定値を保持す
るのに対し、PCの圧力振幅PCmは徐々に小さくなり
、teでゲート6が完全に硬化したことを示している。
At the point in time when Z B =Z B +1 in FIG. 2, the microcomputer 14 issues a command to the pulse generator 16 to change the oil pressure of the plunger 6 sinusoidally. This state is shown in FIG. 6, which compares the blog files of the PP and PC. As shown in the figure, the pressure amplitude PPm of PP maintains a substantially constant value, while the pressure amplitude PCm of PC gradually decreases, indicating that the gate 6 is completely cured at te.

なお、PCが時間の紅過とともに絶対値そのものも小さ
くなつ・Cいるが、これは樹脂の硬化収縮が顕著になっ
てくるためである。第4図は上記第6図を拡大したもの
で、P P 1〜P ps t pcl 〜P (: 
5はそれぞれPP+PCの圧力振幅の上端および下端を
示しており、この時刻はパルスジェネレータ16と同期
してマイクロコンビーータ14でカウント1−1各点の
圧力が記憶される。そして11におけるPPm#PCm
および圧力振幅比α= ” am /′)’ Pmの計
算ya−次式で行う。
It should be noted that the absolute value of PC becomes smaller as time passes, and this is because the curing shrinkage of the resin becomes more noticeable. FIG. 4 is an enlarged version of FIG.
5 indicates the upper and lower ends of the pressure amplitude of PP+PC, respectively, and this time is synchronized with the pulse generator 16, and the pressure at each point of count 1-1 is stored in the microconbeater 14. and PPm#PCm in 11
and pressure amplitude ratio α=”am/′)′ Pm is calculated by the following formula.

(PPm ) tl =Pp2−(Ppt+Pps )
/2  ・・・・・・・・・・・(5)(PCm)t1
=PC2(PCI+PC5)/2 −−(6)αt1 
= (Pcm) t1/CPpm) tl      
・・・・・・・・・−(7)同様にして、t2.t3・
・・・・の時刻におけるPPm*PCm+αが求められ
る。セしてPcm−〇になったときに、マイクロコンピ
ュータ14がパルスジェネレータ16の動作を止め、(
1)〜(7)式の計算結果をプリンタ18からプリント
アウトする。
(PPm) tl = Pp2-(Ppt+Pps)
/2 ・・・・・・・・・・・・(5)(PCm)t1
=PC2(PCI+PC5)/2 --(6)αt1
= (Pcm) t1/CPpm) tl
・・・・・・・・・-(7) Similarly, t2. t3・
PPm*PCm+α at the time of... is determined. When the pulse generator 16 reaches Pcm-〇, the microcomputer 14 stops the operation of the pulse generator 16 and (
The calculation results of equations 1) to (7) are printed out from the printer 18.

表1は、従来手法で生導体制止用レジンの二つのロット
のスパイラルフロー長さおよびゲルタイム(熱板法)を
比較したものである。レジンロツ)BはAに比べ、流動
性、硬化性とも若干悪(なっているが、いずれも規格内
に入っており、このような従来手法ではこの差が、不良
発生とどのような関連があるか不明である。第5図は、
各レジンロット毎のボイド発生率と金線平均面り量の比
較を行ったもので、Bロットでは、ボイドも金線曲りも
非常にレベルが悪くなっていることがわかる。
Table 1 compares the spiral flow length and gel time (hot plate method) of two lots of conventional bioconductor fixing resin. Resin lot) B has slightly worse fluidity and hardenability than A, but both are within the specifications, and it is unclear how this difference relates to the occurrence of defects in conventional methods. It is unclear. Figure 5 shows
This is a comparison of the void occurrence rate and the average amount of gold wire chamfer for each resin lot, and it can be seen that in lot B, both the voids and the gold wire bending are at a very poor level.

表2は、この発明によって調べたランナ5およびキャビ
ティ7における樹脂の粘度を、レジンロット毎に比較し
たものである。この結果に表 2 よれは、■30ットはAロットに比べて粘度が1.5倍
以上も高(なっていることがわかる。この値から、ラン
チ5部分の粘度がこのように高くなると、レジンが金型
1内を極めて流れに(くなって、量産金型内では設定し
た時間通りに樹脂の移送が完了せずに硬化反応が進むた
め、キャビティZ内に十分圧力が加わらない状態になる
ことが明瞭になった。またBロットでは、キャビテ47
 K’、、 ’:J6ける樹脂の粘度が高くなったため
に、金線を曲げる力が太き(なり、金線曲り量が増加し
たことがわかった。
Table 2 compares the viscosity of the resin in the runner 5 and cavity 7 investigated according to the present invention for each resin lot. From this result, it can be seen that the viscosity of the 30 t lot is more than 1.5 times higher than that of the A lot. From this value, it can be seen that the viscosity of the lunch 5 portion is this high. , the resin flows extremely tightly inside the mold 1, and in mass production molds, the curing reaction proceeds without completing the transfer of the resin within the set time, resulting in a state where sufficient pressure is not applied inside the cavity Z. In addition, in B lot, cavity 47
K',,': It was found that because the viscosity of the J6 resin became higher, the force for bending the gold wire became thicker, and the amount of gold wire bending increased.

