JPS60131723A - Method of producing contact material for vacuum breaker - Google Patents

Method of producing contact material for vacuum breaker

Info

Publication number
JPS60131723A
JPS60131723A JP23790383A JP23790383A JPS60131723A JP S60131723 A JPS60131723 A JP S60131723A JP 23790383 A JP23790383 A JP 23790383A JP 23790383 A JP23790383 A JP 23790383A JP S60131723 A JPS60131723 A JP S60131723A
Authority
JP
Japan
Prior art keywords
contact
copper
oxide
contact material
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23790383A
Other languages
Japanese (ja)
Other versions
JPH056291B2 (en
Inventor
功 奥富
千葉 誠司
関口 薫旦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23790383A priority Critical patent/JPS60131723A/en
Publication of JPS60131723A publication Critical patent/JPS60131723A/en
Publication of JPH056291B2 publication Critical patent/JPH056291B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、真空パルプに係り、特にその接点材料の製造
方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to vacuum pulp, and more particularly to an improvement in a method for manufacturing a contact material thereof.

〔発明の技術的竺景とその問題点〕[Technical overview of the invention and its problems]

周知のように、真雨1や断器は、小形、軽輩、メンテナ
ンスフリー、環境調和等の他のしゃ断器に比較して優れ
た特徴門肩するため、その適用範囲が飛躍晶′に拡大し
て%、zる。このような真空しゃ断器用接点1i求され
る基本的な要録としては、(1)溶着性が少ないこと、
(2)耐電圧性が高いこと、(3)シゃ断時性がよいこ
とが挙げられ、この他に、さい断電流値が小さいこと、
接触抵抗が低く安梁してい原2と、耐消耗性がよいこと
等も軍費な要件となっている。
As is well known, Shin-Ame 1 and the circuit breaker have superior characteristics compared to other circuit breakers such as being small, lightweight, maintenance-free, and environmentally friendly, so the scope of their application has rapidly expanded. %, zru. The basic requirements for such a vacuum breaker contact 1i are (1) low weldability;
(2) high withstand voltage, (3) good disconnection performance, and in addition, low disconnection current value;
Low contact resistance, low beam stability, and good wear resistance are also requirements for military spending.

とこるが、これら要件必中には相反す名もの逅あり、到
底単−の金属によって全てを満足させることは不可能で
ある。そこで、実用に供される一点材料としては、不足
する性質を相互に補なえるような2種以上の元素を組合
せ、且つ大電流用又は為耐電圧用等のように特定の用途
に限定した接点月料の開発が行われ、優れた性質を有す
るものが製品化されつ・つあるが、さらにこれ以上の、
畠耐電圧用又は天竜流用の要求を充分満足させる接点材
料は、未だ出現しでいないのが現状である。□゛例えは
、天竜流用を指向した接点材料として、ビスマス(Di
)の浴着防止成分を5%以下の鼠で含有する銅−ビスマ
ス(Cu−Bi)合金が知られている(特公昭41−1
2131 <公報)が、銅(CI)母相に対するビスマ
ス(Bi)の溶解度が極めて低いたヤ、シばしば偏析を
生じ1、しゃ断器の表面割些か大きむ加工成形が困難と
なる筒の問題皐を含んでいる。。
However, these requirements are inevitably contradictory, and it is impossible to satisfy all of them with a single metal. Therefore, as a single material that can be put into practical use, it is a combination of two or more elements that mutually compensate for the lacking properties, and a contact that is limited to a specific application such as for large current or withstand voltage. Monthly products have been developed, and products with excellent properties are being commercialized, but even more
At present, a contact material that fully satisfies the requirements for Hatake withstand voltage or Tenryu current has not yet appeared. □゛For example, bismuth (Di
) Copper-bismuth (Cu-Bi) alloys containing 5% or less of bath adhesion prevention components are known (Japanese Patent Publication No. 41-1
2131 (Publication), because the solubility of bismuth (Bi) in the copper (CI) matrix is extremely low, segregation often occurs1, and the surface of the breaker becomes slightly larger, making it difficult to process and form the cylinder. Contains some problems. .

