JPS6013002A - Continuous sintering furnace - Google Patents

Continuous sintering furnace

Info

Publication number
JPS6013002A
JPS6013002A JP12204483A JP12204483A JPS6013002A JP S6013002 A JPS6013002 A JP S6013002A JP 12204483 A JP12204483 A JP 12204483A JP 12204483 A JP12204483 A JP 12204483A JP S6013002 A JPS6013002 A JP S6013002A
Authority
JP
Japan
Prior art keywords
furnace
gas
pipe
sintering
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12204483A
Other languages
Japanese (ja)
Inventor
Masafumi Koga
古賀 雅文
Masahito Kitamura
北村 正仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP12204483A priority Critical patent/JPS6013002A/en
Publication of JPS6013002A publication Critical patent/JPS6013002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To maintain the carbon potential of the gas in a furnace at a prescribed value by providing a pipe for sampling the gas in the furnace for analysis, a pipe for introducing endothermic type converting furnace gas and a pipe for charging enriched gas in the specified positions in a sintering section and controlling the rate of charging the enriched gas. CONSTITUTION:A pipe for sampling gas in a furnace for analysis is provided between the central position of a sintering section of a sintering furnace and the position spaced from said position by the length equiv. to 10% of the overall length of the sintering section in the longitudinal direction of the furnace. A filter and a carbon potential measuring meter are successively attached to the sampling pipe. At least one pipe for introducing endothermic convering furnace gas as a protective atmosphere is connected in the position spaced from the set position of the sampling pipe by the length equiv. to 10-20% of the length of the sintering part toward the rear part of the furnace and a pipe for charging enriched gas is opened in the position spaced by >=1m from the end of the pipe for introducing the converting furnace gas where the pipe opens into the furnace. The rate of charging the enriched gas is controlled by sampling and analyzing of the gas in the furnace to maintain the carbon potential at a prescribed quantity, by which a uniform sintered body is produced.

Description

【発明の詳細な説明】 本発明は炉内雰囲気のカーボンポテンシャル(以下、c
、 p、というンを?J4 整することによって、金属
組成及び寸法変化のほぼ完全′に均一な焼結体の製造を
q能ならしめる粉末冶金用連続式焼結炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on the carbon potential (hereinafter referred to as c
, p,? J4 This invention relates to a continuous sintering furnace for powder metallurgy that enables the production of sintered bodies with almost completely uniform metal composition and dimensional changes.

従来からバッチ式の浸炭焼入炉のように、炉内雰囲気を
サンプリングし、これからH2O1、つまり露点あるい
はCO2症を計測してc、 p、を仰り、あらかじめ設
定したc、 p、値からのずれをプロパンあるいけブタ
ンガス等の炭化水素ガスのエンリッチにより修正する方
法はすでに周知である。しかしながら、この方法は粉末
冶金用の連続式焼結炉の場合には次の理由によって適用
するのがむつかしい。
Conventionally, like in batch-type carburizing and quenching furnaces, the atmosphere inside the furnace is sampled, H2O1, that is, the dew point or CO2 temperature is measured, and c and p are determined, and deviations from the preset c and p values are determined. It is already well known to amend this by enriching with a hydrocarbon gas such as propane or butane gas. However, this method is difficult to apply in the case of continuous sintering furnaces for powder metallurgy due to the following reasons.

(1)第1図に示すような(′j4造が連続式メツシュ
ベルトタイプ炉の代表的なものであるが、炉のどの部分
、たとえばA、B、C,D、E等の位置からのサンプリ
ングガスの計測値が・睨結体の金属tJl織を決定する
c、 p、値を示すのか明確にすることば雛しい。同様
に、第2図に示されるようなエンリッチガス導入の最遠
位置を決めることもまた難しい。
(1) As shown in Fig. 1, the typical continuous mesh belt type furnace is the one shown in Figure 1. It is difficult to clarify whether the measured values of the sampling gas indicate the c, p, values that determine the metal tJl texture of the glaucoma.Similarly, the farthest position of enrichment gas introduction as shown in Fig. 2 It is also difficult to decide.

(2) 粉末冶金製品の成形時に添加する潤滑剤(主と
してステアリン酸亜鉛)を脱ローする脱ロ一部は焼結部
と連続している構造が多いため、ガスの流れによってF
i脱ロ一部の汚染ガスが炉内を移動することがある。ま
た、ステアリン酸亜鉛のように炉内で分解、気化が進行
し、Znの蒸気として浮遊することもある。そのため、
ガスを炉内からサンプリングする際に、これら汚染物(
ステアリン酸亜鉛の酸化物、カーボン等のダスト)をど
の方法で除去するかが難しい。
(2) The de-rossing part that removes the lubricant (mainly zinc stearate) added during molding of powder metallurgy products is often continuous with the sintered part, so the flow of gas can cause
i De-rotation Some contaminated gas may move inside the furnace. In addition, like zinc stearate, decomposition and vaporization progress in the furnace and may float as Zn vapor. Therefore,
These contaminants (
It is difficult to know which method to use to remove dust such as zinc stearate oxide and carbon.

