JPH044303B2 - - Google Patents

Info

Publication number
JPH044303B2
JPH044303B2 JP61068137A JP6813786A JPH044303B2 JP H044303 B2 JPH044303 B2 JP H044303B2 JP 61068137 A JP61068137 A JP 61068137A JP 6813786 A JP6813786 A JP 6813786A JP H044303 B2 JPH044303 B2 JP H044303B2
Authority
JP
Japan
Prior art keywords
reaction
allyl
weight
pentaerythritol
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61068137A
Other languages
Japanese (ja)
Other versions
JPS62223141A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61068137A priority Critical patent/JPS62223141A/en
Publication of JPS62223141A publication Critical patent/JPS62223141A/en
Publication of JPH044303B2 publication Critical patent/JPH044303B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、ペンタエリスリトールのアリルエー
テル類の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for producing allyl ethers of pentaerythritol.

(従来技術) 従来ペンタエリスリトールのアリルエーテル類
の製造方法としては、ペンタエリスリトールをア
ルカリ金属水酸化物水溶液に溶解させ、アリル化
剤としてアリルハライドを用いて反応を行う方法
が古くから知られている。例えば、 (1) J.Am.Chem.Soc.Vol67(1945),第46頁〜第
49頁、アリルハライドとしてアリルブロマイド
を用いた例 (2) J.Am.Chem.Soc.Vol75(1953),第1248頁、
アリルハライドとしてアリルクロライドを用
い、ジオキサンを溶媒として用いた例 (3) USP第3428693号明細書、上記(2)のジオキサ
ンの代りに溶媒としてジメチルスルフオキサイ
ドを用いた例 (4) 特公昭48−37004号公報、特公昭50−38082号
公報、アリルハライドとしてアリルクロライド
を用い加圧下に反応を行つた例 が記載されている。
(Prior art) As a conventional method for producing allyl ethers of pentaerythritol, a method has long been known in which pentaerythritol is dissolved in an aqueous alkali metal hydroxide solution and the reaction is carried out using allyl halide as an allylating agent. . For example, (1) J.Am.Chem.Soc.Vol67 (1945), pp. 46-
Page 49, Example of using allyl bromide as allyl halide (2) J.Am.Chem.Soc.Vol75 (1953), page 1248,
Example of using allyl chloride as the allyl halide and using dioxane as the solvent (3) USP No. 3428693, Example of using dimethyl sulfoxide as the solvent instead of dioxane in (2) above (4) Japanese Patent Publication No. 1973 Japanese Patent Publication No. 37004 and Japanese Patent Publication No. 38082/1983 describe examples in which allyl chloride was used as the allyl halide and the reaction was carried out under pressure.

上記方法のうち、(1)の方法は、アリル化剤とし
て高価なアリルブロマイドを用いる点で工業的製
法としての経済性に欠ける。また(2),(3)の方法
は、アリル化剤としてアリルクロライドを用いる
点では有利であるが、ジオキサンあるいはジメチ
ルスルフオキサイドを用いるためこれの回収精製
工程や排水処理工程を必要とするなど工業的製法
として難点がある。(4)の方法は、加圧下に反応を
行わねばならないという装置上の安全性や経済性
の問題がある。一般にアリルクロライドはアリル
ブロマイドと反応性が異なり、上記の如き加圧下
に行うか、有機溶剤等を用いて行うかしなければ
反応が起こり難いことが知られている。
Among the above methods, method (1) lacks economic efficiency as an industrial production method because it uses expensive allyl bromide as an allylating agent. In addition, methods (2) and (3) are advantageous in that they use allyl chloride as the allylating agent, but because they use dioxane or dimethyl sulfoxide, they require recovery and purification steps and wastewater treatment steps. There are some drawbacks as an industrial manufacturing method. Method (4) has problems with equipment safety and economy because the reaction must be carried out under pressure. Generally, allyl chloride has a different reactivity from allyl bromide, and it is known that the reaction is difficult to occur unless the reaction is carried out under pressure as described above or by using an organic solvent or the like.

(発明の目的) 本発明は、アリル化剤としてアリルクロライド
を用い、工業的製法として上記の如き問題のない
反応促進剤を用いるペンタエリスリトールのアリ
ルエーテル類の製造方法を提供することを目的と
する。
(Objective of the Invention) The object of the present invention is to provide a method for producing allyl ethers of pentaerythritol using allyl chloride as an allylating agent and using a reaction accelerator as mentioned above as an industrial production method. .

