JPS60130578A - Production of allyl glycidyl ether - Google Patents

Production of allyl glycidyl ether

Info

Publication number
JPS60130578A
JPS60130578A JP23877383A JP23877383A JPS60130578A JP S60130578 A JPS60130578 A JP S60130578A JP 23877383 A JP23877383 A JP 23877383A JP 23877383 A JP23877383 A JP 23877383A JP S60130578 A JPS60130578 A JP S60130578A
Authority
JP
Japan
Prior art keywords
reaction
epichlorohydrin
allyl alcohol
glycidyl ether
allyl glycidyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23877383A
Other languages
Japanese (ja)
Inventor
Haruhiko Kawakami
川上 晴比古
Keisuke Watanabe
渡邊 佳資
Takayoshi Masuda
増田 隆良
Yuji Suezaki
末崎 勇児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP23877383A priority Critical patent/JPS60130578A/en
Publication of JPS60130578A publication Critical patent/JPS60130578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)

Abstract

PURPOSE:To produce the titled substance in one step and high yield, by reacting allyl alcohol with epichlorohydrin and a solid alkali while removing produced water by the azeotropic distillation with epichlorohydrin. CONSTITUTION:1mol of allyl alcohol is made to react with 1-3mol of epichlorohydrin in the presence of a solid alkali in a binary phase comprising a solid phase and a liquid phase under boiling to obtain the objective substance. The produced water is removed from the system by forming an azeotropic mixture with the epichlorohydrin used as a raw material. The reaction temperature is preferably 30-60 deg.C, and the reaction pressure is controlled (generally 40mm.Hg- 1atm) so as to keep the boiling state at the above temperature. The reaction mixture may be added to 0.1-3.0g of an organic amine, a quaternary ammonium salt (e.g. tetramethylammonium chloride), etc. per 100g of allyl alcohol.

Description

【発明の詳細な説明】 本発明は、アリルアルコールとエピクロルヒドリンとを
固形アルカリの存在下縮合反応を内肩に進行せしめ、ア
リルグリシジルエーテルを1段階法により高収率で製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing allyl glycidyl ether in a high yield in a one-step process by allowing a condensation reaction between allyl alcohol and epichlorohydrin to proceed in the presence of a solid alkali.

従来、アリルグリシジルエーテルはアリルアルコールと
エピクロルヒドリンを原料として酸性触媒存在下に反応
させて、グリセリンモノクロルヒドリンアリルエーテル
とし、次にこのグリセリンモノクロルヒドリンアリルエ
ーテルをアルカリと反応させて閉環しアリルグリシジル
エーテルを得る2段階法により製造する方法が知られて
いる。
Conventionally, allyl glycidyl ether is produced by reacting allyl alcohol and epichlorohydrin as raw materials in the presence of an acidic catalyst to form glycerin monochlorohydrin allyl ether, and then reacting this glycerin monochlorohydrin allyl ether with an alkali to close the ring to form allyl glycidyl ether. A two-step manufacturing method is known.