(3)サンプリング開始後、1〜2時間にて上記の汚染
物のため、サンプリング管の目づまりが発生することも
起こり得る。
(3) The sampling tube may become clogged due to the above-mentioned contaminants within 1 to 2 hours after the start of sampling.

(4)金属蒸気がI(,0量またはCO,量の測定機器
の計測部まで進入し、計器の精度低下あるいは計測不能
を引起こすこともある。
(4) Metal vapor may enter the measuring part of the I(,0 amount or CO, amount) measuring device, causing a decrease in the accuracy of the meter or the inability to measure.

(5)炉内c、 p、値を変動させ様としてエンリッチ
ガスを導入開始しても、その影響のあられれるまでの時
間が数十分間を要する例が多い。特に、内側の構造がレ
ンガタイプの炉ではエンリッチガスの応答時間がおそい
傾向にある。この場合、炉内ガスの計測時間とエンリッ
チ時間をどのように設定するかが難しい面がある。
(5) Even if enrichment gas is introduced to change the values of c and p in the furnace, it often takes several tens of minutes for the effect to take effect. In particular, in furnaces with a brick-type inner structure, the response time of enriched gas tends to be slow. In this case, it is difficult to determine how to set the measurement time and enrichment time for the in-furnace gas.

本発FJ)4は上記の従来技術の問題点を解決し、炉内
雰囲気のc、 p、値を調整することによって、金属組
織及び寸法変化のほぼ完全に均一な焼結体の製造を可能
ならしめる連続式焼結炉を提供するもので、本発明によ
れば、脱ロ一部、91.結部および冷却部を備えた粉末
冶金用連続式焼結炉であって、分析用炉内ガス採取管を
該焼結部の中央位置と該位置から炉長手方向に該焼結部
会長の10%に相当する長さだけ隔った位置との間に設
置するとともに該炉内ガス採取′#にフィルター、カー
ボンポテンシャル測定計を順次取付け、該炉内ガス採取
管の設置位置より炉後部に向って該焼結部長さの10〜
20%に相当する長さだけ隔った位置に少な(とも1本
の保護雰囲気としての吸熱型変成炉気の導入管を接続し
、かつエンリッチガス装入管を咳変成炉気導入管の炉内
開口端より1m以上隔った位置に開口させ、炉内ガスの
採取および分析によシ上記エンリッチガス装入量を制御
して該炉内ガスのカーボンポテンシャルを所定値に維持
スるよう構成したことを特徴とする連続式焼結炉、が得
られる。
The developed FJ)4 solves the problems of the conventional technology described above, and by adjusting the c, p, and values of the furnace atmosphere, it is possible to produce a sintered body with almost completely uniform metal structure and dimensional changes. According to the present invention, a continuous sintering furnace for smoothing is provided. A continuous sintering furnace for powder metallurgy equipped with a sintering section and a cooling section, in which an in-furnace gas sampling tube for analysis is connected to the central position of the sintering section and from the central position to the longitudinal direction of the furnace. At the same time, a filter and a carbon potential measuring meter were installed in sequence at the in-furnace gas sampling pipe, and a carbon potential measuring meter was installed in sequence from the installation position of the in-furnace gas sampling pipe toward the rear of the furnace. The length of the sintered part is 10~
Connect a small endothermic converter air inlet pipe as a protective atmosphere to a position separated by a length equivalent to 20%, and connect the enriched gas charging pipe to the furnace of the cough converter air inlet pipe. It is configured to open at a position 1 m or more away from the inner opening end, and to collect and analyze the gas in the furnace, and to control the amount of enriched gas charged to maintain the carbon potential of the gas in the furnace at a predetermined value. A continuous sintering furnace is obtained.

次に5本発明を詳述する釦、まず炉については特に限定
されるものではないが、炉芯管タイプのものが壁部から
の影響が少ないので好ましい。もちろん、レンガタイプ
の炉でも使用することはできる。以下、吸熱型変成炉気
をRXガスという。
Next, 5 buttons to explain the present invention in detail First, the furnace is not particularly limited, but a furnace core tube type is preferable because it is less affected by the wall. Of course, a brick type furnace can also be used. Hereinafter, the endothermic shift reactor gas will be referred to as RX gas.

本発明の焼結炉の最適のガスサンプリング位置は第3図
に示すように、焼結部と示した有効焼結長さの中心位置
と該中心位置から炉後部に向って有効焼結長さの10係
相当ずらした位置との間に設定する。この位置は均熱部
の中心に相当する。
As shown in FIG. 3, the optimum gas sampling position for the sintering furnace of the present invention is the center position of the effective sintering length shown as the sintering section and the effective sintering length from the center position toward the rear of the furnace. Set between the position shifted by 10 times. This position corresponds to the center of the soaking section.

設定位置が前方すぎると、脱ロ一部からのガス流入の影
響を受けやすく、計測値変動が大きくなシ、あるいはサ
ンプリング管の目づまりが発生しやすい。炉内へのRx
ガスの導入は第2図のA、B、Cのいずれの点からでも
よく、また1、 2.3ケ所同時でもよい。ただし、エ
ンリッチガスqBに示した位置が最適であり、この位置
は前記サンプリング最適位置より炉後部に向って有効廃
結長さの17〜20’A相当分離れた位置である。よっ
て、BのRxガス導入位置を上記位置と定め、この配管
にエンリッチガス配管を接続すると、炉気尋人時1fl
 Rxガス及びエンリッチガスの攪拌が促進される。エ
ンリッチガス導入位[Bはこれよ0後方にずれると、焼
結炉の均熱部からずれて温1■が低くなるため、反応速
度がおそくなる。また、前方忙ずれると、サンプリング
位IfK近接しすぎるため、エンリッチの効果を十分計
測することができない。
If the setting position is too far forward, it will be susceptible to the influence of gas inflow from the degassed part, leading to large fluctuations in measured values or clogging of the sampling tube. Rx into the furnace
The gas may be introduced from any of the points A, B, and C in FIG. 2, or may be introduced from 1, 2, or 3 points at the same time. However, the position shown in enriched gas qB is optimal, and this position is a position separated from the optimal sampling position by 17 to 20'A of the effective waste length toward the rear of the furnace. Therefore, if the Rx gas introduction position of B is set as the above position and the enriched gas piping is connected to this piping, 1 fl of the reactor air
Stirring of Rx gas and enriched gas is promoted. If the enrichment gas introduction position [B] is shifted further back than this, the reaction rate will be slow because it will be shifted from the soaking section of the sintering furnace and the temperature 1 will be lower. Furthermore, if the front position is shifted, the sampling position IfK will be too close, making it impossible to sufficiently measure the enrichment effect.

とのよ−うにして決定した最適サンプリング位置からガ
スを吸引し、前述のZn蒸気等、成形時に用いる潤滑剤
から発生する金属蒸気分を完全除去するための吸着フィ
ルターの設置は不可欠である。
It is essential to install an adsorption filter to suck gas from the optimal sampling position determined as above and completely remove metal vapors generated from the lubricant used during molding, such as the Zn vapor mentioned above.

この吸着フィルターにより完全に除去され定金属蒸気以
外のステアリン酸亜鉛酸化物及び炭素粒、その他ダスト
等は順次機械的に該フィルターで浦収することは内戚で
はない。
It is not a secret that zinc stearate oxide, carbon particles, and other dust other than fixed metal vapors are completely removed by this adsorption filter and then mechanically collected in sequence by the filter.

このようにfW浄化されたガスのC,P、を代表する値
とみなす。あらかじめ必要なC,P、 Ic相当する露
点またけCO6値を設定しておき、導入するRxガスは
その設定値の中間値としてお(。
C and P of the gas purified by fW in this way are considered to be representative values. Set the dew point and CO6 values corresponding to the required C, P, and Ic in advance, and set the Rx gas to be introduced at an intermediate value between the set values.

炉内炉気の変動により、c、 p、は低目に変動するこ
とはあっても、高目に変動することは考えられないので
、露点1fcはC02分析値で変動を知ることはエンリ
ッチを施こす方向の変動と限定してよい。よって、エン
リッチ操作は計測範囲からずれたら、バルブをONとす
る0N−OFF方式かまたはHigb −L。W方式の
fil単なやり方で十分である。
Although c and p may fluctuate to a low level due to fluctuations in the air inside the furnace, it is unlikely that they will fluctuate to a high level, so knowing the fluctuations of the dew point 1fc from the C02 analysis value is useful for enrichment. It may be limited to variations in the direction of application. Therefore, the enrich operation is either an ON-OFF method that turns on the valve when it deviates from the measurement range, or a Higb-L method. A simple W method fil is sufficient.

この方法での炉内雰囲気制御レリでは所定のCo。In the furnace atmosphere control system using this method, a predetermined amount of Co.

設定値からずれてエンリッチ開始後、約1.5分で応答
開始が認められ、3〜10分以内でほぼ安定化すること
がわかっている。
It is known that after deviation from the set value and start of enrichment, the response starts in about 1.5 minutes, and becomes almost stable within 3 to 10 minutes.

