JPS60130449A - Continuous casting device for hollow billet - Google Patents

Continuous casting device for hollow billet

Info

Publication number
JPS60130449A
JPS60130449A JP24060783A JP24060783A JPS60130449A JP S60130449 A JPS60130449 A JP S60130449A JP 24060783 A JP24060783 A JP 24060783A JP 24060783 A JP24060783 A JP 24060783A JP S60130449 A JPS60130449 A JP S60130449A
Authority
JP
Japan
Prior art keywords
core
gas
cooling fluid
ejecting
solidified shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24060783A
Other languages
Japanese (ja)
Inventor
Seiji Itoyama
誓司 糸山
San Nakato
中戸 参
Tsutomu Nozaki
野崎 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24060783A priority Critical patent/JPS60130449A/en
Publication of JPS60130449A publication Critical patent/JPS60130449A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds

Abstract

PURPOSE:To prevent the breakage of a solidified shell, cracking of a core, etc. by providing many gas ejecting holes in the outside circumferential part of the core and disposing independently paths for supplying the ejecting gas and passages for cooling fluid in the core. CONSTITUTION:A core 7 consists of a hollow cylindrical outside body 11 and an inside body 12 which is concentrical with said body and has an open top end. Paths 16 for supplying an ejecting gas and passages 14 for cooling fluid are independently provided in the body 12. The pressure and flow rate of the gas ejected from gas ejecting holes 13 are adjusted to optimum values separately and independently from the pressure and flow rate of the cooling fluid of the core. The holes 13 are further made gradually larger in the drawing direction of a billet and the compressive stress to be exerted from a shell to the core is adequately decreased. The compressive force to the core 7 is decreased by the pressure of the ejecting as in the above-mentioned method, by which the drawing of the billet is made easy and the breakage of the shell, etc. are prevented.

Description

【発明の詳細な説明】 この発明は、パイプ状の中空な鋳片を連続鋳造する装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for continuously casting hollow pipe-shaped slabs.

中空−片を連続鋳造する装置としては、内面が例えば円
筒面をなす中空筒状の鋳型の中央に、外面が例えば円筒
面をなす中子を配置して、鋳型の一方側から溶鋼などの
溶融金属を注入し、鋳型の内面に接する部分および中子
の外面に接する部分から凝固シェルを生成させ、鋳型の
他方側から凝固鋳片を間歇的もしくは連続的に引抜く装
置が知られている。しかしながらこのように中子を使用
して中空鋳片を連続鋳造するに際しては次のような問題
があった。
An apparatus for continuous casting of hollow pieces is such that a core having a cylindrical outer surface is placed in the center of a hollow cylindrical mold having a cylindrical inner surface, and molten steel or the like is poured from one side of the mold. An apparatus is known in which metal is injected, a solidified shell is generated from a portion in contact with the inner surface of the mold and a portion in contact with the outer surface of the core, and the solidified slab is intermittently or continuously pulled out from the other side of the mold. However, when continuously casting hollow slabs using a core as described above, there are the following problems.

すなわち、中子の周囲に生成された凝固シェルは中子に
よる冷却過程で収縮するから、中子に対して圧縮応力が
作用し、その結果中空鋳片内壁面と中子表向との間の摩
擦抵抗が増大して、鋳片を引抜く際に鋳片の内壁側凝固
シェルが破断し、美麗な内壁面を有する中空鋳片の製造
が困難となるおそれがある。また逆に上述の摩擦抵抗に
よって、鋳片を引抜く際に中子に割れが生じて鋳造作業
自体が継続できなくなることもある。
In other words, since the solidified shell generated around the core contracts during the cooling process by the core, compressive stress acts on the core, and as a result, the gap between the inner wall surface of the hollow slab and the surface of the core is Frictional resistance increases, and when the slab is pulled out, the solidified shell on the inner wall side of the slab may break, making it difficult to manufacture a hollow slab with a beautiful inner wall surface. Conversely, due to the above-mentioned frictional resistance, cracks may occur in the core when the slab is pulled out, making it impossible to continue the casting operation itself.