しかしながら、この方法では、硫酸、三フッ化ホウ素、
四塩化錫等の酸触媒を使用するので、装置の腐蝕、操作
上の危険性があり、また2段階反応であるため工程が複
雑である。また、1段目反応で目的とするグリセリンモ
ノクロルヒドリンアリルエーテルの外、グリセリンモノ
クロルヒドリンアリルエーテルに、さらにエピクロルヒ
ドリンが付加したもの、酸触媒存在下に2モルのアリル
アルコールが縮合したジアリルエーテル等が副生じ目的
物の収率が低下する。2段目反応においてもアルカリ水
溶液中で反応が進行するので、生成した反応生成物が再
び開環し反応したオリゴマーやポリマーおよびグリコー
ル等の副生が多く収率が低下する。これらの副生物の生
成を制御するため反応温度、触媒、原料比、反応時間等
の反応条件を厳密に設定しなければならない。また、ア
リルアルコールとエピクロルヒドリンとをアルカリに作
用させて1挙にアリルグリシジルエーテルをI段階法に
より製造する方法も知られている。この方法は一般的に
アルカリ水溶液と有機相の2相系で反応が行われる。そ
のため、オキシラン環の開環重合、アリルグリシジルエ
ーテルにさらにエビハロヒドリンの付加等の副生が起り
やすく、−その結果、オリゴマーやポリマーが副生じ、
目的とするグリシジルエーテルの収率が低下する等、工
業的に充分満足する方法とはいえない。
However, in this method, sulfuric acid, boron trifluoride,
Since an acid catalyst such as tin tetrachloride is used, there is a risk of equipment corrosion and operational risks, and the process is complicated because it is a two-step reaction. In addition to the glycerin monochlorohydrin allyl ether targeted in the first stage reaction, glycerin monochlorohydrin allyl ether further added with epichlorohydrin, diallyl ether in which 2 moles of allyl alcohol are condensed in the presence of an acid catalyst, etc. However, as a by-product, the yield of the target product decreases. In the second stage reaction as well, the reaction proceeds in an alkaline aqueous solution, so the generated reaction product is ring-opened again and a large amount of by-products such as reacted oligomers, polymers, and glycols are produced, resulting in a decrease in yield. In order to control the production of these by-products, reaction conditions such as reaction temperature, catalyst, raw material ratio, reaction time, etc. must be strictly set. Furthermore, a method is also known in which allyl glycidyl ether is produced all at once by an I-step method by reacting allyl alcohol and epichlorohydrin with an alkali. In this method, the reaction is generally carried out in a two-phase system consisting of an aqueous alkaline solution and an organic phase. As a result, by-products such as ring-opening polymerization of the oxirane ring and the addition of evihalohydrin to allyl glycidyl ether are likely to occur, resulting in the formation of oligomers and polymers.
This method cannot be said to be industrially satisfactory, as the yield of the desired glycidyl ether decreases.

本発明者らは、この従来の1段階法の欠点を解消した改
良方法について鋭意検訓した結果、アリルアルコールと
エピクロルヒドリンおよびアリカリを反応させて、アリ
ルグリシジルエーテルを製造するに際して、アルカリと
して固形アルカリを用いて固相一液相系で反応を沸騰状
態で行い、反応により生成してくる水分を原料エピクロ
ルヒドリンの共沸により除去しながら反応させて、収率
よくアリルグリシジルエーテルを製造する方法を見出し
、本発明を完成した。
As a result of intensive research into an improved method that overcomes the shortcomings of this conventional one-step method, the present inventors have determined that when producing allyl glycidyl ether by reacting allyl alcohol with epichlorohydrin and alkali, a solid alkali is used as the alkali. discovered a method of producing allyl glycidyl ether in good yield by carrying out the reaction in a boiling state in a solid-phase and liquid-phase system using The invention has been completed.

本発明の方法に使用するアリルアルコールおよびエピク
ロルヒドリンは、一般の工業的に製造されたものであれ
ば十分である。
Allyl alcohol and epichlorohydrin used in the method of the present invention may be those produced in a general industrial manner.

さらに、本発明の方法に用いられる固形アルカリとして
は、水酸化ナトリウム、水酸化リチウム、水酸化カリウ
ム、水酸化マグネシウム、水酸化カルシウムおよび水酸
化バリウム等のアルカリ金属やアルカリ土類金属水酸化
物等が挙げられ、とくに好ましくは水酸化カリウム、水
酸化すl・リウム、水酸化カルシウム等である。なかで
も、工業的には水酸化ナトリウムが好ましい。
Furthermore, the solid alkali used in the method of the present invention includes alkali metal and alkaline earth metal hydroxides such as sodium hydroxide, lithium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, and barium hydroxide. Among them, potassium hydroxide, sulfur/lium hydroxide, calcium hydroxide, etc. are particularly preferred. Among these, sodium hydroxide is industrially preferred.

