JPS60130060A - Method of controlling gas pressure of fuel cell - Google Patents

Method of controlling gas pressure of fuel cell

Info

Publication number
JPS60130060A
JPS60130060A JP58237056A JP23705683A JPS60130060A JP S60130060 A JPS60130060 A JP S60130060A JP 58237056 A JP58237056 A JP 58237056A JP 23705683 A JP23705683 A JP 23705683A JP S60130060 A JPS60130060 A JP S60130060A
Authority
JP
Japan
Prior art keywords
pressure
gas
fuel cell
fuel
control fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58237056A
Other languages
Japanese (ja)
Inventor
Yoshifumi Yamazaki
山崎 善文
Shinichi Maruyama
晋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58237056A priority Critical patent/JPS60130060A/en
Publication of JPS60130060A publication Critical patent/JPS60130060A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enable the pressures of a few gas systems to be simultaneously controlled with a well-maintained balance by controlling different reaction gases supplied to a fuel cell by means of pressure regulators in which a high pressure gas is used as a control fluid. CONSTITUTION:The pressures of a fuel gas, an oxidant and an inactive gas are controlled by means of pressure regulators 10a, 10b and 10c in which a high pressure gas is used as a control fluid. Each pressure regulator has an airtight control chamber 2a which is surrounded by a lower casing 2 and a diaphragm 3 and to which the pressure of an inactive gas such as a control fluid is applied. Therefore, by supplying a high pressure gas (used as a control fluid) the pressure of which is controlled by a single main pressure regulator 20 to the diaphragms 3 of the regulators 10a, 10b and 10c, it is possible to maintain a good balance between the pressures of a few gas systems including reaction gas systems of the fuel cell.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は燃料電池に係り、特に水素−酸素型燃料電池
のガス圧制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to fuel cells, and particularly to a gas pressure control method for a hydrogen-oxygen fuel cell.

〔従来技術とその問題点〕[Prior art and its problems]

この種の燃料電池のガス圧制御方法として、従来、機械
式圧力制御器を用い、この圧力制御器のダイアフラムに
当接するスクリューハンドルのねじ込み量の加減により
、ガス圧を調整するものがある。
Conventionally, as a gas pressure control method for this type of fuel cell, there is a method in which a mechanical pressure controller is used and the gas pressure is adjusted by adjusting the screwing amount of a screw handle that contacts a diaphragm of the pressure controller.

第1図は機械式圧力レギュレータの断面図である。第1
図において、入口管1aと出口管1bが取付られた上部
ケーシング1と下部ケーシング2との間にダイヤフラム
3が介装され、上部ケーシングl内にはバネ4を有する
弁5がダイヤフラム3に接続され、下部ケーシング2内
にはバネ7の力を調整するスクリュー8が設けられ、ス
クリュー8のねじ込みによりばね7およびばね4の力を
調整してダイヤフラム3に予圧をかけ、入口管1aよシ
入るガスは弁5とシート6との間を流れて減圧され前記
予圧とバランスされた圧力となって制御され出口管1b
よシ排出される。
FIG. 1 is a sectional view of a mechanical pressure regulator. 1st
In the figure, a diaphragm 3 is interposed between an upper casing 1 and a lower casing 2 to which an inlet pipe 1a and an outlet pipe 1b are attached, and a valve 5 having a spring 4 is connected to the diaphragm 3 in the upper casing l. A screw 8 for adjusting the force of the spring 7 is provided in the lower casing 2, and by screwing the screw 8, the force of the spring 7 and the spring 4 is adjusted to apply preload to the diaphragm 3, thereby preventing gas entering through the inlet pipe 1a. flows between the valve 5 and the seat 6, the pressure is reduced, the pressure is balanced with the pre-pressure, and the pressure is controlled, and the outlet pipe 1b is
It will be drained out.