又上記と異なる他の接点材料として、銅−テレル(Cu
−Te)合金も知られている(特公昭44−23751
号公報)。この合金では、銅−ビ友マス(Cu−11i
 )系接点材料がもつ上記問題点は、緩和されてはいる
ものの銅−ビスマス(Cu−Bi)系接点材料に比較し
て、雰囲気に対しより敏感のため、接触抵抗等の点で安
定性に欠りる。さらにこれら銅−ビスマス(Cu−Bi
) 、餉−テL/ ル(Cu−Te) 7%の合金の共
通の特徴としては、耐′#j着性に優れてはいるものの
耐電圧特性が従来の中電圧クラスまでの適用には、充分
であるが、これ以上の高゛峨圧分野への適用に対しては
(換言すれば真空しゃ断器特に真空バルブの小形化)必
ずしも満足でないことが明らかとなってきた。
In addition, as another contact material different from the above, copper-terel (Cu
-Te) alloy is also known (Japanese Patent Publication No. 44-23751
Publication No.). In this alloy, Cu-11i
) type contact materials have been alleviated, but compared to copper-bismuth (Cu-Bi) type contact materials, they are more sensitive to the atmosphere, resulting in poor stability in terms of contact resistance, etc. Lacking. Furthermore, these copper-bismuth (Cu-Bi
), Cu-Te 7% alloys have excellent adhesion resistance, but their voltage resistance characteristics are not suitable for applications up to the conventional medium voltage class. , is sufficient, but it has become clear that it is not necessarily satisfactory for application to higher pressure fields (in other words, miniaturization of vacuum breakers, especially vacuum valves).

以上述べた欠点の中で、特に耐電圧住金補う接点材料と
して、タングステン(W)、炭化タングステン(WC,
)を含有し、導電特性を改良する丸めに銅(cu)、銀
(Ag)を有効に利用したタングステン−銅(W−Cu
)、炭化タングステン−銀(WC−Ag)等の合金が知
られている。これらの合金は、工O〜20にへ程度まで
のし、や断電流に対しては、優れた回復電圧特性を有す
るが、この電流値以上ではアーク熱等によって高温にな
ったタングステン(W)、炭化タンゲス−テン(W昂等
から、多量の熱電子が放出されるため電流消滅後の絶縁
耐力の回復を阻害する。
Among the above-mentioned drawbacks, tungsten (W), tungsten carbide (WC,
) and effectively utilizes copper (cu) and silver (Ag) to improve conductive properties.
), tungsten carbide-silver (WC-Ag), and other alloys are known. These alloys have excellent recovery voltage characteristics against currents that exceed 0 to 20, but above this current value, tungsten (W), which has become hot due to arc heat, etc. A large amount of thermionic electrons are emitted from tungsten carbide (W, etc.), which inhibits recovery of dielectric strength after current extinction.

一方、クロム(C「)、チタン(Ti)、バナジウム(
カ、ジルコニウム(Zr)等と銅(Cu) 、銀(Ag
)等とよりなる接点合金では、上記タングステン(W)
、炭化タングステン(WC)より熱電子放出は軽減され
るので、それによる障害は軽減されている。
On the other hand, chromium (C''), titanium (Ti), vanadium (
copper, zirconium (Zr), etc., copper (Cu), silver (Ag), etc.
) etc., the above-mentioned tungsten (W)
, thermionic emission is reduced compared to tungsten carbide (WC), so the problems caused by it are reduced.

上記した各接点材料のうち、溶解法によって製造する銅
−ヒス−q ス(Cu−Bi ) 1.銅−テL/ /
l/ (Cu−Te)系合金では、溶解時に素材又は合
金を収容する坩堝のような容器は、カーボン、醇化アル
ミニウム、酸化ケイ素等が多く用いられ、繰返し使用さ
れる。
Among the above-mentioned contact materials, copper-His-Q (Cu-Bi) manufactured by a melting method 1. Copper-te L/ /
In l/(Cu-Te) based alloys, the crucible-like container that houses the material or alloy during melting is often made of carbon, aluminum oxide, silicon oxide, etc., and is used repeatedly.