これ等の固形アルカリは必ずしも、100%に近い高純
度のものでなくても、95%以上の含不率のものであれ
ばよい。また、その形態はとくに限定されるものではな
いが、固相一液相の2相反応であることから、粒状また
は粉状のように、アルコール、エビハロヒドリ、との接
触な効果的に行わしめるに十分な大きさに破砕されたも
のや成形されたものが好ましい。
These solid alkalis do not necessarily have to have a high purity close to 100%, but only need to have an impurity content of 95% or more. In addition, the form is not particularly limited, but since it is a two-phase reaction of solid phase and liquid phase, it is difficult to effectively carry out contact with alcohol, shrimp halohydro, etc., such as in granular or powder form. It is preferable to use crushed or molded pieces of sufficient size.

本発明の方法において、アリルアルコールおよびエピク
ロルヒドリンの朗用量は、アリルグリシジルエーテルを
生成させる反応では理論的には描モルであるが、脱水剤
として作用する量を必要とするので、1モル以上を使用
する。通常、アリルアルコール1モルに対して、エピク
ロルヒドリンが1〜10モル、好ましくは1〜3モルの
範囲である。エピクロルヒドリンが1モル未満では反応
は十分に進行しない。一方使用量が10モル以上であっ
ても目的物の収率を更に向上させる効果はないが、この
範囲を越えて使用しても差し支えない。
In the method of the present invention, the recommended amount of allyl alcohol and epichlorohydrin is theoretically a mol in the reaction to produce allyl glycidyl ether, but since an amount that acts as a dehydrating agent is required, 1 mol or more is used. do. Usually, the amount of epichlorohydrin is in the range of 1 to 10 mol, preferably 1 to 3 mol, per 1 mol of allyl alcohol. If the amount of epichlorohydrin is less than 1 mole, the reaction will not proceed sufficiently. On the other hand, even if the amount used is 10 moles or more, there is no effect of further improving the yield of the target product, but there is no problem even if it is used in an amount exceeding this range.

しかし、通常工業的には3モル以下で十分である。However, 3 mol or less is usually sufficient industrially.

固形アルカリはアリルアルコール1モルに対して1.0
〜1.5モルを使用する。1.5モル以上加えても反応
にあまり影響を及ぼさず原料の無駄となる。
Solid alkali is 1.0 per mole of allyl alcohol
~1.5 mol is used. Even if 1.5 mol or more is added, the reaction will not be affected much and the raw material will be wasted.

1.0モル以下は当然反応収率は低下する。If it is less than 1.0 mol, the reaction yield will naturally decrease.

また、本発明の方法では、適宜、有機アミン、第4級ア
ンモニウム塩等を使用してもよい、例えば丹メ1671
ノ、テトラメチルアンモニウムクロリド、テトラエチル
アンモニウムプロミド、トリエチルメチルアンモニウム
クロリド、テトラエチルアンモニウムアイオダイド、セ
チルトリエチルアンモニウムプロミド等があげられる。
In addition, in the method of the present invention, organic amines, quaternary ammonium salts, etc. may be used as appropriate.
Examples include tetramethylammonium chloride, tetraethylammonium bromide, triethylmethylammonium chloride, tetraethylammonium iodide, cetyltriethylammonium bromide, and the like.

特に好ましいのはテトラメチルアンモニウムクロリド又
はテトラエチルアンモニウムプロミドである。これらの
有機アミン、第四級アンモニウム塩等の使用量は通常、
原料のアリルアルコール100g当り0.1〜3.0g
である。反応は攪拌部t6よび水分分離部持った反応器
で共沸脱水を行ないながら反応させることにより達成さ
れる。反応温度は20〜100℃、好ましくは30〜6
0℃で、反応温度が低くすぎると主反応は遅(なり、高
すぎると副反応が促進されるので好しくない。反応圧力
は当該反応温度て系内が沸とう状態となるように調節す
る。
Particularly preferred is tetramethylammonium chloride or tetraethylammonium bromide. The amount of these organic amines, quaternary ammonium salts, etc. used is usually:
0.1-3.0g per 100g of raw allyl alcohol
It is. The reaction is accomplished by carrying out the reaction while performing azeotropic dehydration in a reactor having a stirring section t6 and a water separation section. The reaction temperature is 20-100°C, preferably 30-6
At 0°C, if the reaction temperature is too low, the main reaction will be slow, and if it is too high, side reactions will be promoted, which is not preferable.The reaction pressure is adjusted so that the system is in a boiling state at the reaction temperature. .