(発明の構成) 本発明は、ペンタエリスリトールとアリルクロ
ライド及びアルカリ金属水酸化物水溶液からペン
タエリスリトールのアリルエーテル類を製造する
に際し、ペンタエリスリトール100重量部に対し
てアリルアルコール2〜15重量部を促進剤として
用い、反応温度80〜120℃で反応させることを特
徴とするアリルエーテル類の製法である。
(Structure of the Invention) The present invention promotes 2 to 15 parts by weight of allyl alcohol to 100 parts by weight of pentaerythritol when producing allyl ethers of pentaerythritol from an aqueous solution of pentaerythritol, allyl chloride, and alkali metal hydroxide. This is a method for producing allyl ethers, which is characterized in that the reaction is carried out at a reaction temperature of 80 to 120°C.

本発明の目的物であるペンタエリスリトールの
アリルエーテル類はモノ,ジ,トリ及びテトラの
四種類のアリルエーテルが存在する。これらは反
応によつてアリル基が低次のものから高次のもの
へと逐次生成する。これらアリルエーテル類はそ
れぞれ有用な化合物であり、これらのうち、例え
ばペンタエリスリトールのジ−又はトリ−アリル
エーテルあるいはこれらの混合物は、風乾性付与
剤として塗料用ポリエステルの原料に使用されて
おり、本発明においては、上記ジ−又はトリ−化
合物を主体とする生成物を得ようとする場合その
目的に適合した組成比の原料を用いて反応を行う
ことにより容易に得ることができる。
There are four types of allyl ethers of pentaerythritol, which are the object of the present invention: mono, di, tri, and tetra. These allyl groups are sequentially generated from lower to higher allyl groups through reactions. Each of these allyl ethers is a useful compound, and among these, for example, di- or tri-allyl ether of pentaerythritol or a mixture thereof is used as an air-drying agent as a raw material for polyester for paints. In the present invention, when it is desired to obtain a product mainly composed of the above-mentioned di- or tri-compound, it can be easily obtained by carrying out the reaction using raw materials having a composition ratio suitable for the purpose.

本発明のエーテル化反応は、ペンタエリスリト
ールをアルカリ金属水酸化物水溶液に加え加温し
て溶解し、これにアリルアルコールを促進剤とし
て加えて温度80〜120℃に調整し、通常常圧下で、
要すれば加圧下でアリルクロライドを添加して反
応を行わしめることによつて達成される。アリル
クロライドの添加は、上記反応温度を維持するよ
うに行う。反応温度が80℃より低いと反応に長時
間を要するため好ましくなく、また120℃をこえ
る温度では競争反応により収率が低下する。
The etherification reaction of the present invention is carried out by adding pentaerythritol to an aqueous alkali metal hydroxide solution, heating and dissolving it, adding allyl alcohol as a promoter, adjusting the temperature to 80 to 120°C, and usually under normal pressure.
If necessary, this can be achieved by adding allyl chloride under pressure to carry out the reaction. Allyl chloride is added so as to maintain the above reaction temperature. If the reaction temperature is lower than 80°C, the reaction will take a long time, which is undesirable, and if it exceeds 120°C, the yield will decrease due to competitive reaction.

反応は全還流下で行つてもよいが、反応が速や
かに進行する段階に至つたとき系内の水を徐々に
留去して行う方が反応時間が短縮できるので好ま
しい。アルカリ金属水酸化物水溶液は、必要量を
一括して最初に加えてもよいが、反応を速やかに
開始させるために反応の進行の過程で適宜加えた
方が望ましい。
Although the reaction may be carried out under total reflux, it is preferable to carry out the reaction by gradually distilling off the water in the system when the reaction reaches a stage where it proceeds rapidly because the reaction time can be shortened. The aqueous alkali metal hydroxide solution may be added in the necessary amount at once, but it is preferable to add it appropriately during the course of the reaction in order to promptly start the reaction.