第6図は、この発明によって得られたαの値を時間に対
してプロツトしたもので、BロットはAロットに比ベグ
ランジャ5底部の樹脂圧力がキャビティZ内に加わる時
間が短(、かつ。
FIG. 6 is a plot of the value of α obtained according to the present invention against time, and the time in which the resin pressure at the bottom of the Veg Granger 5 is applied to the inside of the cavity Z is shorter in lot B than in lot A.

αも急激に小さくなってしまうことがわかった。It was found that α also decreased rapidly.

従ってゲート6で硬化し易くキャビティZ内に圧力が伝
わりに(いBロットでは、ボイドがつぶされに(いこと
が明瞭になった。
Therefore, it became clear that it was easy to harden at the gate 6 and pressure was transmitted into the cavity Z (in lot B, the voids were crushed).

〔発明の効果〕〔Effect of the invention〕

従来の手法では、上記のようなボイドレベルや金線曲り
量の樹脂ロット毎の差が不明確であったが、この発明に
より初めてその原因ケ定量的に確gjることかできた。
In the conventional method, the above-mentioned differences in void level and gold wire bending amount from resin lot to resin lot were unclear, but with this invention, for the first time, it was possible to quantitatively determine the cause.

すなわち、この発明によれば、樹脂の受入れ時における
樹脂の流動性、硬化性のチェックのみならず、成形品の
不良発生のメカニズムが明確になるため、樹脂の開発、
成形条件の最適設定および金型の流路諸元の最適設計に
対して測定結果をフィードバックすることができるので
、成形品の歩留りゃ信頼性を大幅に向上することができ
るという効果が得られる。
In other words, according to the present invention, not only the fluidity and curing properties of the resin are checked when the resin is received, but also the mechanism of defective molded products is clarified, which facilitates the development of the resin.
Since the measurement results can be fed back to the optimal setting of molding conditions and the optimal design of the flow path specifications of the mold, the yield and reliability of molded products can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の全体構成図、第2図は
、樹脂の粘度をり、出するだめの説明図5第5図おJび
第4図は、ゲートシール状態計算のための説明図、第5
図は、樹脂ロフト間の不良発生状態の比較図、第6図は
、この発明によって測定、計算したゲートシール状態の
樹脂ロフト間における比較図を示す。 符号の説明 1・・・金型       3・・・プランジャ4・・
・樹脂       5・・・ランナ6・・・ゲルト 
     7・・・キャビティ8.9.10・・・樹脂
圧力検出器 11・・・プランジキロの変位検出器 12、12’・・・増幅器 14・・・マイクロコンピュータ 16・・・パルスジェネレータ 17・・電磁レリーフ
弁第7図 /σ 第 2 図 第 / 図 B子闇t
Fig. 1 is an overall configuration diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of the viscosity of the resin, and Figs. Explanatory diagram for, 5th
The figure shows a comparison diagram of failure occurrence states between resin lofts, and FIG. 6 shows a comparison diagram of resin lofts in gate seal states measured and calculated according to the present invention. Explanation of symbols 1...Mold 3...Plunger 4...
・Resin 5...Runner 6...Gelt
7... Cavity 8.9.10... Resin pressure detector 11... Plunge kilometer displacement detector 12, 12'... Amplifier 14... Microcomputer 16... Pulse generator 17... Electromagnetic Relief valve Fig. 7/σ Fig. 2 Fig. B

Claims (1)

【特許請求の範囲】 (リ キャビティ、ゲートおよびランナから成る金型内
に複数個の樹脂圧力検出器を、また成形機のプランジャ
に変位検出器をそれぞれ設け、樹脂が金型内を流動中に
上記各検出器が出力する信号をモニタして、該モニタ値
からキャビティおよびランチ部分の樹脂粘度を演算する
機能を有することを特徴とする熱硬化性樹脂検査装置。 (2)上記演算機能を有するとともに、樹脂がキャビテ
ィ内に充填完了後に成形機のプランジャのレリーフ弁開
度を、パルス状または周期的に変動させることによって
1時間に対応して樹脂圧力同士または樹脂圧力と油圧の
圧力振幅ケ演算する機能を持つことを特徴とする特許請
求の範囲第1項記載の熱硬化性樹脂検査装置。
[Claims] (A plurality of resin pressure detectors are provided in the mold consisting of a re-cavity, a gate, and a runner, and a displacement detector is provided in the plunger of the molding machine, and when the resin is flowing inside the mold, A thermosetting resin inspection device characterized by having a function of monitoring the signals output by each of the above detectors and calculating the resin viscosity of the cavity and launch portion from the monitored values. (2) Having the above calculation function. At the same time, after filling the resin into the cavity, the relief valve opening of the plunger of the molding machine is varied in a pulsed or periodic manner to calculate the pressure amplitude of the resin pressure or the pressure amplitude of the resin pressure and hydraulic pressure for one hour. The thermosetting resin inspection device according to claim 1, having the function of:
JP19894482A 1982-11-15 1982-11-15 Apparatus for inspecting thermosetting resin Granted JPS5988656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19894482A JPS5988656A (en) 1982-11-15 1982-11-15 Apparatus for inspecting thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19894482A JPS5988656A (en) 1982-11-15 1982-11-15 Apparatus for inspecting thermosetting resin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13819290A Division JPH0315737A (en) 1990-05-30 1990-05-30 Instrument and method for measuring viscosity of thermosetting resin

