JPS5853164A - Fuel cell device - Google Patents

Fuel cell device

Info

Publication number
JPS5853164A
JPS5853164A JP56149604A JP14960481A JPS5853164A JP S5853164 A JPS5853164 A JP S5853164A JP 56149604 A JP56149604 A JP 56149604A JP 14960481 A JP14960481 A JP 14960481A JP S5853164 A JPS5853164 A JP S5853164A
Authority
JP
Japan
Prior art keywords
fuel
pressure
oxidant
fuel cell
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56149604A
Other languages
Japanese (ja)
Inventor
Hitoshi Kuramoto
倉本 仁
Masatsugu Yoshimori
吉森 正嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56149604A priority Critical patent/JPS5853164A/en
Publication of JPS5853164A publication Critical patent/JPS5853164A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a fuel cell device which enables the differential pressure between a fuel and an oxidant to be regulated within the minimum value, and enables the pressure of the oxidant to be higher than that of the fuel at any part of the surface of an electrode constantly even when the flow rate of the fuel or the oxidant, the load or the fuel cell is changed. CONSTITUTION:The pressures of a fuel and an oxidant inside a pressure case 2 are adjusted to become the minimum at the point (P). The pressure of the oxidant is made higher than that of the fuel at any other point in the case 2. In order to achieve the above mentioned condition, a differential pressure gauge 3' on the fuel side is installed at the inlet of the fuel, and a differential pressure gauge 4 on the oxidant side is installed at the outlet of the oxidant as usual so as to detect the differential pressures independently. After that, the detection signals are compared with set values through computing elements 5 and 6, and gas-exhaust valves 7 and 8 are controlled with the operation signals so that a pressure distribution as indicated in the figure is realized. By the means mentioned above, evek when the flow rate or the load changes, or when the pressure loss changes according to the alteration of the fuel cell, the diffeential pressure at the point (P) is constantly zero, and the differential pressures at the other points change only slightly.

Description

【発明の詳細な説明】 本発明は、濃厚+7 y酸電解質型燃料電池、溶融炭酸
塩型燃料電池の燃料極及び酸化剤極へ、燃料及び酸化剤
の供給を改善した燃料電池装置に調するO 従来の差圧制御方法を第1図を用いて説明するO燃料電
池本体lは圧力容器2の中に入れられ、イナートガスで
加圧される0そして、この燃料電池に燃料及び酸化剤が
供給される0このと自、燃料及び酸化剤の差圧が電解液
の重圧以上かかふと燃料及び酸化剤が電気化学的な反応
をしないで、奪接燃鉤反応を起こすクロスオーバーと呼
ばれる現象が起こる、これは電池性能の低下のみならず
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a fuel cell system that improves the supply of fuel and oxidant to the fuel electrode and oxidizer electrode of rich +7y acid electrolyte fuel cells and molten carbonate fuel cells. O A conventional differential pressure control method will be explained using Fig. 1. O The fuel cell main body l is placed in a pressure vessel 2 and pressurized with inert gas. Then, fuel and oxidizer are supplied to this fuel cell. In this case, if the differential pressure between the fuel and oxidizer exceeds the pressure of the electrolyte, a phenomenon called crossover occurs in which the fuel and oxidizer do not undergo an electrochemical reaction, but instead undergo a consequential flame hook reaction. This happens, and this not only causes a decrease in battery performance.