本発明において、アリルクロライドの添加量
は、得ようとする目的物、アリルエーテル類の組
成によつて自由に選ぶことができる。また、アル
カリ金属水酸化物の量は、アリルクロライド反応
量の1〜1.2倍モルが適当である。アリカリ金属
水酸化物としては、水酸化ナトリウム,水酸化カ
リウムが一般的であり、工業的には水酸化ナトリ
ウムが有利である。アルカリ金属水酸化物水溶液
のアルカリ金属水酸化物濃度としては、反応速度
上高い濃度のものが望ましく、通常30〜60%のも
のが適当である。一般には市販されている50重量
%前後のものが使用に便利である。上記アルカリ
金属水酸化物濃度が30重量%未満では反応速度が
小さすぎるため好ましくなく、また60重量%をこ
えるものは原料ペンタエリスリトールの溶解度が
低下し、アルカリ金属水酸化物との量バランス上
に問題を生ずることになる。
In the present invention, the amount of allyl chloride added can be freely selected depending on the desired product and the composition of the allyl ether. Moreover, the amount of alkali metal hydroxide is suitably 1 to 1.2 times the mole of the reaction amount of allyl chloride. As the alkali metal hydroxide, sodium hydroxide and potassium hydroxide are generally used, and sodium hydroxide is industrially advantageous. The concentration of alkali metal hydroxide in the aqueous alkali metal hydroxide solution is preferably high from the viewpoint of reaction rate, and usually 30 to 60% is suitable. Generally, commercially available compounds of around 50% by weight are convenient to use. If the concentration of the alkali metal hydroxide is less than 30% by weight, the reaction rate is too low, which is undesirable, and if it exceeds 60% by weight, the solubility of the raw material pentaerythritol decreases and the amount balance with the alkali metal hydroxide is affected. This will cause problems.

反応促進剤としてのアリルアルコールの添加量
は、ペンタエリスリトール100重量部に対して2
〜15重量部の範囲が適当である。添加量が2重量
部より少ないと促進効果が乏しく、15重量部をこ
えると副生物であるジアリルエーテル
(C3H5OC3H5)が多くなり好ましくない。
The amount of allyl alcohol added as a reaction accelerator is 2 parts by weight per 100 parts by weight of pentaerythritol.
A range of 15 parts by weight is suitable. If the amount added is less than 2 parts by weight, the promoting effect will be poor, and if it exceeds 15 parts by weight, diallyl ether (C 3 H 5 OC 3 H 5 ), which is a by-product, will increase, which is not preferable.

(発明の効果) 本発明は、アリル化促進剤としてアリルアルコ
ールを用いて常圧下でも反応を行うことができる
ので反応装置面で経済的に有利であり、しかも反
応の際副生する副生物もアリル化合物であつて元
来の副生物の種類を増やすことがないという利点
がある。
(Effects of the Invention) The present invention is economically advantageous in terms of reaction equipment because it can carry out the reaction even under normal pressure using allyl alcohol as an allylation promoter, and it also eliminates by-products produced during the reaction. Since it is an allyl compound, it has the advantage of not increasing the number of original by-products.

(実施例) 実施例 1 還流用コンデンサー、撹拌機、温度計を備えた
2ガラス製反応器に、ペンタエリスリトール
272g(2モル)、48重量%水酸化ナトリウス水溶
液333g(NaOH4モル)及びアリルアルコール
20gを入れ、オイルバスで加温し、100℃で撹拌
してペンタエリスリトールを溶解させた。常圧下
温度を100℃に維持させつつ、これに円筒型分液
ロートを介してアリルクロライドを反応温度が80
℃以下にならないように徐々に添加した。
(Example) Example 1 Pentaerythritol was added to a two-glass reactor equipped with a reflux condenser, a stirrer, and a thermometer.
272g (2 moles), 333g (4 moles of NaOH) of 48% by weight aqueous sodium hydroxide solution and allyl alcohol
20g was added, heated in an oil bath, and stirred at 100°C to dissolve pentaerythritol. While maintaining the temperature at 100℃ under normal pressure, allyl chloride was added to this via a cylindrical separating funnel at a reaction temperature of 80℃.
It was added gradually so that the temperature did not drop below ℃.