これに対して、クロム(Cr) 、チタン(Ti)、バ
ナジウム(ト)、又はジルコニウム(Zr)の何れか1
つの元素を含有する接点材料では、熱処理、焼結又は溶
浸り何れか1つの処理において、接点素材、混合体又は
成型体を収容する坩堝又はボート等の容器は、カーボン
、酸化アルミニウム、酸化ケイ素、窒化ケイ素等の何れ
とも反応又は濡れ現象を呈し、繰返し使用は困難な場合
が多く、不経済となるばかりでなく、被収容物である接
点素材、混合体又は成型体の損傷、反応生成物による接
点材料としての特性変化又はdらつき等を招くので、こ
の改! p’ 豐<要望されていた・特に輻輳する都心
部の配′磁網、大形プラント等の電源系統にも適用が拡
大されている真空しゃ断器は、高信頼性が最も強く要求
されるところとなり、これには、ばらつきの皆無な安定
した接点特性をもつ接点合金の出現がその製造方法を含
めて重要な課題となってきた。
On the other hand, any one of chromium (Cr), titanium (Ti), vanadium (T), or zirconium (Zr)
For contact materials containing two elements, in any one of heat treatment, sintering, or infiltration, the container such as a crucible or boat containing the contact material, mixture, or molded material may contain carbon, aluminum oxide, silicon oxide, Silicon nitride exhibits a reaction or wetting phenomenon, and repeated use is often difficult and uneconomical, as well as damage to the contact material, mixture, or molded object, and reaction products. This change may cause changes in the characteristics of the contact material or cause fluctuations. p' 豐<Requested ・Vacuum breakers have been expanded to include power supply systems such as magnetic networks and large plants, especially in congested urban areas, where high reliability is most required. Therefore, the emergence of a contact alloy with stable contact characteristics without any variation has become an important issue, including its manufacturing method.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の点に鑑みてなされたもので、銅(Cu
)及び銀(Ag)の少なくとも1つに、クロム(”) 
、チタン(Ti)、バナジウム(ト)又はジルコニウム
(Zr)の何れか1つを含有する接点材料を、高品質で
かつ経済的に製造できる真空しゃ断器用接点材料の製造
方法を提供することを目的 〔発明の概要〕 本発明は、銅(Cu)及び銀(Ag)の少なくとも1つ
と、クロム(Or)、チタンCrt)、バナジウム(V
)又はジルコニウム(Zr)の何れか1つよりなる混合
体又は成型体を、水素中又は真空中で熱処理、焼結又は
溶浸の少なくとも1つの処理を行なうものにおいて、上
記混合体又は成麗体とこれらを収容する容器との間に、
少なくとも400℃で前加熱処理した酸化アルミニウム
(A4 Om ) 、酸化マグネシウム(Mg0)、酸
イLりIQ A (Cry 0B )、酸化ジルコニウ
ム(ZrO,)、窒化ケイ素(si、Na)、窒化ホウ
素(BN)及び窒化アルミニウム(A/N)等から選択
された耐熱性無機質粒子の1つを主成分とし、1〜30
0IImの大きさの平均粒径をもつ中間物体を介在させ
た、経済的で高品質の真空しゃ断器用接点材料の製造方
法である。
The present invention has been made in view of the above points, and is based on copper (Cu).
) and silver (Ag), chromium ('')
, titanium (Ti), vanadium (T), or zirconium (Zr), which can be manufactured with high quality and economically. [Summary of the Invention] The present invention provides at least one of copper (Cu) and silver (Ag), chromium (Or), titanium (Crt), and vanadium (V
) or zirconium (Zr) is subjected to at least one of heat treatment, sintering, or infiltration in hydrogen or vacuum, the above mixture or molded body and the container that houses them,
Aluminum oxide (A4 Om), magnesium oxide (Mg0), acid oxide (Cry 0B), zirconium oxide (ZrO,), silicon nitride (si, Na), boron nitride (Cry 0B), preheated at at least 400 °C. The main component is one of heat-resistant inorganic particles selected from aluminum nitride (A/N), aluminum nitride (A/N), etc.
This is a method for producing an economical and high quality contact material for a vacuum breaker using an intermediate object having an average particle size of 0IIm.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

銅−り0 A (Cu−Cr) 、銅−チタy (Cu
−Ti)、銅−バナジウム(Cu−V) 、銅−ジルコ
ニラA (Cu−Zr)糸の接点材料は、材料組成的に
は元来優れた耐電圧特性をもっていることが知られてい
る。特に活性的な性質をもつため、製造条件が材料特性
に影響を及はすが、製造(熱処理、焼結又は溶浸)する
際に、接点累月、混合体又は成型体を収容する容器との
反応によって材質的なばらつきを生ずることが本発明者
らの輯究により判った。この反応は、製造時の雰囲気の
条件(水素の純度又は真空度)、接点素材及び収容する
容器の純度、表面汚染(酸化)の程度、内蔵ガス又は吸
着ガスの程度等と関連するが、殆どの容器の材質と反応
又は淘れを生じ所望の接点材料が得られない。本発明者
らの観察によれば、上記した雰囲気の条件その他が合致
したとき、完全な渦れ又は反応によって、強固に付着す
る。特に、例えば板状の容器と接点素材、混合体又は成
型体が接触する場合のように、広い面積で直接接触する
とき著しい濡れ又は反応が生じることが認められた。こ
れは、両者間の濁れ又は反応を促進する酸化皮膜等の活
況物質の生成又は存在を少なくすることの重要性を示唆
している。又同時に両者が直接広い面積で接触しないよ
うにするととの必要性も示唆している。−そこで、本発
明は、この知見に基き少なくとも400℃で予め加熱処
理した接点素材、混合体又は成型体と、収容容器との広
い面積による直接的な接触を阻止するために、両者間に
所定の大きさの平均粒径をもつ耐熱性無機質の中間物体
を介在させ熱処理を行なうものである。さらに詳述すれ
ば、銅(Cu)及び銀(Ag)の少なくとも1つと、ク
ロム(”) 、チタン(TM) 、バナジウム(%Q又
はジルコニウム(Zr)の何れか1つとよりなる混合体
又は成型体を、水素中又は真空中で熱処理、焼結又は溶
浸の少なくとも1つの処理を行なうものにおいて、上記
した混合体又は成型体とこれらの収容容器との間に、少
なくとも400℃で曹加熱処理した酸化アルミニウム(
AI!t 0s ) X酸化マグネとラム(Mg0)、
酸化クロム(Cr、 01) 、酸化ジルコニウム(z
rom)、窒化ケイ素(si、Na) 、窒化ホウ素(
BN)又は窒化アルミニウム(A/N)等から選択され
た耐熱性無機質粒子′)1′を主成分と、し・、1〜〒
00μmの大きさの平均粒径をもつ中間物体を介在させ
たものである。
Copper-Ti 0 A (Cu-Cr), Copper-Ti y (Cu
It is known that contact materials such as -Ti), copper-vanadium (Cu-V), and copper-zirconyla A (Cu-Zr) yarns inherently have excellent withstand voltage characteristics in terms of material composition. Due to its particularly active nature, the manufacturing conditions influence the material properties; The inventors' research has revealed that material variations occur due to the reaction of . This reaction is related to the atmospheric conditions during manufacturing (purity of hydrogen or degree of vacuum), the purity of the contact material and container, the degree of surface contamination (oxidation), the degree of built-in gas or adsorbed gas, etc., but most The desired contact material cannot be obtained due to reaction or stagnation with the material of the container. According to the observations of the present inventors, when the above-mentioned atmospheric conditions and other conditions are met, complete swirling or reaction results in firm adhesion. In particular, it has been observed that significant wetting or reaction occurs when there is direct contact over a large area, such as when contact materials, mixtures or molded bodies come into contact with a plate-shaped container. This suggests the importance of reducing the formation or presence of active substances such as oxide films that promote turbidity or reactions between the two. At the same time, it also suggests the necessity of preventing direct contact between the two over a large area. - Based on this knowledge, the present invention provides a predetermined gap between contact materials, mixtures, or molded bodies that have been heat-treated at least at 400°C in advance, in order to prevent direct contact over a large area with the container. The heat treatment is performed using a heat-resistant inorganic intermediate having an average particle size of . More specifically, it is a mixture or molded material consisting of at least one of copper (Cu) and silver (Ag) and any one of chromium (''), titanium (TM), vanadium (%Q) or zirconium (Zr). In the case where the body is subjected to at least one of heat treatment, sintering, or infiltration in hydrogen or vacuum, a carbon dioxide heat treatment at at least 400 ° C. Aluminum oxide (
AI! t 0s ) X magne oxide and ram (Mg0),
Chromium oxide (Cr, 01), zirconium oxide (z
rom), silicon nitride (si, Na), boron nitride (
The main component is heat-resistant inorganic particles ')1' selected from aluminum nitride (BN) or aluminum nitride (A/N), etc.
An intermediate object having an average particle size of 0.00 μm is interposed.

前述したように、活性な性質含有するクロム(Cr)、
チタン(T’)%バナジウム(V)又はジルコニウム(
Zr)の何れか1つを含有する接点材料は、製造時に雰
囲気の影響を著しく受け、管理が充分されていな、い場
合には、容易にボアが内部に残在する。
As mentioned above, chromium (Cr) containing active properties,
Titanium (T')% Vanadium (V) or Zirconium (
Contact materials containing any one of Zr) are significantly affected by the atmosphere during manufacturing, and if not adequately controlled, bores easily remain inside.

このような接点材料では、しゃ断時性や耐電圧特性の著
しい低下が認められ、このボアをなくすことが本発明の
解決すべき重要な課題である。本発明者らの研究によれ
ば、本発明にかかる接点材料を製造するとき、焼結体又
は成型体とこれらの堅容容器との間に瀝れ又は反応が生
ずる際には、必ず多数のボアが存在している。この現象
は、焼結又は溶浸の過程で内部に存在するガスが、十分
外部へ放出されない段階で製造中の接点合金表面層の焼
結進行によ−ゴて閉(込やられた結果によるものと考え
られ、接点材料の特性の低下や品質のばらつきの発生の
大きな原因となっている。このことから、接点材料とそ
の処理工程における収容容器との反応を竺実に阻止する
ことが、本発明の課題の解決やいえる。
In such contact materials, it is recognized that the disconnection performance and withstand voltage characteristics are significantly deteriorated, and eliminating this bore is an important problem to be solved by the present invention. According to the research conducted by the present inventors, when manufacturing the contact material according to the present invention, when sintering or reaction occurs between the sintered body or molded body and these tight containers, a large number of Boa exists. This phenomenon is due to the fact that during the sintering or infiltration process, the gas present inside the contact alloy surface layer during manufacture is trapped by the progress of sintering before it is fully released to the outside. This is thought to be a major cause of the deterioration of the properties of contact materials and the occurrence of variations in quality.For this reason, the present invention aims to effectively prevent the reaction between contact materials and the container in which they are processed. It can be said that the problem is solved.

一方、従来から粉末冶金において、被焼結体が焼結工程
で受ける熱歪を緩和する技術として、酸化アルミニウム
(A4 On )粉末の中に埋没させて熱処理を行うこ
とも採用されているが、本発明においてもむの技術を活
用−さらに改良したもので、本発明における中間物体を
構成する耐熱性無機質粒子は、高品質の安定した接点材
料を得るには適当な粒径が存在し、かっこの中間物体を
収容容器と接点素材、混合体又は成型体とが直接接触し
ないように配置すると共に、溶融した溶′浸材(Ql)
又は成型体中の伽が中間物体を構成する耐熱性無機質粒
子の粒子間隙から収容容器へ到達するの阻止するのに充
分な量(厚さ)を設ける必要がある。
On the other hand, in powder metallurgy, heat treatment by immersing the sintered body in aluminum oxide (A4 On ) powder has been adopted as a technique to alleviate the thermal strain that the sintered body undergoes during the sintering process. In the present invention, the kneading technique is utilized and further improved, and the heat-resistant inorganic particles constituting the intermediate object in the present invention have an appropriate particle size to obtain a stable contact material of high quality. The intermediate object is arranged so that the container does not come into direct contact with the contact material, mixture or molded object, and the molten infiltration material (Ql)
Alternatively, it is necessary to provide a sufficient amount (thickness) of the tongs in the molded body to prevent them from reaching the storage container through the gaps between the heat-resistant inorganic particles constituting the intermediate body.

又、成型体等の側面は、成型体内部のガス又は表面のガ
スを除去するのを阻害しないように中間物体を配置する
ことが必要である。この配置の代表的な例として、溶浸
材(Cu)を下側にしその上側に成型体等を配置する場
合、収容容器と溶浸材との間に上述の中間物体を配置し
、さらに溶浸材(Ql)の側面には一部のみとして可能
な限り少なくすることが望ましい。
Further, it is necessary to arrange an intermediate object on the side surface of the molded body so as not to obstruct the removal of the gas inside the molded body or the gas on the surface. As a typical example of this arrangement, when placing the infiltrant (Cu) on the lower side and a molded body etc. on the upper side, the above-mentioned intermediate object is placed between the container and the infiltrant, and then It is desirable to have only a portion of the immersion material (Ql) on the side surface and to minimize the amount as much as possible.

以下に上記の中間物体を構成する耐熱性無機質粒子の粒
径を限定する理由を、実施例及び比較例を参照して説明
する。
The reason for limiting the particle size of the heat-resistant inorganic particles constituting the above-mentioned intermediate object will be explained below with reference to Examples and Comparative Examples.

比較例1〜5 125μmの平均粒径のクロム(Cr)と同じく125
μmの平均粒径の銅(Cu)の混合体を、15TON/
m’の圧力で成型し、水素雰囲気中で1150℃1時間
で仮焼結して得られた仮焼結体の下側に銅(Ou)から
なる溶浸材を配置し、真卒中で1150℃1時間で溶浸
を行う。このとき仮焼結体の収容容器(ボート)として
、比較例1はカーボン、比較例2は酸化アルミニウム(
A4 On ) 、比較例3は酸化マグネシウム(Mg
0) 、比較例4は酸化ケイ素(8i0.)、比較例5
は窒化ケイ素(si3Na)をそれぞれ用い、かつ何れ
の場合も収容容器と成型体、仮焼結体とを直接接触する
ように配置した。その結果得られた接点素材は、何れの
例においても収容容器f破壊しなければ、接点素材を取
出すことができなかった。またその断面の金属組織を見
ても数10μから数100μの巨大な気孔が多数存在し
、材料特性も好ましくなかった。
Comparative Examples 1 to 5 Same as chromium (Cr) with an average particle size of 125 μm
A mixture of copper (Cu) with an average particle size of μm was mixed at 15TON/
An infiltration material made of copper (Ou) was placed on the underside of the pre-sintered body obtained by molding at a pressure of 1,150 °C for 1 hour in a hydrogen atmosphere, and Infiltration is carried out for 1 hour at ℃. At this time, the storage container (boat) for the pre-sintered body was carbon in Comparative Example 1 and aluminum oxide (in Comparative Example 2).
A4 On), Comparative Example 3 is magnesium oxide (Mg
0), Comparative Example 4 is silicon oxide (8i0.), Comparative Example 5
In each case, silicon nitride (si3Na) was used, and in each case, the container, the molded body, and the temporary sintered body were arranged so as to be in direct contact with each other. In all cases, the contact material obtained as a result could not be taken out unless the container f was destroyed. Further, when looking at the metal structure of the cross section, there were many huge pores ranging from several tens of microns to several hundreds of microns, and the material properties were also unfavorable.

比較例6および7、実施例1〜3 溶浸後の接点素材の組成が、Cu−50crになるよう
に配合した成型体を上記比較例1〜5と同様に、残存空
孔に溶浸材Cu を溶浸する。仮焼結及び溶浸時の温度
及び時間は、1150℃及び1時間とし、かつ溶浸材C
uに密着させて仮焼結体を配置し、溶浸材Cu と収容
容器との間に、比較例6は平均iは1μmの酸化アルミ
ニウム(A4 Om ) 、実施例2は125μmの酸
化マグネシウム(MgO)、実施例3は300μmの酸
化マグネシウム(Mg0)、比較例7は600μmの酸
化マグネシウム(Mg0)の無機質粒子から構成された
中間物体重それぞれ配置した。
Comparative Examples 6 and 7, Examples 1 to 3 The infiltration material was applied to the remaining pores in the same manner as in Comparative Examples 1 to 5 above using a molded body in which the composition of the contact material after infiltration was Cu-50cr. Infiltrate Cu. Temperature and time during temporary sintering and infiltration were 1150°C and 1 hour, and infiltration material C
The temporary sintered body was placed in close contact with u, and between the infiltrant material Cu and the container, aluminum oxide (A4 Om) with an average i of 1 μm was used in Comparative Example 6, and magnesium oxide (A4 Om) with an average i of 125 μm was used in Example 2. In Example 3, 300 μm magnesium oxide (Mg0), and in Comparative Example 7, 600 μm magnesium oxide (Mg0) were placed.

第1表に表すように、無機質粒♀の粒径が1ニ300μ
mの範囲においては、後述する方法によってめたボアの
数及びガス量等の点で接点素材としての基本特性か優れ
ている(実施例1〜3)。これに対して、無機質粒子が
さらに微粒の場合には、接点素材中のガス量が多いこと
が判った(比i鏑6 )。
As shown in Table 1, the particle size of the inorganic particles ♦ is 300 μm per day.
In the range of m, the basic properties as a contact material are excellent in terms of the number of bores and the amount of gas formed by the method described later (Examples 1 to 3). On the other hand, it was found that when the inorganic particles were even finer, the amount of gas in the contact material was greater (Bi Kabura 6).

この理由は、微粒のため表面積(単位体積当りの)が著
しく大き≧、それ左は表面吸着ガ哀も多く、これが十分
除去されない段階で仮−結又は一部を進行させたため、
彼焼i体又iま接点ii”を酸化□させ、ガスの残存及
び気孔゛ア内部発生が生ピたものと推定される。これと
#j反対に、無機質粒子が巨大の600μmの場合に1
よ、粒子とツ子の隙間が十分に柱まらず、その隙間を溶
浸劇の銅(Ql)が流出し、この銅(Cu)が収容容器
に到達し、接点素材中のクロム(Cr)を媒体として溶
浸材(Cu)と収容容器とが反応した結果:仮焼結体中
の細孔を十分に満苑すだけの銅(Cu5が供給されなか
ったことが原因したもの′と考えられる(比較例7)。
The reason for this is that the surface area (per unit volume) is extremely large due to the fine particles, and there is also a lot of surface adsorption, which causes temporary condensation or partial progress before it is sufficiently removed.
It is presumed that the oxidation of the oxidized body and contact point □ caused gas to remain and the pores to be generated inside.On the contrary, when the inorganic particles were gigantic and had a diameter of 600 μm, 1
However, the gap between the particle and the tube is not filled sufficiently, and the infiltrated copper (Ql) flows out through the gap, and this copper (Cu) reaches the storage container, and the chromium (Cr) in the contact material flows out. ) was used as a medium to react between the infiltrant (Cu) and the container. possible (Comparative Example 7).

このため、第1”門のよ゛うに接点素材中には気孔が存
表しガス量も比較的多くなった。
For this reason, as in the case of the first gate, pores were present in the contact material and the amount of gas was relatively large.

以上述べたように、無機質粒子には適する粒度が存在し
、これを選択することによって健全な接点素材を軽灰゛
晶に製造することができる。
As described above, there is a suitable particle size for inorganic particles, and by selecting this particle size, it is possible to produce a healthy contact material in the form of a light gray crystal.