一般的に40 mm1−1g〜常圧の範囲で七分である
。とくに、好ましい反応温度である;30〜60℃の範
囲の温度で沸騰し、共沸脱水が可能な減圧下で反応させ
るのが望ましい。
Generally, it is 7 minutes in the range of 40 mm 1-1 g to normal pressure. Particularly preferred is the reaction temperature; it is desirable to boil at a temperature in the range of 30 to 60°C and to carry out the reaction under reduced pressure that allows azeotropic dehydration.

本発明の方法は、固相一液相の2相間での反応で、かつ
固液混合状態の沸+11反応であるため、反応系の混合
攪拌は十分に行ない2相間の接触をよくし、沸騰状態を
保存し共沸脱水を内肩・に進行させる。
The method of the present invention is a reaction between two phases, a solid phase and a liquid phase, and is a boiling + 11 reaction in a solid-liquid mixed state. Therefore, the reaction system is sufficiently mixed and stirred to improve contact between the two phases, and Preserve the condition and allow azeotropic dehydration to proceed internally.

反応時間は生成する理論量の水が留去し終る時間乃至留
去終了後、数時間であればよい。
The reaction time may be from the time when the theoretical amount of water to be produced ends to distillation to several hours after the end of distillation.

反応終了後、反応系よりアリルグリシジルエーテルの分
離はそれ自体公知の方法により行われる。
After the reaction is completed, allyl glycidyl ether is separated from the reaction system by a method known per se.

例えば、反応混合物をろ過し、ろ過残渣を原料のアリル
アルコール、またはエピクロルヒドリンで洗浄し、洗液
、ろ液を蒸溜する。回収した未反応原料はそのまま次の
反応に使用できる。未反応原料回収後の液を減圧下に蒸
溜しアリルグリシジルエーテル採憎すればよい。
For example, the reaction mixture is filtered, the filtration residue is washed with allyl alcohol or epichlorohydrin as a raw material, and the washing liquid and filtrate are distilled. The recovered unreacted raw materials can be used as they are in the next reaction. Allyl glycidyl ether may be collected by distilling the liquid after recovering the unreacted raw materials under reduced pressure.

以下、本発明の方法を実施例で説明する。The method of the present invention will be explained below using Examples.

実施例−1 攪拌機、水分分離部を増りつけたガラス製300n11
丸底フラスコに、アリルアルコール29.0(0,5モ
ル)、エピクロルヒドリン92.5g(1,0モル)、
粒状水酸化ナトリウム20g(0,5モル)、テトラメ
チルアンモニウムクロライド0’、57gを仕込み激し
く攪拌しながら、反応温度50°C1減圧下(40〜t
00+yud(g)に共沸脱水を行ないながら2時間反
応した。部用した水の量は9gではy理論量を除去した
。反応後内容物をろ過し沈澱物を除き、沈澱物は50g
のエピクロルヒドリンで洗浄しろ液に加えた。このろ液
をガスクロマトグラフィーで分析したところアリルグリ
シジルエーテルの含有量は51.5gでアリルアルコー
ル基準の反応収率は90%に相当する。
Example-1 Glass 300n11 with additional stirrer and water separation section
In a round bottom flask, 29.0 (0.5 mol) of allyl alcohol, 92.5 g (1.0 mol) of epichlorohydrin,
20 g (0.5 mol) of granular sodium hydroxide and 57 g of tetramethylammonium chloride 0' were charged, and while stirring vigorously, the reaction temperature was increased to 50° C.1 under reduced pressure (40-t
00+yud (g) was reacted for 2 hours while performing azeotropic dehydration. When the amount of water used was 9 g, y theoretical amount was removed. After the reaction, the contents were filtered to remove the precipitate, and the precipitate was 50g.
of epichlorohydrin and added to the filtrate. Analysis of this filtrate by gas chromatography revealed that the content of allyl glycidyl ether was 51.5 g, corresponding to a reaction yield of 90% based on allyl alcohol.