当初アリルクロライドを一部添加すると同時に
激しく還流して温度が80℃まで低下したが、その
後還流量が少なくなると共に温度が徐々に上昇し
90℃となつた。再びアリルクロライドを添加して
上記操作を繰り返した。反応温度が回復するまで
の時間が次第に短かくなり、30分後には累計10
ml、60分後には累計30mlのアリルクロライドが添
加できた。以後反応温度90〜100℃でアリルクロ
ライドを連続的に添加して4時間で総計310ml
(290g、3.8モル)添加した。添加終了後更に30
分間還流を続けた後40℃に冷却した。有機層を採
取して分析したところ、得られたペンタエリスリ
トールのアリルエーテル類の組成比は、モノアリ
ルエーテル6重量%、ジアリルエーテル41重量
%、トリアリルエーテル53重量%であつた。
Initially, as soon as a portion of allyl chloride was added, violent reflux occurred and the temperature dropped to 80℃, but as the amount of reflux decreased, the temperature gradually increased.
The temperature reached 90℃. Allyl chloride was added again and the above operation was repeated. The time it takes for the reaction temperature to recover gradually becomes shorter, and after 30 minutes a total of 10
ml, and after 60 minutes, a total of 30 ml of allyl chloride could be added. Thereafter, allyl chloride was added continuously at a reaction temperature of 90 to 100℃ to a total of 310ml in 4 hours.
(290 g, 3.8 mol) was added. 30 more after addition
After continuing to reflux for a minute, the mixture was cooled to 40°C. When the organic layer was collected and analyzed, the composition ratio of allyl ethers of the obtained pentaerythritol was 6% by weight of monoallyl ether, 41% by weight of diallyl ether, and 53% by weight of triallyl ether.

上記反応器の還流用コンデンサーの代りに水分
定量受器をセツトし、その上に還流用コンデンサ
ーを取付け、上記反応液に更に48重量%水酸化ナ
トリウム水溶液208g(NaOH2.5モル→合計6.5
モル)を加えて再び加温した。100℃でアリルク
ロライドの連続添加を始め、90〜100℃に維持し
て反応を進めた。アリルクロライドと共に留去し
てくる水は水分定量受器を用いて逐次反応系外に
除いた。3時間反応を継続してアリルクロライド
220ml(207g、2.7モル→合計6.5モル)を添加し
た。添加終了後30分間還流を続けた後冷却させ
た。
A moisture meter was set in place of the reflux condenser in the above reactor, a reflux condenser was attached on top of it, and 208 g of a 48% by weight aqueous sodium hydroxide solution (NaOH 2.5 mol → total 6.5
mol) was added and warmed again. Continuous addition of allyl chloride was started at 100°C, and the reaction was maintained at 90-100°C. The water distilled off together with allyl chloride was successively removed from the reaction system using a water quantitative receiver. Continuing the reaction for 3 hours, allyl chloride
220 ml (207 g, 2.7 mol → total 6.5 mol) was added. After the addition was completed, reflux was continued for 30 minutes and then cooled.

上記反応液に水1200mlを加えて生成食塩を溶解
させて油層と水層に分離し、油層を減圧下
(50Torr)で100℃に加温してアリルクロライド,
アリルアルコール,ジアリルエーテル等の低沸点
物を留去した後、水分を0.6重量%含むペンタエ
リスリトールのアリルエーテル類452gを得た。
このものの組成比は、モノアリルエーテル0重量
%、ジアリルエーテル19重量%、トリアリルエー
テル75重量%、テトラアリルエーテル6重量%で
あつた。原料ペンタエリスリトールを基準とした
ペンタエリスリトールアリルエーテル類の収率は
90%であつた。
Add 1200ml of water to the above reaction solution to dissolve the salt produced and separate it into an oil layer and an aqueous layer.The oil layer is heated to 100℃ under reduced pressure (50Torr) to dissolve allyl chloride.
After distilling off low-boiling substances such as allyl alcohol and diallyl ether, 452 g of allyl ether of pentaerythritol containing 0.6% by weight of water was obtained.
The composition ratio of this product was 0% by weight of monoallyl ether, 19% by weight of diallyl ether, 75% by weight of triallyl ether, and 6% by weight of tetraallyl ether. The yield of pentaerythritol allyl ethers based on the raw material pentaerythritol is
It was 90%.