極度なりロスオーバーは扇発の危険性もある。そこで第
1図では圧力容器2内の圧力を基準とし、燃料側及び酸
化剤の出口の圧力を差圧計3.4で検出し、この信号を
演算器5,6を介して設定値と比較し、その操作信号に
よりガス排出弁7,8を調節して差圧コントロールをし
ている◇差圧の設定は燃料側、酸化剤側とも基準圧(イ
ナートガスの圧力)に対し黴かに低くシ、燃料、又は酸
化剤の漏出を防いている。また、燃料側、酸化剤側の設
定差圧を同じくすると第2図のように圧力損失にともな
う圧力勾配がつく。すなわち両方とも出口憫から入口側
にかけて圧力が上昇する。そのため二点鎖線を境にして
人の部分は酸化剤側が高く、Bの部分は燃料側が高くな
っている。従って人の部分は燃料極でクロスオーバーが
起こりやすく、又、BO部分では酸化剤極でクロスオー
バーが起こりやすくなっている。一般に燃料電池は燃料
極でのクロスオーバーはそれほど出力性能に影響を与え
ないが、酸化剤極でのクロスオーバーは大きく影響を与
える。そこで、第3図に示すように、酸化剤側の差圧の
設定を燃料側に対し、燃料側の圧力損失分だけベースア
ップし電極面全体において常に酸化剤側の圧力を燃料側
よシ高くしている。ここで問題となるのは、燃料側の圧
力損失は供給ガス流量、負荷によって変わり、また燃料
電池によっても変わるため、その都度設定値を追随させ
ることは不可能に近い。そのためある推定した値に設定
しているが、その値が最適値であるとは云えない。従っ
て流量、負荷、燃料電池が変わっても常にどの部分にお
いても酸化剤側が燃料側より高くその差を最も小さくす
ることが可能な差圧制御が望まれている。
Extreme loss-overs also run the risk of causing a stir. Therefore, in FIG. 1, the pressure inside the pressure vessel 2 is used as a reference, the pressure at the fuel side and the outlet of the oxidizer is detected by a differential pressure gauge 3.4, and this signal is compared with the set value via the calculators 5 and 6. The differential pressure is controlled by adjusting the gas discharge valves 7 and 8 based on the operation signal.◇The differential pressure is set to be extremely low compared to the standard pressure (inert gas pressure) on both the fuel side and the oxidizer side. Prevents leakage of fuel or oxidizer. Furthermore, if the set differential pressures on the fuel side and the oxidizer side are the same, a pressure gradient will be created due to pressure loss as shown in FIG. That is, in both cases, the pressure increases from the outlet side to the inlet side. Therefore, with the two-dot chain line as the border, the oxidizer side is higher in the human part, and the fuel side is higher in the B part. Therefore, in the human part, crossover is likely to occur at the fuel electrode, and in the BO part, crossover is likely to occur at the oxidizer electrode. In general, in fuel cells, crossover at the fuel electrode does not have much of an effect on output performance, but crossover at the oxidizer electrode has a large effect. Therefore, as shown in Figure 3, the pressure difference on the oxidizer side is set higher than that on the fuel side by the amount of pressure loss on the fuel side, so that the pressure on the oxidizer side is always higher than that on the fuel side over the entire electrode surface. are doing. The problem here is that the pressure loss on the fuel side varies depending on the supply gas flow rate and load, and also varies depending on the fuel cell, so it is almost impossible to follow the set value each time. Therefore, although it is set to a certain estimated value, it cannot be said that this value is the optimal value. Therefore, there is a need for differential pressure control in which the oxidant side is always higher than the fuel side and the difference can be minimized at any point even if the flow rate, load, or fuel cell changes.

この発明は、上記の欠点を解決するためになされたもの
で、燃料及び酸化剤ガス供給流量、負荷燃料電池が変わ
っても常に電極面上のどの部分においても、酸化剤側が
燃料側よシ高く、その差を最小にすることを可能にし九
燃料電池装置を提供するものである。
This invention was made to solve the above-mentioned drawbacks, and even if the fuel and oxidant gas supply flow rate and the load fuel cell change, the oxidizer side is always higher than the fuel side at any part of the electrode surface. The present invention provides nine fuel cell devices that make it possible to minimize the difference.

次に本発明の一実施例を図面により説明する。Next, one embodiment of the present invention will be described with reference to the drawings.

第3図において、燃料側と酸化剤側の圧力が最小(=0
)となるポイントはP点である。他は全て燃料側に対し
酸化剤側が高くなっている0そこで、この第3図のよう
に差圧制御されることが最も望ましい。それには燃料側
の圧力制御点を第1図と同じ部位には同番号を符し九第
4図のように燃料側差圧計3′を燃料側の入口にするこ
とで成し遂げられる。すなわち、第3図の線分OPと線
分Pqを同圧とすることである0これKよって燃料側の
圧力は線分OFの圧力から圧力損失分だけ減少していき
、また酸化剤側の圧力は線分P4の圧力から圧力損失分
だけ増加していく、結局、第3図のような圧力分布が得
られる。こうすることによって流量、負荷、又は燃料電
池が変わりそれに追随して圧力損失が変わったとしても
、P点は常に差圧零を保っておシその他の部分の差圧が
多少変わるだけである0
In Figure 3, the pressure on the fuel side and oxidizer side is minimum (=0
) is point P. In all other cases, the oxidizer side is higher than the fuel side. Therefore, it is most desirable to control the differential pressure as shown in Fig. 3. This can be accomplished by assigning the same numbers to the pressure control points on the fuel side as in FIG. 1, and by making the fuel side differential pressure gauge 3' the inlet of the fuel side, as shown in FIG. That is, the pressure on the line segment OP and the line segment Pq in Fig. 3 should be the same. Therefore, the pressure on the fuel side will decrease from the pressure on the line segment OF by the pressure loss, and the pressure on the oxidizer side will decrease from the pressure on the line segment OF. The pressure increases by the amount of pressure loss from the pressure on line segment P4, and eventually a pressure distribution as shown in FIG. 3 is obtained. By doing this, even if the flow rate, load, or fuel cell changes and the pressure loss changes accordingly, the differential pressure at point P will always remain zero, and the differential pressure at the tray and other parts will only change slightly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法による差圧側を行なった燃料電池装置の
線図、第2図は従来法による圧力分布図。 第3図は本発明に係る圧力分布図、第4図は本発明に係
る一実施例を示す線図である。 l・・・燃料電池、  2・・・圧力容器。 3.3“、4 ・・差圧針、 5,6・・・演算器、7
.8・・・ガス排出弁0 代通人 弁理士  則 近 憲 佑 (ほか1名)
FIG. 1 is a diagram of a fuel cell device using the conventional method on the differential pressure side, and FIG. 2 is a pressure distribution diagram using the conventional method. FIG. 3 is a pressure distribution diagram according to the present invention, and FIG. 4 is a diagram showing an embodiment according to the present invention. l...Fuel cell, 2...Pressure vessel. 3.3", 4... Differential pressure needle, 5, 6... Arithmetic unit, 7
.. 8...Gas exhaust valve 0 Representative Patent attorney Kensuke Chika (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] 高圧にてH!と02を電気化学的に反応させ、電気出力
を取υ出す燃料電池装置において、咳燃料電池を収納す
る容器容器にイナートガスを封入しこの圧力を基準とし
て燃料電池のH2側入口と03側出口の圧力を調節する
差圧制御系を^えることを特徴とする燃料電池装置0
H at high pressure! In a fuel cell device that generates electrical output by electrochemically reacting 02 and 02, inert gas is sealed in the container housing the fuel cell, and the pressure at the H2 side inlet and 03 side outlet of the fuel cell is adjusted based on this pressure. Fuel cell device 0 characterized by having a differential pressure control system for adjusting pressure
JP56149604A 1981-09-24 1981-09-24 Fuel cell device Pending JPS5853164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56149604A JPS5853164A (en) 1981-09-24 1981-09-24 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56149604A JPS5853164A (en) 1981-09-24 1981-09-24 Fuel cell device