上述のような問題に対処する方法としては、従来、凝固
シェルの収縮量に相当する分だけ中子外径が鋳型出口側
へ向は次第に小さくなるようにテーパーを形成した中子
を使用することによって圧縮応力を軽減する方法、ある
いは凝固シェルからの圧縮応力が直接中子表面に作用し
ないように特開昭54−25222号公報に記載される
如く表面をクッション材で被覆した中子を用いる方法等
が提案されている。しかしながらこれらの方法でも次の
ような問題があった。すなわち凝固シェルの収縮量は鋳
造する溶融金属の種類や引抜速度、中子の冷却能力など
の鋳造条件によって変化するが、前述のようにテーパー
を形成した中子を用いた場合、同一の中子で対応できる
凝固シェルの変動幅に制約があるため、中子を交換せず
に鋳造できる鋳造条件の幅が狭く、そのため中子の交換
作業が煩多となって生産性が低下する問題がある。
Conventionally, a method to deal with the above-mentioned problems is to use a core that is tapered so that the outer diameter of the core gradually decreases toward the mold outlet by an amount corresponding to the amount of shrinkage of the solidified shell. or a method using a core whose surface is covered with a cushioning material as described in JP-A-54-25222 so that the compressive stress from the solidified shell does not directly act on the core surface. etc. have been proposed. However, these methods also have the following problems. In other words, the amount of shrinkage of the solidified shell varies depending on casting conditions such as the type of molten metal being cast, the drawing speed, and the cooling capacity of the core, but when a tapered core is used as described above, the same core Since there are restrictions on the range of variation in the solidified shell that can be accommodated, there is a narrow range of casting conditions that can be cast without replacing the core, resulting in the problem of reduced productivity due to the troublesome work of replacing the core. .

またクッション材で被覆しだ中子を用いた場合、一般に
クッション材は断熱性が高いから鋳片の内壁側凝固シェ
ルの成長が遅れる傾向を示し、そのためクッション材は
余り厚くすることができないから、対応できる凝固シェ
ルの変動幅に制約があり、テーパーを設けた場合と同様
にクッション材を交換せずに鋳造できる鋳造条件の幅が
狭く、生産性が低下する問題がある。
In addition, when using a core covered with cushioning material, the growth of the solidified shell on the inner wall side of the slab tends to be delayed because the cushioning material generally has high heat insulation properties, so the cushioning material cannot be made too thick. There are restrictions on the range of variation in the solidified shell that can be accommodated, and the range of casting conditions that can be cast without replacing the cushioning material is narrow, similar to the case where a taper is provided, resulting in a problem of reduced productivity.

そこで本発明者等は既に特願昭58= 163706号において、中子の外周面に多数の気体噴
出孔を設けておき、中子の内部を冷却するための冷却気
体通路から冷却気体を前記気体噴出孔へ導き、その気体
噴出孔から冷却気体を鋳片内壁側の凝固シェルに向けて
噴出させ、これによって内壁側凝固シェルから中子外周
面に加えられる圧縮応力を軽減するようにした中空鋳片
の連続鋳造装置を提案している。この提案の鋳造装置に
よれば、中子外周面の気体噴出孔からの噴出気体応力に
よって中子外周面に加えられる圧縮応力が軽減されるた
め、中空鋳片内壁面と中子表面との間の摩擦抵抗が小さ
くなり、鋳片を引抜く際に内壁側凝固シェルが破断した
シ中子に割れが発生したりすることを有効に防止できる
。またこの提案の装置においては、凝固収縮量の変動に
対しては噴出気体圧力の調整によって対応できるため、
同一の中子で鋳造条件の変更に幅広く対応できる。
Therefore, the inventors of the present invention have already proposed in Japanese Patent Application No. 163706 (1978) that a large number of gas ejection holes are provided on the outer peripheral surface of the core, and cooling gas is supplied from the cooling gas passage to cool the inside of the core. A hollow casting system in which the cooling gas is guided to an injection hole, and is ejected from the gas injection hole toward the solidified shell on the inner wall side of the slab, thereby reducing the compressive stress applied from the solidified shell on the inner wall side to the outer peripheral surface of the core. We are proposing a continuous piece casting device. According to the proposed casting apparatus, the compressive stress applied to the outer circumferential surface of the core due to the stress of the gas ejected from the gas injection holes on the outer circumferential surface of the core is reduced. The frictional resistance is reduced, and it is possible to effectively prevent cracks from occurring in the core where the solidified shell on the inner wall side is broken when the slab is pulled out. In addition, in this proposed device, fluctuations in the amount of solidification shrinkage can be dealt with by adjusting the ejected gas pressure.
The same core can accommodate a wide range of changes in casting conditions.

しかしながら上記提案の装置においては別の新たな問題
があった。すなわち、上記提案の装置においては、中子
を冷却するために中子内部に設けられた冷却気体通路か
ら気体噴出孔へ気体を導いているため、噴出気体圧力を
調整しようとすれば、中子へ供給する冷却気体の圧力、
流′着を変化させざるを得す、そのため中子の冷却条件
も変化してしまい、適正な冷却条件が得られなくなるお
それがある。
However, the above proposed device had another new problem. In other words, in the device proposed above, gas is guided from the cooling gas passage provided inside the core to the gas ejection hole in order to cool the core. the pressure of the cooling gas supplied to the
As a result, the cooling conditions for the core will also change, and there is a risk that appropriate cooling conditions will not be obtained.

この発明は以上の事情に鑑みてなされたもので、前記提
案の装置をさらに改良して、中空鋳片内壁面を加圧する
だめの中子からの噴出気体圧力を鋳造条件等に応じて容
易かつ適切に調整し得るようにした中空鋳片連続鋳造装
置を提供することを目的とするものである。
This invention has been made in view of the above circumstances, and by further improving the device proposed above, the gas pressure ejected from the core of the chamber for pressurizing the inner wall surface of the hollow slab can be easily and easily controlled according to casting conditions, etc. It is an object of the present invention to provide a continuous casting device for hollow slabs that can be appropriately adjusted.

すなわちこの発明は、中央に中子を配置した鋳型の一方
側から溶融金属を注入しかつ他方側から(5) 凝固鋳片を引抜くことにより中空鋳片を連続鋳造する装
置において、前記中子の外周面に、その内側から外側へ
向は半径方向に沿って開口する多数の気体噴出孔を放射
状に形成し、かつ中子の内部には、前記気体噴出孔へ気
体を導くだめの噴出気体供給路と、中子冷却用の冷却流
体通路とを別個独立に形成したことを特徴とするもので
あシ、このように噴出気体供給路を冷却流体通路と別に
独立して設けることによって、噴出気体圧力を中子冷却
条件に影響を与えずに容易に調整することが可能となっ
たのである。
That is, the present invention provides an apparatus for continuously casting hollow slabs by injecting molten metal from one side of a mold with a core arranged in the center and pulling out the solidified slab from the other side (5). A large number of gas jet holes are formed radially on the outer circumferential surface of the core, which open along the radial direction from the inside to the outside, and inside the core, there is a gas jet hole for guiding the gas to the gas jet holes. It is characterized in that the supply passage and the cooling fluid passage for cooling the core are formed separately and independently.By providing the jetting gas supply passage and the cooling fluid passage independently in this way, the jetting gas is This made it possible to easily adjust the gas pressure without affecting the core cooling conditions.

さらにこの発明の装置は、前記気体噴出孔の口径(断面
積)が溶融金属注入側から鋳片引抜方向へ向けて大きく
なるように設定したものでちゃ、このように気体噴出孔
の断面積を設定することによって、溶融金属注入側から
鋳片引抜方向へ向けて次第に凝固収縮量が大きくなる傾
向を示す鋳片に対して適切に対応して、鋳片凝固シェル
の破断や中子の亀裂発生をより一層確実に防止すること
が可能となったのである。
Furthermore, in the apparatus of the present invention, the diameter (cross-sectional area) of the gas jet hole is set to increase from the molten metal injection side toward the slab withdrawal direction. By setting these settings, it is possible to appropriately respond to slabs that show a tendency for solidification shrinkage to gradually increase from the molten metal injection side to the slab withdrawal direction, and prevent breakage of the solidified slab shell or cracking of the core. This makes it possible to prevent this even more reliably.

(6) 以下この発明の一実施例につき図面を参照して詳細に説
明する。
(6) Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図はこの発明を水平引抜鋳造(横型鋳造)に適用し
た実施例の鋳造装置の全体構成を示し、また第2図ない
し第4図は第1図の鋳造装置に使用される中子を拡大し
て示すものである。
FIG. 1 shows the overall configuration of a casting apparatus according to an embodiment in which the present invention is applied to horizontal drawing casting (horizontal casting), and FIGS. 2 to 4 show the core used in the casting apparatus of FIG. 1. It is shown enlarged.

第1図において、全体として円筒状をなす鋳型lは、そ
の軸線が水平となるように配置され、かつその−刃側(
溶融金属注入側)は連結ボルト2によって溶融金属保持
容器3に連結されている。
In Fig. 1, a mold l having a cylindrical shape as a whole is arranged so that its axis is horizontal, and its -blade side (
The molten metal injection side) is connected to a molten metal holding container 3 by a connecting bolt 2.

前記鋳型は公知のものと同様に内部から流体によって冷
却されるものである。また前記溶融金属保持容器3は図
示しない取鍋等からノズル4を介して溶鋼等の溶融金属
5が注入されるものであり、上部に溶融金属注入口6が
形成されている。前記鋳型lの中央位置には、溶融金属
保持容器を貫通して中子7が配置されている。この中子
は、全体として円柱状をなすように作られたものであシ
、その中心軸線が鋳型lの軸線と一致するように位置決
めされ、かつその基端部7Aが鋳型lに対し反対側の保
持容器3の外面に突出して、線環8によシ締付固定され
、しかも基端部7Aに対し反対側の先端部7Bが鋳型l
の内側まで延長するように設定されている。さらに前記
中子7の溶融金属注入側の端部と溶融金属保持容器3と
の間には、全体として環状をなして中子7を取囲む耐火
物リング9が設けられており、また鋳型lの内周面の溶
融金属注入側の端部と保持容器3との間にも、全体とし
て環状をなして保持容器3の内周面に沿う耐火物リング
10が設けられている。
The mold is cooled from the inside by fluid, as is the case with known molds. Further, the molten metal holding container 3 is one into which molten metal 5 such as molten steel is injected from a ladle or the like (not shown) through a nozzle 4, and a molten metal injection port 6 is formed in the upper part. A core 7 is disposed at the center of the mold 1, passing through the molten metal holding container. This core is made to have a cylindrical shape as a whole, and is positioned so that its center axis coincides with the axis of the mold l, and its base end 7A is on the opposite side with respect to the mold l. It protrudes from the outer surface of the holding container 3 and is fastened and fixed to the wire ring 8, and the distal end 7B on the opposite side to the base end 7A is attached to the mold l.
It is set to extend to the inside of the Further, a refractory ring 9 is provided between the molten metal injection side end of the core 7 and the molten metal holding container 3, and the refractory ring 9 has an annular shape as a whole and surrounds the core 7. A refractory ring 10 is also provided between the molten metal injection side end of the inner circumferential surface of the holding container 3 and the holding container 3, and the refractory ring 10 has an annular shape as a whole and extends along the inner circumferential surface of the holding container 3.

前記中子7は、特に第2図〜第4図に示すように、先端
を閉じた中空筒状の外部本体11と、その外部本体lの
内側に同心状に嵌め込まれた、先端を開放した中空筒状
の内部本体12とによって構成されている。中子外部本
体11の先端部近くの周壁部分には、中子の半径方向に
沿う多数の気体噴出孔13が放射状に形成されている。
As particularly shown in FIGS. 2 to 4, the core 7 includes a hollow cylindrical external body 11 with a closed tip, and an open tip that is fitted concentrically inside the external body l. The inner body 12 has a hollow cylindrical shape. A large number of gas ejection holes 13 are radially formed along the radial direction of the core in the peripheral wall portion near the tip of the core outer body 11.

一方中子内部本体12の内部空間は冷却流体通路14の
復路14Bとされ、またその中子内部本体12の外周側
には、冷却流体通路14の往路14Aとなる複数の凹m
15と、噴出気体供給路16となる複数の凹#1117
とが、それぞれ周方向に所定間隔を置いて交互に位置す
るように中子軸線と平行に形成されている。ここで噴出
気体通路16を構成する四〇117は、各気体噴出孔1
3に対応する位置に形成されている。また気体噴出孔1
3は、中子基端側(溶融金属注入側)から中子先端側(
鋳片引抜側)へ向けて次第にその断面積(孔径)が大き
くなるように設定されている。
On the other hand, the internal space of the core internal body 12 serves as the return path 14B of the cooling fluid passage 14, and on the outer peripheral side of the core internal body 12, there are a plurality of recesses m that serve as the outward path 14A of the cooling fluid passage 14.
15, and a plurality of recesses #1117 that become the ejected gas supply path 16.
are formed parallel to the core axis so as to be alternately located at predetermined intervals in the circumferential direction. Here, 40117 constituting the ejection gas passage 16 is connected to each gas ejection hole 1.
It is formed at a position corresponding to 3. Also, gas jet hole 1
3 is from the core base end side (molten metal injection side) to the core tip side (
The cross-sectional area (hole diameter) is set to gradually increase toward the slab drawing side).

なお第1図において18は前記鋳型lおよび中子7によ
って鋳造された中空鋳片、19はその外壁側凝固シェル
、20は内壁側凝固シェルである。
In FIG. 1, 18 is a hollow slab cast by the mold 1 and core 7, 19 is a solidified shell on the outer wall side thereof, and 20 is a solidified shell on the inner wall side.

また鋳型1から引抜かれた中空鋳片18は、シャワー2
1によって2次冷却されるようになっている。
Further, the hollow slab 18 pulled out from the mold 1 is
1 for secondary cooling.

以上のような連続鋳造装置を用いて中空鋳片を連続鋳造
するにあたっては、前述のように取鍋等から保持容器3
に溶融金[5を注入し、保持容器3内において図示しな
いヒータ等によシ溶融金属を所定温度に保持しつつ、鋳
型1の内面および中(9) 子7の外面に接する部分から凝固を進行させて外壁側凝
固シェル19および内壁側凝固シェル20を形成させ、
最終的にパイプ状の中空鋳片18とし、かつその中空鋳
片18をシャワー21によって冷却しつつ、図示しない
間歇駆動装置によって水平方向へ間歇的に引抜く。
When continuously casting hollow slabs using the above-described continuous casting apparatus, as described above,
Molten metal [5] is injected into the container 3, and while the molten metal is maintained at a predetermined temperature by a heater (not shown) in the holding container 3, solidification is caused from the inner surface of the mold 1 and the portion that contacts the outer surface of the mold (9) and the outer surface of the mold 7. advance to form an outer wall-side solidified shell 19 and an inner wall-side solidified shell 20,
Finally, a pipe-shaped hollow slab 18 is formed, and while the hollow slab 18 is cooled by a shower 21, it is intermittently pulled out in the horizontal direction by an intermittent drive device (not shown).

ここで中空鋳片18の内壁側凝固シェル20の内面に対
しては、噴出気体供給路16を通して供給された気体が
気体噴出孔13から強く吹付けられる。この噴出気体圧
力によって、内壁側凝固シェル20の凝固収縮による中
子に対する圧縮応力が軽減され、その結果、従来問題と
なっていた中子表面と内壁側凝固シェル内面との摩擦抵
抗による鋳片引抜きの困難化、それに伴なう凝固/エル
の破断、中子の亀裂発生等の危険を防止することができ
る。そして前記噴出気体供給路16は、中子を冷却する
ための冷却流体通路14の往路14Aおよび復路14B
とは別に設けられているから、気体噴出孔13から噴出
される気体の圧力。
Here, the gas supplied through the jet gas supply path 16 is strongly blown from the gas jet holes 13 onto the inner surface of the solidified shell 20 on the inner wall side of the hollow slab 18 . This ejected gas pressure reduces the compressive stress on the core due to solidification shrinkage of the inner wall side solidified shell 20, and as a result, the slab is pulled out due to the frictional resistance between the core surface and the inner wall side solidified shell surface, which has been a problem in the past. This makes it possible to prevent the dangers such as difficulty in solidification, rupture of the L, and cracking of the core. The ejected gas supply path 16 includes an outgoing path 14A and an incoming path 14B of the cooling fluid path 14 for cooling the core.
Since it is provided separately from the pressure of the gas ejected from the gas ejection hole 13.

流量は、中子冷却流体の圧力、流量とは別個独立(10
) に調整することができる。すなわち内壁側凝固シェル2
0の凝固収縮量は、鋳込む金属の種類、成分や鋳造速度
(引抜速度)、冷却条件などの鋳造条件によって変動す
るから、中子に対する内壁側凝固シェル20の圧縮応力
もそれらの鋳造条件によって変動し、したがって噴出気
体の圧力、流量もそれらの鋳造条件に応じて適正な値に
調整する必要があるが、上述の構成によれば、中子の冷
却条件を変えることなく、噴出気体の圧力、流量を容易
に適切な値に調整することができる。
The flow rate is independent from the pressure and flow rate of the core cooling fluid (10
) can be adjusted. In other words, the inner wall side solidified shell 2
Since the amount of solidification shrinkage of 0 varies depending on casting conditions such as the type and composition of the metal to be cast, casting speed (withdrawal speed), and cooling conditions, the compressive stress of the inner wall side solidified shell 20 relative to the core also depends on those casting conditions. Therefore, the pressure and flow rate of the ejected gas must be adjusted to appropriate values according to the casting conditions. However, with the above configuration, the pressure and flow rate of the ejected gas can be adjusted without changing the core cooling conditions. , the flow rate can be easily adjusted to an appropriate value.

一方、内壁側凝固シェル20は引抜方向へ向って次第に
表面温度が降下しまたシェル厚みも厚くなるから、中子
に加わる圧縮応力も次第に大きくなるが、上述の構成で
は気体噴出孔13の断面積が鋳片引抜方向へ向って次第
に大きくなるよう設定されており、そのため気体噴出孔
13からの噴出気体によシ内壁側凝固シェル20に加え
られる力も大きくなるから、中子への圧縮応力を軽減す
る作用も引抜方向へ向って次第に大きくなる。すなわち
引抜方向への中子に対する圧縮応力の変化に対応して噴
出気体による圧縮応力軽減作用が適切に変化し、これに
より中子に対する圧縮応力に対しより一層適切に対処さ
せることができる。
On the other hand, since the surface temperature of the solidified shell 20 on the inner wall side gradually decreases and the shell thickness increases in the drawing direction, the compressive stress applied to the core gradually increases. is set so that it gradually increases in the slab drawing direction, and therefore the force applied to the inner wall side solidified shell 20 by the gas jetted from the gas jetting hole 13 also increases, reducing the compressive stress on the core. This effect also gradually increases in the pulling direction. That is, the compressive stress reducing effect of the ejected gas changes appropriately in response to the change in the compressive stress on the core in the drawing direction, thereby making it possible to more appropriately deal with the compressive stress on the core.

なお上述の実施例においては水平引抜鋳造の場合につい
て示したが、垂直引下げ方式の連続鋳造あるいは垂直引
上げ方式の連続鋳造においても中子を前記同様に構成し
得ることは勿論である。
In the above-described embodiments, the case of horizontal pultrusion casting is shown, but it goes without saying that the core can be constructed in the same manner as described above also in vertical pull-down continuous casting or vertical pull-up continuous casting.

以上の説明で明らかなようにこの発明の中空鋳片連続鋳
造装置においては、中子の外周部に形成した気体噴出孔
から吹出す気体圧力によって、内壁側凝固シェルから中
子に加えられる圧縮力が軽減され、そのため鋳片の引抜
きが容易となり、内壁側凝固シェルの破断や中子の亀裂
発生等を有効に防止することができ、しかも気体噴出孔
に噴出用の気体を導くだめの噴出気体供給路が中子を内
部から冷却するだめの冷却流体通路とは別個独立に形成
されているため、中子冷却条件に影響を及ぼすことなく
噴出気体圧力、流量を鋳造条件に応じた最適な値に容易
に調整・設定できる効果が得られる。
As is clear from the above description, in the continuous hollow slab casting apparatus of the present invention, compressive force is applied to the core from the solidified shell on the inner wall side by the gas pressure blown out from the gas jet holes formed on the outer periphery of the core. As a result, the slab can be easily pulled out, effectively preventing breakage of the solidified shell on the inner wall side and cracking of the core. Since the supply channel is formed separately from the cooling fluid passage that cools the core from inside, the ejected gas pressure and flow rate can be adjusted to the optimal value according to the casting conditions without affecting the core cooling conditions. Effects that can be easily adjusted and set can be obtained.

また特に気体噴出孔の断面積を鋳片引抜側が大きくなる
ように設定した実施態様にあっては、引抜方向への内壁
側凝固シェルによる圧縮力の変化に対応して内壁側凝固
シェルに及ぼす噴出気体からの力が変化するため、圧縮
力による内壁側凝固シェルの破断や中子亀裂をより一層
確実に防止することができる。
In particular, in embodiments in which the cross-sectional area of the gas injection hole is set to be larger on the side where the slab is pulled out, the blowout exerted on the inner wall side solidified shell in response to changes in the compressive force by the inner wall side solidified shell in the drawing direction. Since the force from the gas changes, breakage of the solidified shell on the inner wall side and cracks in the core due to compressive force can be more reliably prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を水平引抜方式の連続鋳造装置に適用
した一実施例を示す縦断正面図、第2図はこの発明の連
続鋳造装置に使用される中子の一例を示す縦断側面図、
第3図は第2図のlI[−1線における縦断面図、第4
図は第2図のIV−1V線における縦断面図である。 1・・・鋳型、5・・・溶融金属、7・・・中子、13
・・・気体噴出孔、14・・・冷却流体通路、16・・
・噴出気体通路。 (13) 第2図 第3図 第4図 l 1617 12 ・・ ・・ / + 1 乎 手
FIG. 1 is a longitudinal sectional front view showing an embodiment of the invention applied to a horizontal drawing type continuous casting apparatus, and FIG. 2 is a longitudinal sectional side view showing an example of a core used in the continuous casting apparatus of the invention.
Figure 3 is a vertical cross-sectional view taken along the lI[-1 line in Figure 2;
The figure is a longitudinal sectional view taken along the line IV-1V in FIG. 2. 1... Mold, 5... Molten metal, 7... Core, 13
...Gas outlet, 14...Cooling fluid passage, 16...
・Blowout gas passage. (13) Figure 2 Figure 3 Figure 4 l 1617 12 ・・・・/+1乎手

Claims (2)

【特許請求の範囲】[Claims] (1) 中央に中子を配置した鋳型の一方側から溶融金
属を注入しかつ他方側から凝固鋳片を間歇的もしくは連
続的に引抜くことにより中空鋳片を連続鋳造する装置に
おいて、 前記中子の外周部に、その内側から外側へ向は半径方向
に沿って開口する多数の気体噴出孔を放射状に形成し、
かつ中子の内部には、前記気体噴出孔へ気体を導くため
の噴出気体供給路と、中子冷却用の冷却流体通路とを独
立に設けたことを特徴とする中空鋳片の連続鋳造装置。
(1) In an apparatus for continuously casting hollow slabs by injecting molten metal from one side of a mold with a core arranged in the center and pulling out solidified slabs from the other side intermittently or continuously, A large number of gas ejection holes are formed radially on the outer periphery of the child, opening along the radial direction from the inside to the outside.
A continuous casting apparatus for hollow slabs, characterized in that, inside the core, a blowout gas supply path for guiding gas to the gas blowout hole and a cooling fluid path for cooling the core are independently provided. .
(2) 中子に形成された気体噴出孔の断面積が、溶融
金属注入側から鋳片引抜方向へ向けて大きくなるように
した特許請求の範囲第1項記載の中空鋳片の連続鋳造装
置。
(2) The continuous casting apparatus for hollow slabs according to claim 1, wherein the cross-sectional area of the gas jet holes formed in the core increases from the molten metal injection side toward the slab withdrawal direction. .
JP24060783A 1983-12-20 1983-12-20 Continuous casting device for hollow billet Pending JPS60130449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24060783A JPS60130449A (en) 1983-12-20 1983-12-20 Continuous casting device for hollow billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24060783A JPS60130449A (en) 1983-12-20 1983-12-20 Continuous casting device for hollow billet

Publications (1)

Publication Number Publication Date
JPS60130449A true JPS60130449A (en) 1985-07-11

Family

ID=17062003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24060783A Pending JPS60130449A (en) 1983-12-20 1983-12-20 Continuous casting device for hollow billet

Country Status (1)

Country Link
JP (1) JPS60130449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440142A (en) * 1987-08-07 1989-02-10 Nippon Mining Co Continuous casting method for long hollow raw metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440142A (en) * 1987-08-07 1989-02-10 Nippon Mining Co Continuous casting method for long hollow raw metal
JPH0337818B2 (en) * 1987-08-07 1991-06-06 Nippon Mining Co

Similar Documents

Publication Publication Date Title
US3253307A (en) Method and apparatus for regulating molten metal teeming rates
JPH0142787B2 (en)
US4784208A (en) Dual roll type continuous casting machine
CA2095085C (en) Cooling method and apparatus for continuous casting and its mold
US5716538A (en) Discharge nozzle for continuous casting
CA1309837C (en) Method of manufacturing hollow billet and apparatus therefor
JPS60130449A (en) Continuous casting device for hollow billet
US4359202A (en) Apparatus for bottom casting metal ingots
US5884687A (en) Heated-chamber die-casting apparatus
JP3727354B2 (en) Mold for vertical hot top continuous casting of metal
JPS6056448A (en) Continuous casting device for metallic pipe
US6109335A (en) Ingot mould for the continuous vertical casting of metals
KR100829908B1 (en) Mold Flux Melting Pot
US4615373A (en) Method and an apparatus for manufacturing a hollow steel ingot
JPS6039142Y2 (en) Horizontal continuous casting equipment
JPH1157972A (en) Pressure casting device
JPH0475110B2 (en)
KR930007144Y1 (en) Casting stopper
KR100499192B1 (en) Mould for the vertical hot-top continuous casting of metals
JP2901983B2 (en) Immersion nozzle for continuous casting
JPH04190947A (en) Horizontal continuous casting device
JPH01107951A (en) Tundish for horizontal continuous casting
JPS6317571Y2 (en)
KR100262134B1 (en) Metal core inserting device for a vertical semi-continuous casting and a casting process employing the same
KR20060032239A (en) Dual structure submerged nozzle