比較例 1 還流用コンデンサー等を備えた実施例1と同じ
反応器を用い、アリルアルコールを添加しない以
外は実施例1と同様に行つた。反応温度を100℃
に維持させながらアリルクロライドを一部添加す
ると激しく還流し温度が100℃から80℃に低下し
た。以後還流するのみで温度の上昇は見られず、
1時間後にようやく温度が90℃に復帰した。再び
アリルクロライドを添加して同操作を繰り返した
が、反応が速やかに進行する兆しはなく、7時間
後に反応を中止した。7時間で添加したアリルク
ロライドの量は10mlであつた。
Comparative Example 1 Using the same reactor as in Example 1 equipped with a reflux condenser etc., the same procedure as in Example 1 was carried out except that allyl alcohol was not added. Reaction temperature 100℃
When a portion of allyl chloride was added while maintaining the temperature at 100°C, violent reflux occurred and the temperature decreased from 100°C to 80°C. After that, there was only reflux and no increase in temperature was observed.
After an hour, the temperature finally returned to 90°C. Allyl chloride was added again and the same operation was repeated, but there was no sign that the reaction was progressing quickly, and the reaction was stopped after 7 hours. The amount of allyl chloride added in 7 hours was 10 ml.

実施例 2 還流用コンデンサー等を備えた実施例1と同じ
反応器にペンタエリスリトール272g(2モル)、
48重量%水酸化ナトリウム水溶液167g
(NaOH2モル)及びアリルアルコール10gを入
れ、加温してペンタエリスリトールを溶解せしめ
常圧下100℃に調整して実施例1と同様にアリル
クロライドを添加した。1時間後には累計16ml、
2時間後には50mlのアリルクロライドを添加しえ
た。次いで40℃に冷却し、実施例1と同様に水分
定量受器を取付け、48重量%水酸化ナトリウム水
溶液417g(NaOH5モル→合計7モル)を加え
て再び加温し、反応温度90〜100℃に維持しつつ
アリルクロライドを連続的に添加して反応させ
た。アリルクロライドと共に留去してくる水は水
分定量受器により逐次反応系外に除いた。反応開
始後5時間で520ml(488g、6.4モル→合計7モ
ル)のアリルクロライドを添加した。添加終了後
30分間還流を続けた後冷却させた。
Example 2 In the same reactor as in Example 1 equipped with a reflux condenser, 272 g (2 moles) of pentaerythritol,
48% by weight sodium hydroxide aqueous solution 167g
(2 moles of NaOH) and 10 g of allyl alcohol were added, heated to dissolve the pentaerythritol, the temperature was adjusted to 100° C. under normal pressure, and allyl chloride was added in the same manner as in Example 1. After 1 hour, a total of 16ml,
After 2 hours, 50 ml of allyl chloride could be added. Next, it was cooled to 40°C, a moisture meter was attached as in Example 1, 417 g of a 48% by weight aqueous sodium hydroxide solution (5 moles of NaOH → 7 moles in total) was added, and the mixture was heated again to a reaction temperature of 90 to 100 °C. The reaction was carried out by continuously adding allyl chloride while maintaining the temperature. The water distilled off together with allyl chloride was successively removed from the reaction system using a water quantitative receiver. Five hours after the start of the reaction, 520 ml (488 g, 6.4 mol → 7 mol in total) of allyl chloride was added. After addition
Reflux was continued for 30 minutes and then cooled.

上記反応液に水1400mlを加えて生成食塩を溶解
させ、油層と水層を分離して油層を実施例1と同
様にして低沸点物を留去させた後、水分0.5重量
%含むペンタエリスリトールのアリルエーテル類
468gを得た。このものの組成比はモノアリルエ
ーテル0重量%、ジアリルエーテル11.5重量%、
トリアリルエーテル81.0重量%、テトラアリルエ
ーテル7.5重量%であつた。原料ペンタエリスリ
トールを基準としたペンタエリスリトールアリル
エーテル類の収率は92%であつた。
Add 1400 ml of water to the above reaction solution to dissolve the produced salt, separate the oil layer and the water layer, distill off the low boiling point substances from the oil layer in the same manner as in Example 1, and then add pentaerythritol containing 0.5% water by weight. Allyl ethers
Obtained 468g. The composition ratio of this product is 0% by weight of monoallyl ether, 11.5% by weight of diallyl ether,
The triallyl ether was 81.0% by weight and the tetraallyl ether was 7.5% by weight. The yield of pentaerythritol allyl ethers based on the raw material pentaerythritol was 92%.

比較例 2 アリルアルコールを添加しないで実施例2と同
様な反応器及び原料を用いて反応を行つたが、結
果は比較例1と同様にアリルクロライド添加開始
後7時間経過しても反応が速やかに起こる兆しが
なく反応を中止した。
Comparative Example 2 A reaction was carried out using the same reactor and raw materials as in Example 2 without adding allyl alcohol, but as in Comparative Example 1, the reaction was rapid even after 7 hours had passed after the start of addition of allyl chloride. There was no sign that this would occur and the reaction was discontinued.