Publications (1)

Publication Number Publication Date
JPS5853164A true JPS5853164A (en) 1983-03-29

Family

ID=15478831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56149604A Pending JPS5853164A (en) 1981-09-24 1981-09-24 Fuel cell device

Country Status (1)

Country Link
JP (1) JPS5853164A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165270A (en) * 1982-03-26 1983-09-30 Fuji Electric Corp Res & Dev Ltd Pressure control system of supply gas to fuel cell
JPS59177171U (en) * 1983-05-12 1984-11-27 三菱電機株式会社 Gas supply device for fuel cells
EP0374636A1 (en) * 1988-12-20 1990-06-27 Asea Brown Boveri Ag Process for the conversion of the chemical potential energy of a material into electrical energy by a high-temperature electrochemical process
EP1708300A1 (en) * 2004-01-21 2006-10-04 Matsushita Electric Industrial Co., Ltd. Fuel cell system
US8330035B2 (en) 2004-05-25 2012-12-11 Kitani Electric Co., Ltd. Terminal box for solar cell modules

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165270A (en) * 1982-03-26 1983-09-30 Fuji Electric Corp Res & Dev Ltd Pressure control system of supply gas to fuel cell
JPH0227789B2 (en) * 1982-03-26 1990-06-19 Fuji Denki Sogo Kenkyusho Kk
JPS59177171U (en) * 1983-05-12 1984-11-27 三菱電機株式会社 Gas supply device for fuel cells
EP0374636A1 (en) * 1988-12-20 1990-06-27 Asea Brown Boveri Ag Process for the conversion of the chemical potential energy of a material into electrical energy by a high-temperature electrochemical process
EP1708300A1 (en) * 2004-01-21 2006-10-04 Matsushita Electric Industrial Co., Ltd. Fuel cell system
EP1708300A4 (en) * 2004-01-21 2008-11-05 Matsushita Electric Ind Co Ltd Fuel cell system
US7691510B2 (en) 2004-01-21 2010-04-06 Panasonic Corporation Fuel cell system with differential pressure control
KR101128552B1 (en) * 2004-01-21 2012-03-23 파나소닉 주식회사 Fuel cell system
US8330035B2 (en) 2004-05-25 2012-12-11 Kitani Electric Co., Ltd. Terminal box for solar cell modules

Similar Documents

Publication Publication Date Title
US5397656A (en) Differential pressure controlling method and apparatus for plate reformer of fuel cell power generation system
US6770391B2 (en) Hydrogen sensor for fuel processors of a fuel cell
JPS5853164A (en) Fuel cell device
JPS6260789B2 (en)
JPH043069B2 (en)
JPS6231954A (en) Fuel cell differential pressure control device
JPS6252864A (en) Pressure controller of fuel cell
JPH0615405Y2 (en) Gas supply device for fuel cells
JPH0714595A (en) Operating method of power generating device of fuel cell type
US3525642A (en) Fuel reactor with control system
JPS59149665A (en) Fuel-cell system
JPS6260792B2 (en)
JPS59105274A (en) Fuel supply control equipment of fuel cell
JPS62160667A (en) Fuel cell power generation system
JPH06260199A (en) Operation and control of fuel cell
JPS622461A (en) Recirculation device for fuel line of fuel cell power generation system
JPH06101343B2 (en) Fuel cell power generation system
JPS60207255A (en) Fuel cell control system
JPH046755A (en) Phosphoric acid type fuel cell power generating device
JPH0282462A (en) Fuel cell power generation system
JPS6039772A (en) System for controlling pressure and flow rate in fuel cell power generation plant
JPS62241266A (en) Fuel cell power generating system
JPS58225579A (en) Fuel-cell controlling device
JPH028424B2 (en)
JPS59111270A (en) Control device for fuel-cell power generating system