なお、上述した実施例1〜3及び比較例1〜′7は二銅
−クロム(Cu−Cr)系合金についてモあるが、本発
明はこれ以外の接点合釜即ち、第2表に示′子実施例4
(7)銅−チタン(Cu−Ti)合金、実施例”′5の
゛銅−一・す゛ジ゛□ウ−(cu−V) 合金ミ″集施
例6の銅−1ジ材質も、酸化アルミニウム(A/l O
s )のみならず酸化ジルコニウム(Zr0.)、蟹化
ケイ素(SisN4)、窒化ホウ素(BN) 、窒化ア
ルミニウム(AI!N)でも同様の効果が得られる。
The above-mentioned Examples 1 to 3 and Comparative Examples 1 to '7 are applicable to dicopper-chromium (Cu-Cr) alloys, but the present invention applies to other contact assemblies, that is, those shown in Table 2. Child example 4
(7) Copper-titanium (Cu-Ti) alloy, collection of "Copper-1 and Cu-V alloys" in Example "'5" and copper-1 di material in Example 6, Aluminum oxide (A/l O
Similar effects can be obtained not only with zirconium oxide (Zr0.), silicon nitride (SisN4), boron nitride (BN), and aluminum nitride (AI!N).

以上述べた接点素材の製造方法、混合体を成型後仮焼結
し、この焼結体の残存空孔に溶浸材を溶浸する方法を示
したが、銅(CI)の溶融点以下の1030℃で水素中
3時間予備焼結し、さらに7TON/ciの圧力で栴加
1.+:後、古び1030υで真空中2時間加熱して得
たもので、酸化アルミニウム(Ale 0s )粒子を
用いない場合には、比較例1〜7と同様に残存空孔やガ
ス祉等接点利刺の基本特性の劣ることが判った(比較例
8)。一方、酸化アルミニウム(Ale On )粒子
を用いた場合には、残存空孔やガス量等接点材料の基本
特性の向上が認められた(実施例9)。したがって固相
焼結にもおいても同様の効果が得られることが判る。
The above-mentioned method for manufacturing the contact material, in which the mixture is molded and then pre-sintered, and the remaining pores of this sintered body are infiltrated with an infiltrant material, has been shown. Pre-sintering was carried out in hydrogen at 1030°C for 3 hours, followed by sintering at a pressure of 7 TON/ci. +: Obtained by heating in vacuum for 2 hours at 1030 υ after heating, and when aluminum oxide (Ale 0s) particles are not used, contact advantages such as residual pores and gas welfare are obtained as in Comparative Examples 1 to 7. It was found that the basic characteristics of the spines were inferior (Comparative Example 8). On the other hand, when aluminum oxide (Ale On) particles were used, improvements in the basic properties of the contact material such as residual pores and gas amount were observed (Example 9). Therefore, it can be seen that similar effects can be obtained also in solid phase sintering.

又、接点累月の靜耐電圧特性も、70kV 近傍の安定
した値となり、静耐箪圧特性測定中に観県される突発的
なスパーク回数も少なく安定している。
In addition, the static withstand voltage characteristics of the contacts are stable at around 70 kV, and the number of sudden sparks observed during the measurement of the static withstand pressure characteristics is small and stable.

これは無機質粒子を予め400℃(好ましくは1000
℃)以上に加熱処理したものを用いることで、材料特性
並びに静耐砥圧特性のばらつきが少なくなり安定化し、
吸着している水分等を十分除去する効果と考えられる。
This is done by heating the inorganic particles to 400°C (preferably 1000°C).
By using a material that has been heat-treated to a temperature above ℃), variations in material properties and static abrasive pressure properties are reduced and stabilized.
This is thought to be the effect of sufficiently removing adsorbed moisture, etc.

(以下 余白) [注記〕 材料特性の評価条件 酸素;5藺立方の試験片を切出し、2400〜2600
℃のカーボンカプセル中に挿入し抽出する。
(The following is a blank space) [Note] Evaluation conditions for material properties
Insert into a carbon capsule and extract.

ボアの数;顕i鏡組織を50倍に引伸した所定面積(1
130μm X 880μm)内のボアの数を計数する
Number of bores; specified area (1
Count the number of bores within 130 μm x 880 μm).

静耐電圧の特性:別布研磨により仕上げたNi針電極を
陽極に、同じく別布研磨によ り仕上げた試料平板を陰極とし、10 mHHの真空中において電圧を徐々に上昇させ、スパー
クを発生したときの電 圧値を測定し、破壊時の電圧(kV)とした。破壊電圧
に至るまでに観測され る突発的(パルス状)のスパークの数 をスパークの回数とした。
Characteristics of static withstand voltage: A Ni needle electrode finished by separate cloth polishing is used as an anode, and a sample flat plate also finished by separate cloth polishing is used as a cathode, and the voltage is gradually increased in a vacuum of 10 mHH to generate a spark. The voltage value was measured and taken as the voltage at breakdown (kV). The number of sudden (pulse-like) sparks observed until the breakdown voltage was reached was defined as the number of sparks.

〔発明の効果〕 本発明は、以上のように構成されているから高品質でし
かも経済的な真空しゃ断器用の接点材料を得ることがで
きる。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to obtain a high quality and economical contact material for a vacuum breaker.

Claims (1)

【特許請求の範囲】[Claims] 銅(Cu)及び銀(Ag)の少なくとも1つと、クロム
(”’) 、チタン(’l’i)、バナジウムυ又はジ
ルコニウム(Zr)の何れか1つとよりなる混合体又は
成顧体を、水素中又は真空中で熱処理、焼結又は溶浸め
少なくとも1つの処理を行うものにおいて、前記魂4−
休又は成型体を、少なくとも400℃で前加熱した酸化
アルミニウムCAet’os ) 、酸化マグネシ−ウ
A (Mg0)、酸化りo A (Crt o3)、酸
化ジルコニウム’(Z’r0.)、’ 窒化ケイ素(S
illN4’)、窒化ホウ素(BN)及び空化アルミニ
ウム゛(AeN) 擲から゛選択さ°れた耐熱性−無機
質粒子の1らを主成分゛とし、1〜300μmの大きさ
の平均粒径なもつ中間物体を収容容器との簡に介“在さ
せて、熱処理、焼結又は溶浸の少なくと□も一つの処理
を行うこと・を酷徴とする真空しゃ断器用接点材料の製
造方法。“
A mixture or composite body consisting of at least one of copper (Cu) and silver (Ag) and any one of chromium (''), titanium ('l'i), vanadium υ or zirconium (Zr), In the case where at least one treatment of heat treatment, sintering or infiltration is performed in hydrogen or vacuum, the soul 4-
Aluminum oxide CAet'os), magnesium oxide A (Mg0), oxidized oxide (Crto3), zirconium oxide'(Z'r0.),'nitrided Silicon (S
The main component is one of heat-resistant inorganic particles selected from boron nitride (BN) and emptied aluminum (AeN), and has an average particle size of 1 to 300 μm. A method for manufacturing a contact material for a vacuum breaker, which is characterized by simply interposing an intermediate object with a container and performing at least one treatment of heat treatment, sintering, or infiltration.
JP23790383A 1983-12-19 1983-12-19 Method of producing contact material for vacuum breaker Granted JPS60131723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23790383A JPS60131723A (en) 1983-12-19 1983-12-19 Method of producing contact material for vacuum breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23790383A JPS60131723A (en) 1983-12-19 1983-12-19 Method of producing contact material for vacuum breaker

Publications (2)

Publication Number Publication Date
JPS60131723A true JPS60131723A (en) 1985-07-13
JPH056291B2 JPH056291B2 (en) 1993-01-26

Family

ID=17022135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23790383A Granted JPS60131723A (en) 1983-12-19 1983-12-19 Method of producing contact material for vacuum breaker

Country Status (1)

Country Link
JP (1) JPS60131723A (en)

Also Published As

Publication number Publication date
JPH056291B2 (en) 1993-01-26

Similar Documents

Publication Publication Date Title
JP2530484B2 (en) Contact for vacuum circuit breaker and manufacturing method thereof
US2983996A (en) Copper-tungsten-molybdenum contact materials
KR970004578B1 (en) Process for manufacturing a contact material for a vacuum circuit breakers
EP0929088B1 (en) Contact material
WO2018142709A1 (en) Method for manufacturing electrode material, and electrode material
US4500406A (en) Inert electrode connection
JP3663038B2 (en) Vacuum valve
US3827883A (en) Electrical contact material
US5882448A (en) Contact material for vacuum valve and method of manufacturing the same
JPS59163726A (en) Vacuum breaker
US4450135A (en) Method of making electrical contacts
EP0460680B1 (en) Contact for a vacuum interrupter
JPS60131723A (en) Method of producing contact material for vacuum breaker
JP2653461B2 (en) Manufacturing method of contact material for vacuum valve
JPH05101750A (en) Manufacture of electrode material
US5196273A (en) Tantalum carbide composite materials
JPS63150822A (en) Manufacture of contact alloy for vacuum valve
JP4619821B2 (en) Contact material and vacuum valve
JP2004315841A (en) Metallic material
JP3106598B2 (en) Manufacturing method of electrode material
JPH0573813B2 (en)
RU2769344C1 (en) Material for arc-quenching and breaking electrical contacts based on copper and method of its production
JPH07320608A (en) Manufacture of contact material
JP3106609B2 (en) Manufacturing method of electrode material
JPS6141091B2 (en)