Claims (1)

【特許請求の範囲】[Claims] 1 ペンタエリスリトールとアリルクロライド及
びアルカリ金属水酸化物水溶液からペンタエリス
リトールのアリルエーテル類を製造するに際し、
ペンタエリスリトール100重量部に対してアリル
アルコール2〜15重量部を促進剤として用い、反
応温度80〜120℃で反応させることを特徴とする
アリルエーテル類の製法。
1. When producing allyl ethers of pentaerythritol from pentaerythritol, allyl chloride, and alkali metal hydroxide aqueous solution,
A method for producing allyl ethers, which comprises using 2 to 15 parts by weight of allyl alcohol as an accelerator to 100 parts by weight of pentaerythritol, and carrying out the reaction at a reaction temperature of 80 to 120°C.
JP61068137A 1986-03-25 1986-03-25 Production of allyl ether Granted JPS62223141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61068137A JPS62223141A (en) 1986-03-25 1986-03-25 Production of allyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61068137A JPS62223141A (en) 1986-03-25 1986-03-25 Production of allyl ether

Publications (2)

Publication Number Publication Date
JPS62223141A JPS62223141A (en) 1987-10-01
JPH044303B2 true JPH044303B2 (en) 1992-01-27

Family

ID=13365060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61068137A Granted JPS62223141A (en) 1986-03-25 1986-03-25 Production of allyl ether

Country Status (1)

Country Link
JP (1) JPS62223141A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104177A1 (en) * 2002-06-07 2003-12-18 ダイソー株式会社 Process for producing allyl ether
CN111848366B (en) * 2020-07-28 2022-08-30 浙江皇马科技股份有限公司 Pentaerythritol diallyl ether and preparation method of catalyst adopted by same
CN112645804A (en) * 2020-12-21 2021-04-13 深圳市普利凯新材料股份有限公司 Method for synthesizing pentaerythritol triallyl ether
CN114874075B (en) * 2022-05-31 2024-01-02 浙江皇马科技股份有限公司 Method for refining high-purity allyl alcohol from byproducts of polyalcohol allyl ether

Also Published As

Publication number Publication date
JPS62223141A (en) 1987-10-01

Similar Documents

Publication Publication Date Title
CN114853560B (en) Preparation method of 2,4, 5-trifluoro-benzyl bromide and 2,4, 5-trifluoro-benzoic acid
JPH01246243A (en) Production of alkylglyconate
JPH044303B2 (en)
EP3424896B1 (en) Method for producing liquid composition containing monoetherate, liquid composition, and method for producing polymerizable compound
JP5480918B2 (en) Process for the production of 3,4 'dihydroxybenzophenone as an intermediate for the production of 3,4'diacetoxybenzophenone
JP2845745B2 (en) Production method of high purity methanesulfonyl fluoride
JP3319007B2 (en) Method for producing N- (α-alkoxyethyl) formamide
JPH0610158B2 (en) Method for producing 3-fluorobenzoic acids
JPS5951234A (en) Preparation of 2-acetyl-6-methoxynaphthalene
JP3042122B2 (en) Method for producing N-cyanoacetamidine derivative
JP3334206B2 (en) Method for producing 2,3,5,6-tetrafluoroaniline
JP2903500B2 (en) Method for producing 4-hydroxy-3,5,6-trifluorophthalic acid
JPH01186838A (en) Production of 3-(4'-bromobiphenyl)-4- phenylbutric acid
JPH045657B2 (en)
JP4221782B2 (en) Method for purifying dihalotrifluoroacetone
JPH05345739A (en) Preparation of 3,4'-dichlorodiphenyl ether
JP2928856B2 (en) Method for producing bis (4-allyloxy-3,5-dibromophenyl) sulfone
JPS6087281A (en) Preparation of dioxanetriol
JP2697198B2 (en) Method for producing 2-hydroxy-3,3,3-trifluoropropionitrile
JP2874963B2 (en) Production method of allyl bromides
JP4085629B2 (en) Method for producing high quality adamantane alcohols
JP4505936B2 (en) Method for producing propiolic acid ester
JP3587473B2 (en) Purification method of valproic acid
JPS6317869A (en) Production of 2-lower alkyl-4-amino-5-formylpyrimidine
JPS63270638A (en) Production of lactic acid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees