JPS60132025A - Exhaust device for two-cycle engine - Google Patents

Exhaust device for two-cycle engine

Info

Publication number
JPS60132025A
JPS60132025A JP58240377A JP24037783A JPS60132025A JP S60132025 A JPS60132025 A JP S60132025A JP 58240377 A JP58240377 A JP 58240377A JP 24037783 A JP24037783 A JP 24037783A JP S60132025 A JPS60132025 A JP S60132025A
Authority
JP
Japan
Prior art keywords
chamber
chamber volume
engine speed
speed
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58240377A
Other languages
Japanese (ja)
Inventor
Yoshinobu Tanaka
義信 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58240377A priority Critical patent/JPS60132025A/en
Publication of JPS60132025A publication Critical patent/JPS60132025A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/04Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues in exhaust systems only, e.g. for sucking-off combustion gases
    • F02B27/06Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues in exhaust systems only, e.g. for sucking-off combustion gases the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To obtain the optimum chamber volume of an exhaust passage, for engine speed by interlocking said chamber volume with said engine speed and reducing said chamber volume in line with the increase in said engine speed. CONSTITUTION:When an engine rotates at a low speed, a governer weight 24 is subjected to little centrifugal force, a sleeve 20 is not moved in the direction of the arrow A, links 17, 14 are not rotated, and a chamber 8 is maintained at its maximum volume (100%). As the engine speed increases, the governer weight 24 starts to open due to the centrifugal force, causing the sleeve 20 to start to move in the direction of the arrow A against a governer spring. An L-shaped link 17, a transmission part 16, and a rotary link 14 are moved in the arrow direction, and a rod 10 and a piston wall 9 starts to be lowered, causing a chamber volume to be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は2サイクルエンジンの排気装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an exhaust system for a two-stroke engine.

(従来技術) 排気通路の途中にチャンバーを設けることにより、低速
回転域での排気脈動を吸収し、低速回転域での出方向上
を達成できることはよく知られている。上記チャンバー
を備えている従来の排気装置は、チャンバーと排気通路
の間に開閉弁を備え、低速回転時に開閉弁を開き、高速
回転時に開閉弁を閉じるようになっている。
(Prior Art) It is well known that by providing a chamber in the middle of the exhaust passage, it is possible to absorb exhaust pulsation in the low speed rotation range and achieve an improvement in the output direction in the low speed rotation range. A conventional exhaust device including the above-mentioned chamber includes an on-off valve between the chamber and the exhaust passage, and opens the on-off valve during low-speed rotation and closes the on-off valve during high-speed rotation.

ところが開閉弁によるチャンバー′の開閉だけではその
出力特性において、第8図の破線のグラフXoで示すよ
うに、開閉弁の動作時(開動作時又は閉動作時)のD部
分で出力の落込み現象(谷間)が生じる。即ちエンジン
回転数がDあるいはD近傍になると、出力変化の円滑性
が失なわれるという問題が生じる。なお第8図において
グラフX□は開閉弁を開状態に固定した場合の出力変化
、いわゆる低速型性能カーブを示し、グラフx2は開閉
弁を閉状態に固定した場合の出力変化、いわゆる高速型
性能カーブを示している。従ってグラフX。は実際には
回転数りより低速回転数域においてはグラフx0と重な
り、回転数りよ妙高速回転数域ではグラフX2と重なっ
ている。
However, if the chamber' is only opened and closed by the on-off valve, its output characteristics will drop at portion D when the on-off valve is operating (opening or closing), as shown by the broken line graph Xo in Figure 8. A phenomenon (valley) occurs. That is, when the engine speed reaches D or near D, a problem arises in that the smoothness of output changes is lost. In Fig. 8, graph X□ shows the output change when the on-off valve is fixed in the open state, so-called low-speed type performance curve, and graph x2 shows the output change when the on-off valve is fixed in the closed state, so-called high-speed type performance curve. It shows a curve. Therefore graph X. actually overlaps with the graph x0 in the lower rotational speed range than the rotational speed, and overlaps with the graph X2 in the higher rotational speed range than the rotational speed.

(発明の目的) 低速から高速までの全回転数域における出方向上を図る
と共に、回転数の変化に対する出力の変化が、いかなる
回転数域においても円滑に行なわれるようにすることを
目的としている。
(Purpose of the invention) The purpose of the invention is to improve the output direction in the entire rotation speed range from low speed to high speed, and to ensure that changes in output in response to changes in rotation speed occur smoothly in any rotation speed range. .