しかしながら、機械式圧力レギュレータを用いたガス圧
制御方法では、圧力制御を行なうためにスクリューをね
じ込んで調整するため、燃料ガス。
However, in the gas pressure control method using a mechanical pressure regulator, the pressure is adjusted by screwing in a screw to control the fuel gas.

酸化剤ガス等の反応ガスおよび圧力容器内の不活性ガス
の三種のガスはそれぞれ別別にスクリューのねじ込みが
必要となシ、これら複数のガス系統の圧力を同時に圧力
バランスをとって行なうことは操作上非常に困難である
といり欠点がある。
It is necessary to screw in the screws separately for each of the three types of gases: reactive gas such as oxidizing gas, and inert gas in the pressure vessel, and it is difficult to balance the pressures of these multiple gas systems at the same time. The disadvantage is that it is extremely difficult.

特に近年、反応ガスの圧力は電池の特性を上げるため増
大する傾向にあるが、このような高い圧力に耐えるため
忙は、機械式圧力レギュレータには硬いスプリングや厚
いダイヤスラムを用いる必要があり、このスプリングお
よびダイアフラムの強度からくる圧力レギュレータの不
感帯とヒステシ リクスの合計は、一般的に0.3%以上存在し、このよ
うな圧力レギュレータを用いて2つの反応ガス圧力を制
御するとき、その差圧は0.5%にも達する。これは約
10klilf/cdで電池を運転したとき500mm
Aqの差圧を生じることを意味する。
Particularly in recent years, the pressure of reactant gases has tended to increase in order to improve the characteristics of batteries, but in order to withstand such high pressures, mechanical pressure regulators must use stiff springs and thick diaphragms. The total dead zone and hysteresis of the pressure regulator due to the strength of the spring and diaphragm generally exists at 0.3% or more, and when using such a pressure regulator to control the pressure of two reaction gases, the differential pressure reaches as much as 0.5%. This is 500mm when the battery is operated at approximately 10klilf/cd.
This means that a pressure difference of Aq is generated.

このような差圧は、電解質を保持するマトリックスにお
いてガスの吹き抜けを生じ、電池の特性。
Such a pressure difference causes gas blow-through in the matrix holding the electrolyte, which affects the characteristics of the battery.

燃料利用率の低下のみならず、爆鳴気の形成を招くおそ
れがあるため安全性の上からも好ましくない。
This is undesirable not only from the viewpoint of safety, but also because it may lead to the formation of explosion gas.

〔発明の目的〕[Purpose of the invention]

この発明は上記に鑑み、圧力バランスのとれた反応ガス
を供給することのできる燃料電池のガス圧制御方法を提
供することを目的とする。
In view of the above, an object of the present invention is to provide a gas pressure control method for a fuel cell that can supply a pressure-balanced reaction gas.

〔発明の要旨〕 この目的は本発明によれば、燃料電池に供給される異な
る反応ガスを、高圧ガスを制御流体とする圧力制御器に
より一括制御することにより達成される。
[Summary of the Invention] According to the present invention, this object is achieved by collectively controlling different reaction gases supplied to a fuel cell by a pressure controller using a high-pressure gas as a control fluid.

〔発明の実施例〕[Embodiments of the invention]

以下図面に基づいて本発明の詳細な説明する。 The present invention will be described in detail below based on the drawings.

@2図は高圧ガスを制御流体とする圧力レギーレータ1
0a+ 1ob、 1Qcを用いた燃料電池のガス圧制
御系統を示すもので、この実施例ではμカレギーレータ
により燃料ガス、酸化剤ガスおよび不活性ガスの各ガス
圧を一括制御するものを示している。
@2 Figure shows pressure regirator 1 that uses high pressure gas as the control fluid.
This shows a gas pressure control system for a fuel cell using 0a+1ob and 1Qc, and in this embodiment, the gas pressures of fuel gas, oxidizing gas, and inert gas are collectively controlled by a μ-cal regulator.

図において符号11は燃料電池であり、圧力容器12の
内に格納されている。本図では模式的に示されているが
、燃料電池11はマトリックスllaとその′両側に配
設された燃料電極11bと酸化剤電極11cおよび燃料
電極11bに給排する燃料ガス用の燃料マニホールドl
idと酸化剤電極11cに給排する酸化ガス用の酸化剤
マニホールドlieとから構成されている。
In the figure, reference numeral 11 is a fuel cell, which is housed in a pressure vessel 12. Although shown schematically in this figure, the fuel cell 11 includes a matrix lla, a fuel electrode 11b and an oxidizer electrode 11c arranged on both sides of the matrix lla, and a fuel manifold l for fuel gas supplied to and discharged from the fuel electrode 11b.
id and an oxidant manifold lie for supplying and discharging oxidizing gas to and from the oxidizing electrode 11c.

燃料電極11bに通ずる燃料ガスの管路は、供給バルブ
13bに接続される入口管13aと供給ノくルプ13b
の下流に設けられた圧力レギュレータ10a。
A fuel gas pipeline leading to the fuel electrode 11b includes an inlet pipe 13a connected to a supply valve 13b and a supply nozzle 13b.
A pressure regulator 10a provided downstream of the pressure regulator 10a.

および圧力レギーレータ10aの後方に位置する管路1
3cが燃料ガスを給排する燃料マニホールド11dと接
続され、燃料電極に供給された後の排出される燃料ガス
の管路は、管路13dと流量調整用絞りパルプ13eと
出口管13fとで構成される。酸化剤電極11c K酸
化剤ガスを供給する管路も燃料ガスと同じように入口管
14a、供給バルブ14b、圧力レギュレータ1obお
よび管路14cで構成されて酸化剤ガスを給排する酸化
剤マニホールドlieに接続され、酸化剤電極に供給さ
れた後の排出する管路は管路14d、流量調整用絞りバ
ルブ14eおよび出口管14fとで構成される。圧力容
器内に不活性ガスを供給するガス供給用管路も、反応ガ
スの供給管路と同じように入口管路15&、供給バルブ
15b、圧力レギュレーへおよび管路15cがら構成さ
れて、圧力容器12に接続され、圧力容器から排出され
るガスの管路は、管路15d 、流量調整用絞りバルブ
15eおよび出口管15fよシ構成される。
and a conduit 1 located behind the pressure regirator 10a.
3c is connected to a fuel manifold 11d that supplies and discharges fuel gas, and a pipe line for the fuel gas to be discharged after being supplied to the fuel electrode is composed of a pipe line 13d, a throttle pulp 13e for flow rate adjustment, and an outlet pipe 13f. be done. The oxidant electrode 11c The pipe line for supplying the K oxidant gas is also composed of an inlet pipe 14a, a supply valve 14b, a pressure regulator 1ob, and a pipe line 14c, like the fuel gas, and is an oxidizer manifold lie for supplying and discharging the oxidant gas. The pipe connected to the oxidant electrode and discharged after being supplied to the oxidizer electrode is composed of a pipe 14d, a flow rate adjustment throttle valve 14e, and an outlet pipe 14f. The gas supply pipe for supplying inert gas into the pressure vessel is also composed of the inlet pipe 15 &, the supply valve 15b, the pressure regulator and the pipe 15c in the same way as the reaction gas supply pipe. A gas conduit connected to the pressure vessel 12 and discharged from the pressure vessel includes a conduit 15d, a flow rate adjustment throttle valve 15e, and an outlet pipe 15f.

一方圧力レギュレータ10a、 10b、 10cの制
御室に付与する不活性ガスの管路は、入口管16a、供
給バルブ16b、主圧力調整器20.管路9aおよび管
路9aの末端にて三方に分かれて圧力レギーレータ10
a+ 10b+ 10cのそれぞれの制御室に通ずる管
路9と逃し弁9bから構成される。なお主圧力調整器2
Oは、従来の機械式圧力レギーレータを用いることがで
きる。
On the other hand, the inert gas pipeline supplied to the control chambers of the pressure regulators 10a, 10b, 10c includes an inlet pipe 16a, a supply valve 16b, a main pressure regulator 20. The pipe line 9a and the pressure regirator 10 are divided into three sides at the end of the pipe line 9a.
It is composed of a pipe line 9 and a relief valve 9b leading to the respective control chambers of a+ 10b+ 10c. In addition, main pressure regulator 2
O can be a conventional mechanical pressure regirator.

つぎに、燃料電池に供給する反応ガスとしての燃料ガス
および酸化剤ガスと、圧力容器内に供給するガスの圧力
制御について説明する。燃料ガスは供給用バルブ13b
を開にして矢印の方向よシ入ロ管13aより入り、圧力
レギュレータエ0aに流入し、管路13cを経由して燃
料ガスの給排する燃料マニホールドlidに入り、燃料
電極に燃料ガスを供給した後管路13dを経由し、絞り
パルプ13eにて流体抵抗が与えられて流量が調整され
、出口管13fより矢印の方向に排気される。この際、
制御流体としての不活性ガスの管路の供給バルブ16b
を開にして矢印の方向よシネ活性ガスが入口管16aに
入り、主圧力調整器20によυ逃し弁9bよυ微小ガス
量を逃しながら制御流体の圧力は所定の圧力に調整され
、管路9a、9を経由して圧力レギュレータ10aの制
御室に付与され、この圧力の調整値にしたがって圧力レ
ギュレータを通る燃料ガスの圧力は制御され、燃料マニ
ホールドに燃料電池の運転のための所定の圧力で燃料ガ
スが供給される。
Next, pressure control of fuel gas and oxidant gas as reaction gases supplied to the fuel cell and gas supplied into the pressure vessel will be described. Fuel gas is supplied through the supply valve 13b
When the fuel gas is opened, it enters from the inlet pipe 13a in the direction of the arrow, flows into the pressure regulator 0a, enters the fuel manifold lid that supplies and discharges fuel gas via the pipe 13c, and supplies fuel gas to the fuel electrode. After that, the fluid passes through the pipe line 13d, the flow rate is adjusted by applying fluid resistance in the squeeze pulp 13e, and is exhausted from the outlet pipe 13f in the direction of the arrow. On this occasion,
Supply valve 16b for inert gas line as control fluid
When opened, the cine active gas enters the inlet pipe 16a in the direction of the arrow, and the pressure of the control fluid is adjusted to a predetermined pressure while releasing a small amount of gas through the main pressure regulator 20 and the relief valve 9b. The pressure of the fuel gas is applied to the control chamber of the pressure regulator 10a via the lines 9a and 9, and the pressure of the fuel gas passing through the pressure regulator is controlled according to the adjusted value of this pressure, and the predetermined pressure for the operation of the fuel cell is set in the fuel manifold. Fuel gas is supplied.

同じ様にして酸化剤ガスは、供給パルプ14bを開にし
て矢印の方向より入口管14a、圧力レギュレータ10
b、管路14c、を経由して酸化剤ガスのマニホールド
に入シ、酸化剤電極に酸化剤ガスを供給した後管路14
dを経由し、絞りパルプ14eにより流体抵抗が与えら
れて流量が調整され、出口管14fよシ矢印の方向に排
出されるが、酸化剤ガスの酸化剤マニホールドに供給す
るガスは燃料ガスと同様に主圧力調整器20から燃料ガ
スの圧力レギュ付与されて燃料電池の運転のためのガス
圧力が制御される。
In the same way, the oxidizing gas is supplied to the inlet pipe 14a and the pressure regulator 10 from the direction of the arrow by opening the supply pulp 14b.
b, the oxidizing gas enters the manifold via the pipe 14c, and after supplying the oxidizing gas to the oxidizing electrode, the pipe 14
d, fluid resistance is applied by the throttle pulp 14e to adjust the flow rate, and the oxidant gas is discharged in the direction of the arrow through the outlet pipe 14f, but the gas supplied to the oxidizer manifold is the same as the fuel gas. The pressure of the fuel gas is regulated by the main pressure regulator 20 to control the gas pressure for operating the fuel cell.

圧力容器内のガスも上述の反応ガスと同じようにして、
供給パルプ15bを開にして矢印の方向より不活性ガス
が入口管15a、圧力レギュレータエ0C2管路15c
を経由して圧力容器12内に入り、管路15d 、絞り
パルプ15eによυ流体抵抗が与えられて流量が調整さ
れ出口管15fを経由して排出され、圧力容器内の圧力
も反応ガスと同じように主圧力調整器20からの制御流
体の同一圧力が圧力レギ、レータ10cの制御室に付与
され、圧力容器内に供給するガスは燃料電池運転のため
の圧力に制御される。なお、燃料電池および圧力容器の
内部流体抵抗は小さいため、各ガス系統の絞シパルプは
それぞれ十分に絞られて流体抵抗が与えられ、燃料電池
の運転のための所定の圧力が得られる。
The gas in the pressure vessel is treated in the same way as the reaction gas described above.
When the supply pulp 15b is opened, inert gas flows from the direction of the arrow to the inlet pipe 15a and the pressure regulator 0C2 pipe 15c.
The gas enters the pressure vessel 12 via the pipe line 15d and the squeeze pulp 15e to adjust the flow rate, and is discharged via the outlet pipe 15f. Similarly, the same pressure of the control fluid from the main pressure regulator 20 is applied to the control chamber of the pressure regulator 10c, and the gas supplied into the pressure vessel is controlled to the pressure for fuel cell operation. Note that, since the internal fluid resistance of the fuel cell and the pressure vessel is small, the throttle valves of each gas system are sufficiently throttled to provide fluid resistance and obtain a predetermined pressure for operating the fuel cell.

このように上記実施例によれば、燃料電池の各系統の圧
力を所定の圧力に保つように、単一の主圧力調整器によ
る圧力調整された高圧のガスを制御流体として前記各圧
力レギュレータのダイヤフラムに付与することにより、
燃料電池の反応ガスを含む複数のガス系統の圧力が同時
に、かつ相互にバランスを保って制御されるといり効果
がある。
In this way, according to the above embodiment, in order to maintain the pressure of each system of the fuel cell at a predetermined pressure, the high pressure gas whose pressure has been regulated by the single main pressure regulator is used as the control fluid for each of the pressure regulators. By adding it to the diaphragm,
This is effective if the pressures of multiple gas systems containing the reactant gases of the fuel cell are controlled simultaneously and in a mutually balanced manner.

また、圧力レギュレータの制御流体として高圧の不活性
ガスを用いることにより、従来の機械式圧力調整器のス
プリングが不要となり、また薄いダイアフラムを用いる
ことができるため、圧力制御器の不感帯およびヒステリ
シスが低下し、ガスの差圧を低下することができる。
Additionally, by using a high-pressure inert gas as the pressure regulator's control fluid, the springs of traditional mechanical pressure regulators are no longer needed and a thin diaphragm can be used, reducing the pressure regulator's dead band and hysteresis. However, the differential pressure of the gas can be reduced.

更に、この実施例では制御流体として不活性ガスを用い
ているため、万一、ダイアフラムが破損して反応ガスと
制御流体とが混合しても爆発するおそれはない。
Furthermore, since an inert gas is used as the control fluid in this embodiment, there is no risk of explosion even if the diaphragm were to break and the reaction gas and control fluid were to mix.

次K、本発明に用いられるガスを制御流体とする圧力制
御器の構造を図面に基づいて説明する。
Next, the structure of a pressure controller using gas as a control fluid used in the present invention will be explained based on the drawings.

第3図1’を第1図で説明した従来の圧力レギュレータ
を改良したものであシ、第1図と同一構造のものについ
ては同一符号を付しているが、第1図と相違する点は下
部ケーシング2とダイヤフラム3とで囲まれる区画に、
制御流体として例えば不活性ガスの圧力が付与される気
密な制御室2aが設けられていることである。そして下
部ケーシング2には貫通する管路9を設け、またスクリ
ュー8が貫通して下部ケーシング2と滑動する部分に0
リングパツキン10を挿入して気密を保持している。こ
のスクリュー8は圧力の微調整として用いることができ
る。
Fig. 3 1' is an improved version of the conventional pressure regulator explained in Fig. 1. Items with the same structure as Fig. 1 are given the same reference numerals, but there are differences from Fig. 1. is a section surrounded by the lower casing 2 and the diaphragm 3,
An airtight control chamber 2a is provided to which pressure of, for example, inert gas is applied as a control fluid. The lower casing 2 is provided with a pipe line 9 that passes through it, and the screw 8 passes through the lower casing 2 and slides with the lower casing 2.
A ring packing 10 is inserted to maintain airtightness. This screw 8 can be used for fine adjustment of pressure.

また、本発明では制御室2aに供給される制御流体に高
圧のガスを用いるため、上部ケーシング1と下部ケーシ
ング2の各室がほぼ同圧となり、このためダイアフラム
3は従来より薄いものを用いることができる。
Furthermore, in the present invention, since high-pressure gas is used as the control fluid supplied to the control chamber 2a, each chamber of the upper casing 1 and the lower casing 2 has approximately the same pressure, and therefore the diaphragm 3 needs to be thinner than before. I can do it.

@4図、第5図はそれぞれ圧力制御器の他の実施例を示
すものであシ、第4図は双胴型圧力調整器とでもいうべ
きもので、第3図で示した圧力レギュレータを2台合わ
せ、制御室21および制御用ガスの配管22を1つとし
、制御用ガスの圧力差をなくしたものである。
@ Figures 4 and 5 show other embodiments of the pressure regulator, respectively. Figure 4 is what can be called a twin-barrel pressure regulator, and the pressure regulator shown in Figure 3 is By combining two units, the control chamber 21 and the control gas piping 22 are combined into one, thereby eliminating the pressure difference between the control gases.

第5図は、ダイア72ム3が破損したときの対策として
考えられたもので、制御用ガスを直接ダイア72ムに接
触させず、不活性な流体23を介して作用させるもので
、不活性な流体23と制御用ガスとの分離兼圧力伝達手
段として、ベローズ構造の流体分離器24を備えている
Fig. 5 shows a measure to be taken when the diaphragm 72m 3 is damaged.The control gas is not brought into direct contact with the diaphragm 72m, but acts through an inert fluid 23. A fluid separator 24 having a bellows structure is provided as a means for separating and transmitting pressure between the fluid 23 and the control gas.

〔発明の効果〕〔Effect of the invention〕

以上の説Qjlから明らかなように、本発明によれば燃
料電池に、供給される異なる反応ガスを、高圧ガスを制
御流体とする圧力制御器により一括制御することにより
、複数のガス系統の圧力を同時にかつ相互にバランスを
保って制御することができる。
As is clear from the above theory Qjl, according to the present invention, different reaction gases supplied to the fuel cell are collectively controlled by a pressure controller using high-pressure gas as the control fluid, thereby controlling the pressure of multiple gas systems. can be controlled simultaneously and in balance with each other.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による圧力制御器の断面図、第2図は
本発明の一実施例を示す系統図、第3図ないし第5図は
本発明に用いられる圧力制御器の異なる実施例を示す断
面図である。 10、10a、 10b、 10c ・=圧力制御器、
11−・・燃料電池、20・・・主圧力調整器。 第1図 第3図 第2図 第4図 第5図
FIG. 1 is a sectional view of a pressure controller according to the prior art, FIG. 2 is a system diagram showing one embodiment of the present invention, and FIGS. 3 to 5 show different embodiments of the pressure controller used in the present invention. FIG. 10, 10a, 10b, 10c ・=pressure controller,
11-... Fuel cell, 20... Main pressure regulator. Figure 1 Figure 3 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 燃料電池に供給される異なる反応ガスを、高圧The different reactant gases supplied to the fuel cell are
JP58237056A 1983-12-15 1983-12-15 Method of controlling gas pressure of fuel cell Pending JPS60130060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237056A JPS60130060A (en) 1983-12-15 1983-12-15 Method of controlling gas pressure of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237056A JPS60130060A (en) 1983-12-15 1983-12-15 Method of controlling gas pressure of fuel cell

Publications (1)

Publication Number Publication Date
JPS60130060A true JPS60130060A (en) 1985-07-11

Family

ID=17009760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237056A Pending JPS60130060A (en) 1983-12-15 1983-12-15 Method of controlling gas pressure of fuel cell

Country Status (1)

Country Link
JP (1) JPS60130060A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065619A2 (en) * 2000-02-28 2001-09-07 Atecs Mannesmann Ag Membrane fuel cell
JP2006164675A (en) * 2004-12-06 2006-06-22 Toyota Motor Corp Fuel cell system and pressure regulating valve
WO2019137924A1 (en) * 2018-01-11 2019-07-18 Cpt Group Gmbh Fuel cell arrangement having differential pressure control for an h2/o2 fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065619A2 (en) * 2000-02-28 2001-09-07 Atecs Mannesmann Ag Membrane fuel cell
WO2001065619A3 (en) * 2000-02-28 2002-04-18 Atecs Mannesmann Ag Membrane fuel cell
JP2006164675A (en) * 2004-12-06 2006-06-22 Toyota Motor Corp Fuel cell system and pressure regulating valve
WO2019137924A1 (en) * 2018-01-11 2019-07-18 Cpt Group Gmbh Fuel cell arrangement having differential pressure control for an h2/o2 fuel cell
CN111587505A (en) * 2018-01-11 2020-08-25 纬湃技术有限公司 Fuel cell device with pressure differential control for H2/O2 fuel cells
US11289719B2 (en) 2018-01-11 2022-03-29 Vitesco Technologies GmbH Fuel cell arrangement having differential pressure control for an H2/O2 fuel cell

Similar Documents

Publication Publication Date Title
US4699173A (en) Mixing and proportioning device for flowing media
JPH0622156B2 (en) Fuel cell device
JPS60130060A (en) Method of controlling gas pressure of fuel cell
JP2003068334A (en) Fuel circulating fuel cell system
US3525641A (en) Fuel cell control
US3087004A (en) Pressure regulator control system for a fuel cell
JPS6224910B2 (en)
JP3241226B2 (en) Solid oxide fuel cell
US2593557A (en) Pilot controlled gas pressure regulator
US5507309A (en) Pressure differential regulator
WO2001065619A3 (en) Membrane fuel cell
JPS5853164A (en) Fuel cell device
JPS6231954A (en) Fuel cell differential pressure control device
JPS59111270A (en) Control device for fuel-cell power generating system
JP2007113641A (en) Fuel gas supply device
JPH046755A (en) Phosphoric acid type fuel cell power generating device
JPS6039771A (en) System for controlling interelectrode pressure of fuel cell
JPS60241675A (en) Fuel cell power generator
JPH01194269A (en) Fuel battery
GB849386A (en) Improvements relating to flow control valves
JPH0355031B2 (en)
JPS60240063A (en) Overdifferential pressure preventive device of fuel cell
JPS6396872A (en) Fuel battery power generating system
JPH04133270A (en) Fuel cell
JPS58164158A (en) Gas pressure control method of fuel cell