比較例−1 反応圧力を常圧とし共沸脱水を行なわない以外は実施例
−■と同様に反応処理したアリルグリシジルエーテルの
生成量は48 、3gで反応収率は84.4%であった
Comparative Example-1 The reaction treatment was carried out in the same manner as in Example-■ except that the reaction pressure was normal pressure and azeotropic dehydration was not performed.The amount of allyl glycidyl ether produced was 48.3 g, and the reaction yield was 84.4%. .

実施例2 実施例1のテトラメチルアンモニウムクロライド0.5
7gを第1表に示す第4級塩基性塩0.57g用いる以
外は全く同様にしてアリルグリシジルエーテルの収率を
しろべだ。
Example 2 Tetramethylammonium chloride of Example 1 0.5
The yield of allyl glycidyl ether was determined in the same manner except that 0.57 g of the quaternary basic salt shown in Table 1 was used instead of 7 g.

第1表Table 1

Claims (1)

【特許請求の範囲】[Claims] ■)アリルアルコールとエピクロルヒドリンオヨび固形
アルカリとを、反応により生成する水分をエピクロルヒ
ドリンと共沸除去しながら反応させることを特徴とする
アリルグリシジルエーテルの製造方法。
(2) A method for producing allyl glycidyl ether, which comprises reacting allyl alcohol with epichlorohydrin and a solid alkali while azeotropically removing water produced by the reaction with epichlorohydrin.
JP23877383A 1983-12-20 1983-12-20 Production of allyl glycidyl ether Pending JPS60130578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23877383A JPS60130578A (en) 1983-12-20 1983-12-20 Production of allyl glycidyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23877383A JPS60130578A (en) 1983-12-20 1983-12-20 Production of allyl glycidyl ether

Publications (1)

Publication Number Publication Date
JPS60130578A true JPS60130578A (en) 1985-07-12

Family

ID=17035055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23877383A Pending JPS60130578A (en) 1983-12-20 1983-12-20 Production of allyl glycidyl ether

Country Status (1)

Country Link
JP (1) JPS60130578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458793B1 (en) * 2000-05-01 2004-12-03 주식회사 아이씨켐 The synthetic method of glycidylether without solvent and water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458793B1 (en) * 2000-05-01 2004-12-03 주식회사 아이씨켐 The synthetic method of glycidylether without solvent and water

Similar Documents

Publication Publication Date Title
JP4876105B2 (en) Method for producing 2,2,2-trifluoroethanol
WO2006093281A1 (en) METHOD FOR PRODUCING α-HYDROXY-ω-GLYCIDYL ETHER
JPS5822118B2 (en) Production method of triallyl isocyanurate
JPH10505084A (en) Method for producing tetrabromobisphenol-A by reducing formation of methyl bromide
JPS60130578A (en) Production of allyl glycidyl ether
JPH0138112B2 (en)
JPS6219450B2 (en)
JP2845745B2 (en) Production method of high purity methanesulfonyl fluoride
JP2000072719A (en) Production of allyl 2-hydroxyisobutyrate
JPS60130577A (en) Production of glycidyl ether compound
JP3931448B2 (en) Process for producing bis (3-alkyloxetane-3-ylmethyl) ether
JPH0450307B2 (en)
JPS60130579A (en) Production of allyl glycidyl ether
JP3114304B2 (en) Process for producing glycidyl ethers
JPH0959269A (en) Production of glycydyl methacrylate
JPH08231462A (en) Perfluoroalkylarboxylic acid fluoride and production of its derivative
JPS5842867B2 (en) Method for producing glycidyl ethers
US3000909A (en) Process of preparing butylene oxide from butylene chlorohydrin
JPH044303B2 (en)
JPS60126277A (en) Production of glycidyl ether
JPH045657B2 (en)
JPH0228583B2 (en)
JPS62277341A (en) Production of metaphenoxybenzoic acid
JP2005200527A (en) Method of producing crystalline epoxy compound
JPH0532650A (en) Production of glycidyl ethers