(発明の構成) U) 排気通路の途中にチャンバーを設け、(ロ)該チ
ャンバーにチャンバー容積増減機構を備え、 e→ エンジン回転数の変化に連動し回転数の増加に応
じてチャンバー容積が減少するように増減機構を構成し
ている。
(Structure of the invention) U) A chamber is provided in the middle of the exhaust passage, (b) The chamber is provided with a chamber volume increase/decrease mechanism, e→ The chamber volume decreases in response to changes in engine speed and as the engine speed increases. The increase/decrease mechanism is configured to do so.

(実施例) 本発明を適用した2サイクルエンジンの縦断面図を示す
第1図におhて、1はシリンダ、2はクランクケース、
3はピストンであって、シリンダ1には排気通路5、吸
気通路6及び掃気通路Tが形成されている。掃気通路7
の上端開口部及び排気通路5は、ピストン8の上下運動
によってシリンダ1内に対して開閉する。吸気通路6は
ピストン3の上下運動によってクランクケース2内に対
して開閉する。
(Example) In FIG. 1h showing a longitudinal cross-sectional view of a two-stroke engine to which the present invention is applied, 1 is a cylinder, 2 is a crankcase,
3 is a piston, and the cylinder 1 has an exhaust passage 5, an intake passage 6, and a scavenging passage T formed therein. Scavenging passage 7
The upper end opening and the exhaust passage 5 are opened and closed with respect to the inside of the cylinder 1 by the vertical movement of the piston 8. The intake passage 6 opens and closes with respect to the inside of the crankcase 2 by the vertical movement of the piston 3.

チャンバー8は排気通路5の途中部分に設けられると共
に、筒形に形成されている。チャンバー8内には、チャ
ンバー容積増減用のピストン壁9がチャンバー8の長さ
方向(中心線方向)移動自在に嵌合している。ピストン
壁9にはロッド10が固着されており、ロッド10はシ
ーyilを介してチャンバー8の上壁に軸方向移動自在
に支持されると共にチャンバー外へ延び出し、ガバナ装
置12に連動連結されている。またピストン壁9には、
チャンバー8の小径入口部8aと同形状の小径部9aが
形成されており、ピストン壁9が最も下方位置まで移動
したときには、小径部9aが入口部8aを完全に埋め、
チャンバー容積が0になるようになっている。
The chamber 8 is provided in the middle of the exhaust passage 5 and has a cylindrical shape. A piston wall 9 for increasing and decreasing the chamber volume is fitted into the chamber 8 so as to be movable in the length direction (center line direction) of the chamber 8 . A rod 10 is fixed to the piston wall 9, and the rod 10 is axially movably supported on the upper wall of the chamber 8 via a seam, extends out of the chamber, and is operatively connected to a governor device 12. There is. Also, on the piston wall 9,
A small diameter part 9a having the same shape as the small diameter inlet part 8a of the chamber 8 is formed, and when the piston wall 9 moves to the lowest position, the small diameter part 9a completely fills the inlet part 8a.
The chamber volume is set to 0.

前記ロッド10とガバナ装置12との連動連結構造の一
例を簡単に説明すると、ロッド10の上端には1対の環
状アジャスタプレート18が形成されており、プレート
18間には回動リンク14の一端ピン部14aが係合し
ている。リンク14はその中間部が支持ビン15により
回動自在に支持されてお杉、他端部が適当な伝達部材1
6を介してL形すンク17の一端部に枢着連結されてい
る。L形すンク17の中間部はピン18により回動自在
に支持されており、他端ピン部19はガバナスリーブ2
001対のアジャスタプレート21間に挾持されている
。ガバナスリーブ20はクランク軸28の端部に軸方向
移動自在に嵌合しておV、ガバナスプリング(図示せず
)によシ遠心式ガバナウェイト24側へ押し付けられて
いる。
To briefly explain an example of the interlocking connection structure between the rod 10 and the governor device 12, a pair of annular adjuster plates 18 are formed at the upper end of the rod 10, and one end of the rotation link 14 is formed between the plates 18. The pin portion 14a is engaged. The middle part of the link 14 is rotatably supported by a support pin 15 made of cedar, and the other end part is made of a suitable transmission member 1.
6 to one end of the L-shaped sink 17. The middle part of the L-shaped sink 17 is rotatably supported by a pin 18, and the other end pin part 19 is connected to the governor sleeve 2.
It is held between 001 pairs of adjuster plates 21. The governor sleeve 20 is fitted onto the end of the crankshaft 28 so as to be movable in the axial direction, and is pressed toward the centrifugal governor weight 24 by a governor spring (not shown).

なお第1図において80はキャブレター、81はスロツ
I−ルバルプである。
In FIG. 1, 80 is a carburetor, and 81 is a slot I valve.

(作用) エンジンが低速回転のときは第1図に示すように、ガバ
ナウェイト24には殆ど遠心力がかからず、そのために
スリーブ20は矢印入方向へは動かず、またリンク17
.14は回動せず、従ってチャンバー8は最大容積(1
00%容積)に保たれる。これにより低速回転時の排気
脈動が良好に吸収される。
(Function) When the engine is rotating at low speed, as shown in FIG.
.. 14 does not rotate, so the chamber 8 has a maximum volume (1
00% volume). This effectively absorbs exhaust pulsation during low speed rotation.

エンジン回転数が増加してくると、ガバナウェイト24
は遠心力によシ開き出し、スリーブ2Oをガバナスプリ
ングに抗して矢印A方向へ移動させ始める。スリーブ2
Oの矢印A方向の移動によ如、L形すンク17.伝達部
材16及び回動リンク14はそれぞれ第1図の矢印方向
へ動き、ロッド10及びピストン壁9が下降し始め、そ
れによりチャンバー容積が減少し始める。
As the engine speed increases, the governor weight 24
opens due to centrifugal force, and begins to move the sleeve 2O in the direction of arrow A against the governor spring. sleeve 2
By moving O in the direction of arrow A, the L-shaped sink 17. The transmission member 16 and the pivot link 14 each move in the direction of the arrow in FIG. 1, and the rod 10 and piston wall 9 begin to descend, thereby causing the chamber volume to begin to decrease.

エンジン回転数の増加量に応じてチャンバー容積は減少
してゆき、エンジン回転数が最高出力域あるいはオーバ
ーラン域に達したときには、第2図に示すようにピスト
ン壁9は最下方位置まで下降し、チャンバー容積は0に
なる。
The chamber volume decreases as the engine speed increases, and when the engine speed reaches the maximum output range or overrun range, the piston wall 9 descends to the lowest position as shown in FIG. , the chamber volume becomes 0.

即ち低速回転から高速回転に至るまでチャンバー容積は
滑らかに減少してゆき、しかも各回転数毎に最適のチャ
ンバー容積を提供することになる。
That is, the chamber volume decreases smoothly from low speed rotation to high speed rotation, and the optimum chamber volume is provided for each rotation speed.

一方エンジン回転数が減少する場合には、スリーブ2O
がガバナスプリングの弾性力により逆矢印A方向へ移動
し、それによりピストン壁9は上昇し、チャンバー容積
は増加してゆく。
On the other hand, if the engine speed decreases, the sleeve 2O
is moved in the direction of the reverse arrow A by the elastic force of the governor spring, thereby causing the piston wall 9 to rise and the chamber volume to increase.

なおピストン壁9の各回転数毎の上下方向位置、上昇速
度又は下降速度等は、チャンバー容積が各回転数毎の最
適容積になるように、リンク17.14等の長さの調節
によル調節される。
The vertical position, rising speed, or descending speed of the piston wall 9 for each rotation speed can be adjusted by adjusting the length of the links 17, 14, etc. so that the chamber volume becomes the optimum volume for each rotation speed. adjusted.

第7図に破線で示すグラフY。は第1図の構造を採用し
た場合の出力特性グラフである。また実線で示すグラフ
Y0、Y2、¥3、¥4は、それぞれチャンバー容積を
100%、60%、80%、0%に固定した場合の出力
特性を示している。即ちグラフY。は、各回転数におい
てY0〜¥4のうち最も高出力を発生しうるグラフ部分
を取り出し、低速回転数から高速回転数へ至るまで順次
上記取出部分を継ぎ足した曲線にほぼなっている。
Graph Y shown by a broken line in FIG. is an output characteristic graph when the structure shown in FIG. 1 is adopted. Further, graphs Y0, Y2, ¥3, and ¥4 indicated by solid lines indicate output characteristics when the chamber volumes are fixed at 100%, 60%, 80%, and 0%, respectively. That is, graph Y. is almost a curve obtained by extracting the graph portion that can generate the highest output from Y0 to ¥4 at each rotation speed and sequentially adding the extracted portions from low rotation speed to high rotation speed.

なお第7図では説明の都合上、100%、60%80%
、0%の4段階のグラフY1、Y2、¥3、Y4Lか示
していないが、チャンバー容積は100%から0%まで
無段変化する。従って実際にはYいからY4までの間に
各%のグラフが無数に存在し、それらのグラフを順次継
ぎ足していくと実際にY。の曲線になる。
In addition, in Figure 7, for convenience of explanation, 100%, 60%, 80%
, 0% are not shown in the graph Y1, Y2, ¥3, Y4L, but the chamber volume changes steplessly from 100% to 0%. Therefore, in reality, there are countless graphs of each percentage between Y2 and Y4, and if you add these graphs one after another, you will actually get Y. becomes a curve.

また第7図ではグラフY。を分り易くするために、Yl
〜Y4のグラフ等よシ少し上方へずらしである。
Also, graph Y in Figure 7. In order to make it easier to understand, Yl
-The graph of Y4 is slightly shifted upward.

(別の実施例) (1)第8図に示すようにピストン壁9として、単なる
ディスク状の部材を採用する。
(Another embodiment) (1) As shown in FIG. 8, a simple disk-shaped member is employed as the piston wall 9.

(2) 第4、第5図に示すようにピストン壁9の形状
を、排気通路5の周壁と同一半径の円弧形に形成し、ピ
ストン壁9が最下方位置(第5図の位置)にきたときに
、ピストン壁9が完全に排気通路5の周壁の一部となる
ようにする。
(2) As shown in FIGS. 4 and 5, the shape of the piston wall 9 is formed into an arc shape with the same radius as the circumferential wall of the exhaust passage 5, and the piston wall 9 is at the lowermost position (the position shown in FIG. 5). The piston wall 9 is made to completely become a part of the peripheral wall of the exhaust passage 5 when the piston reaches the end.

(3)第1図のようなピストン壁9を、例えばスロット
ルバルブ81に連動させ、バルブ31の開度が増加して
エンジン回転数が増加するに従い、ピストン壁9が下降
するようにしてもよい。
(3) The piston wall 9 as shown in FIG. 1 may be linked to, for example, the throttle valve 81, so that the piston wall 9 descends as the opening of the valve 31 increases and the engine speed increases. .

(4)第6図に示すよりにピストン壁9及びロッド1O
を作動させる機構として、エンジン回転数を検出する回
転数検出装置85と、回転数に応じてパルス信号を発生
するパルス発信装置86と、パルス信号の発生量に応じ
て回動角度が変化するサーボモータ87を備え、サーボ
モータ37の回動レバー88をロッド10に連動連結し
てもよい。
(4) Piston wall 9 and rod 1O as shown in FIG.
The operating mechanism includes a rotation speed detection device 85 that detects the engine rotation speed, a pulse transmitter 86 that generates a pulse signal according to the rotation speed, and a servo whose rotation angle changes according to the amount of pulse signals generated. A motor 87 may be provided, and a rotation lever 88 of the servo motor 37 may be operatively connected to the rod 10.

即ち第6図の構造では回転数の増加に応じてパルス簡号
が増加し、サーボモータ87の矢印F方向への回動角度
が増加し、チャンバー容積が減少する。
That is, in the structure shown in FIG. 6, as the number of rotations increases, the number of pulses increases, the rotation angle of the servo motor 87 in the direction of arrow F increases, and the chamber volume decreases.

(発明の効果) (1) 排気通路の途中にチャンバーを設け、該チャy
 t< −Kチャンバー容積増減機構を備え、エンジン
回転数に連動し回転数の増加に応じてチャンバー容積が
減少するように増減機構を構成しているので、各回転数
毎に最適なチャンバー容積を提供するととができ、それ
により低速回転から高速回転に至るまで全回転数域にわ
たって大幅な出方向上を達成するととができる。
(Effects of the invention) (1) A chamber is provided in the middle of the exhaust passage, and the
t< -K The chamber volume increase/decrease mechanism is linked to the engine speed and is configured so that the chamber volume decreases as the engine speed increases, so the optimal chamber volume can be adjusted for each rotation speed. By providing this, it is possible to achieve a significant increase in the output direction over the entire rotation speed range from low speed rotation to high speed rotation.

(2) エンジン回転数の増加に応じてチャンバー容積
が減少するようにしているので、出力特性において第8
図の従来例のように出力の谷間りが生じることはない。
(2) Since the chamber volume decreases as the engine speed increases, the output characteristics
Unlike the conventional example shown in the figure, a valley in the output does not occur.

即ち第7図に示すように低速回転から高速回転に至るま
でグラフY。は滑らかな曲線を描くことになり、例えば
エンジンの加速又は減速を極めて円滑に行うことができ
る。
That is, as shown in FIG. 7, the graph Y from low speed rotation to high speed rotation. will draw a smooth curve, and for example, the engine can be accelerated or decelerated extremely smoothly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した2サイクルエンジンの縦断面
図、第2図は第1図とは別の状態を示す第1図の部分図
、第8、第4図はそれぞれチャンバーの変形例を示す部
分断面図(但し第4図は排気通路と直角方向の面で切断
した断面図)、第5図は第4図の変形例の別の状態を示
す断面図、第6図は増減機構の別の例を示す断面図、第
7図は本発明を適用した場合の出力特性グラフ、第8図
は従来例の出力特性グラフである。5・・・排気通路、
8・・・チャンバー、9.10.12・・・ピストン壁
、ロッド、ガバナ装置(チャンバー容積増減機構の一例
)、35.86.87・・・回転数検出装置、パルス発
信装置、サーボモータ(賽積増減機構の別の例) 特許出願人 川崎重工業株式会社 (〕 引R′″″ ツ 158− 区
Fig. 1 is a longitudinal cross-sectional view of a two-stroke engine to which the present invention is applied, Fig. 2 is a partial view of Fig. 1 showing a different state from Fig. 1, and Figs. 8 and 4 are respectively modified examples of the chamber. (however, Fig. 4 is a sectional view taken along a plane perpendicular to the exhaust passage), Fig. 5 is a sectional view showing another state of the modification of Fig. 4, and Fig. 6 is an increase/decrease mechanism. FIG. 7 is an output characteristic graph when the present invention is applied, and FIG. 8 is an output characteristic graph of a conventional example. 5...exhaust passage,
8... Chamber, 9.10.12... Piston wall, rod, governor device (an example of a chamber volume increase/decrease mechanism), 35.86.87... Rotation speed detection device, pulse transmitter, servo motor ( Another example of a deposit increase/decrease mechanism) Patent applicant: Kawasaki Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 排気通路の途中にチャンバーを設け、該チャンバーにチ
ャンバー容積増減機構を備え、エンジン回転数の変化に
連動し回転数の増加に応じてチャンバー容積が減少する
ように増減機構を構成したことを特徴とする2サイクμ
エンジンの排気装置。
A chamber is provided in the middle of the exhaust passage, and the chamber is equipped with a chamber volume increase/decrease mechanism, and the increase/decrease mechanism is configured in such a manner that the chamber volume decreases in response to changes in engine speed and as the engine speed increases. 2 cycles μ
Engine exhaust system.
JP58240377A 1983-12-19 1983-12-19 Exhaust device for two-cycle engine Pending JPS60132025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58240377A JPS60132025A (en) 1983-12-19 1983-12-19 Exhaust device for two-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58240377A JPS60132025A (en) 1983-12-19 1983-12-19 Exhaust device for two-cycle engine

Publications (1)

Publication Number Publication Date
JPS60132025A true JPS60132025A (en) 1985-07-13

Family

ID=17058582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58240377A Pending JPS60132025A (en) 1983-12-19 1983-12-19 Exhaust device for two-cycle engine

Country Status (1)

Country Link
JP (1) JPS60132025A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141016A (en) * 1980-04-03 1981-11-04 Suzuki Motor Co Ltd Variable device for exhaust gas expansion chamber of two cycle engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141016A (en) * 1980-04-03 1981-11-04 Suzuki Motor Co Ltd Variable device for exhaust gas expansion chamber of two cycle engine

Similar Documents

Publication Publication Date Title
US3314408A (en) Centrifugally operated compression release mechanism
US4558566A (en) Apparatus for controlling exhaust system of internal-combustion engine
JP2582312B2 (en) Engine with centrifugal governor and centrifugal decompression device
EP0141650A2 (en) Exhaust port system
JPH07509550A (en) differential stroke internal combustion engine
JP3435612B2 (en) Valve device for internal combustion engine
JPH02501083A (en) Exhaust control valve for a two-stroke cycle engine and method of using the same
KR19980019820A (en) Double Variable Throttle Valve
US4829945A (en) Exhaust timing control device for two-cycle engines
JPS60132025A (en) Exhaust device for two-cycle engine
JPH0219283B2 (en)
JPS6095113A (en) Internal combustion engine having disc shaped inlet valve
JP2000282875A (en) Exhaust control valve device for two-cycle engine
JP2007239508A (en) Reciprocating engine
JP7034194B2 (en) Internal combustion engine
JP2000282876A (en) Exhaust control valve device for two-cycle engine
JPS5913287Y2 (en) Internal combustion engine valve lift device
JPH0346651B2 (en)
JPH0243008B2 (en)
JPH0115876Y2 (en)
JPH08312356A (en) Whole area power band chamber
JPH0337008B2 (en)
KR20020047998A (en) Variable valve apparatus for engine
JPH042776B2 (en)
JP2000345880A (en) Centrifugal governor device