Publications (2)

Publication Number Publication Date
JPS5988656A true JPS5988656A (en) 1984-05-22
JPH033908B2 JPH033908B2 (en) 1991-01-21

Family

ID=16399555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19894482A Granted JPS5988656A (en) 1982-11-15 1982-11-15 Apparatus for inspecting thermosetting resin

Country Status (1)

Country Link
JP (1) JPS5988656A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241112A (en) * 1985-04-18 1986-10-27 Japan Steel Works Ltd:The Evaluation of fluidity of injection molding material
JPH02120642A (en) * 1988-10-31 1990-05-08 Hitachi Ltd Method and apparatus for measuring flow and curing characteristics of resin
JPH02176561A (en) * 1988-12-28 1990-07-09 Kinugawa Rubber Ind Co Ltd Method and device for detecting appearance and quality of formable rubber material
JPH0762647B2 (en) * 1985-10-17 1995-07-05 キャリーメド・リミテッド Rotary rheometer
JP2005238519A (en) * 2004-02-24 2005-09-08 Matsushita Electric Works Ltd Injection device and injection molding method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241112A (en) * 1985-04-18 1986-10-27 Japan Steel Works Ltd:The Evaluation of fluidity of injection molding material
JPH0762647B2 (en) * 1985-10-17 1995-07-05 キャリーメド・リミテッド Rotary rheometer
JPH02120642A (en) * 1988-10-31 1990-05-08 Hitachi Ltd Method and apparatus for measuring flow and curing characteristics of resin
JPH02176561A (en) * 1988-12-28 1990-07-09 Kinugawa Rubber Ind Co Ltd Method and device for detecting appearance and quality of formable rubber material
JP2005238519A (en) * 2004-02-24 2005-09-08 Matsushita Electric Works Ltd Injection device and injection molding method

Also Published As

Publication number Publication date
JPH033908B2 (en) 1991-01-21

Similar Documents

Publication Publication Date Title
US3819915A (en) Method and apparatus for controlling the cure of a rubber article
US3893792A (en) Controller for injection molding machine
JPH05147090A (en) Method and device for controlling fluctuation of rheological properties of resin in injection molding machine
EP0522061A1 (en) Control of injection moulding machine.
CA1287170C (en) Rheometer rheological/viscoelastic measuring apparatus and technique
KR920004583B1 (en) Method and apparatus for measuring flow and curing characteristices of resin
JPS5988656A (en) Apparatus for inspecting thermosetting resin
US5017315A (en) Method and apparatus of judging quality of injection molded products
WO1991013745A1 (en) Method of determining load in injection molding machine
Theriault et al. A numerical model of the viscosity of an epoxy prepreg resin system
JPS57123031A (en) Metal mold for injection-compression molding and method using it
JPH0315737A (en) Instrument and method for measuring viscosity of thermosetting resin
CN111093936B (en) Arithmetic processing device, arithmetic method of arithmetic processing device, and storage medium
US5076096A (en) Molding of thermoset materials
US4833910A (en) Method for resin molding monitoring
JPS6148845B2 (en)
JP2007232717A (en) Disk flow system and fluidity evaluation method
FI66695B (en) OVER APPARATUS FOER ATT MAETA FRIKTION I EN PLASTEKSTRUDER
JP3388889B2 (en) Flow prediction method of thermosetting resin
JP2771195B2 (en) Resin flow hardening characteristic measuring method, thermosetting resin viscosity prediction method using the same, and thermosetting resin flow prediction method
JPS5874338A (en) Transfer molding method for thermosetting resin
JPH03105234A (en) Apparatus for measuring fluidity and hardening property of resin
Chien et al. Sensor/model fusion for improved process understanding and control in injection molding
JPH0337493B2 (en)
SU403998A1 (en) METHOD FOR DETERMINING THE RESISTANCE OF A CHANNEL FILTERS TO A FLOW OF EXTRUDED MATERIAL