第4図はこのシステムの概略図を示すものである。上記
の条件のもとで連続−ケガ間のメンテナンスで、サンプ
リング、フィルタリング及び分析を行ない、更に分析結
果のフィードバックによる雰囲気制御を行なうことがで
き、かつこの間の金属組織及び寸法変化もほぼ完全に均
一なものが得られた。
FIG. 4 shows a schematic diagram of this system. Under the above conditions, sampling, filtering, and analysis can be performed during continuous maintenance between injuries, and the atmosphere can be controlled by feedback of the analysis results, and the metal structure and dimensional changes during this period are almost completely uniform. I got something.

次に、本発明を実施例によってさらに具体的に説明する
Next, the present invention will be explained in more detail with reference to Examples.

実施例 炉は炉芯管タイプの連続式メツシュベルト炉(600r
tas巾ベルト)を用い、その有効炉長4106關、ガ
ス流量は第5図に示すように、RxガスはA ”C’ 
10 /H−B テ15″’/i4 、 c−(’ 2
0 ””/H、、Z yすm” ッチガスはB′″cCO,が設定値を越えた場仔にBよ
3 す0.2 /Hを導入し、0N−OFF MiIJ御を
行う。
The example furnace is a continuous mesh belt furnace (600 r
tas width belt), the effective furnace length is 4106, and the gas flow rate is as shown in Fig. 5.
10 /H-B te15'''/i4, c-(' 2
0 ``''/H, Z ysum'' switch gas introduces B 0.2 /H in the case where B'''cCO, exceeds the set value, and performs ON-OFF MiIJ control.

次に、1130°Cの設定には次の如(行5゜(al 
焼結体Cfp= 0.65〜0.75 (COt=0.
1 %以下) fbl 焼結体Cチ=0.4〜o、 s (CO,チェ
0.2チ〜0.3%) の2つのケースを設定する。この場合、発生ガスCO,
俤は0.3〜0.4チとしておく。
Next, set 1130°C as follows (row 5° (al
Sintered body Cfp=0.65-0.75 (COt=0.
1% or less) fbl Sintered body Cchi = 0.4 to o, s (CO, Che 0.2chi to 0.3%) Two cases are set. In this case, the generated gas CO,
The amount should be 0.3 to 0.4 chi.

fa)の場合はCO2チ上限を0.08俤とし、これを
越えると、0.2 m” /Hのエンリッチガス(C1
(478係、C,H,10%)を流しつづけ0.08チ
CO,となった時点でOFFとする。
fa), the upper limit of CO2 gas is set at 0.08 t, and if this is exceeded, enriched gas (C1
(478 section, C, H, 10%) continues to flow and turns off when it reaches 0.08 inch CO.

fblの場合I′1CO2チ上限を0.35%に設定す
る。
In the case of fbl, the upper limit of I'1CO2 is set to 0.35%.

この構成によって、次の効果が得られた。With this configuration, the following effects were obtained.

(1) 従来は間欠的に測定して修正したが、連続制御
がijJ能となった。
(1) Previously, measurements were made intermittently and corrections were made, but continuous control has become possible.

(2)材料特性の均−化及び寸法変化の安定化が図られ
た。たとえば、Fe(Bat) −1,5*Cu−0,
5t!JCの材料で0100111I+のものが従来の
寸法変化率が0.14〜0.2196の膨張でばらつい
ていたのが、本発明では0.17〜0.20%の範囲に
収斂安定化した。また、Fe(Bal) −2,0%C
u−0,7%Cの組成で、$100inのものけ従来外
周部に一部セメンタイトの析出が見られたり、逆に0.
61以下のC量の部分が見られたり、表層部の組織に安
定化を欠いたものとなったが、本発明では全(安定した
ものとなり、従来の寸法変化率0.22〜0.32チ、
膨張率0.25〜0.30係が収斂安定化した。
(2) Equalization of material properties and stabilization of dimensional changes were achieved. For example, Fe(Bat)-1,5*Cu-0,
5t! The conventional dimensional change rate of the JC material 0100111I+ varied due to expansion in the range of 0.14 to 0.2196, but in the present invention, the rate of dimensional change was converged and stabilized in the range of 0.17 to 0.20%. Also, Fe(Bal) -2,0%C
With a composition of u-0.7%C, some cementite precipitation was observed on the outer periphery of a conventional $100 inch monosoke;
However, in the present invention, the structure of the surface layer became stable, and the dimensional change rate was 0.22 to 0.32 compared to the conventional one. blood,
The expansion coefficient was stabilized in the range of 0.25 to 0.30.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続式メツシュベルトタイプの焼結炉の1例の
断面図、第2図は本発明の1実施例の断面図、第3図は
第2図の実施例の焼結部におけるサンプリング位首とR
xガスの導入位IKと温度カーブの関係を示す図、第4
図は第2Lヌ1の実施例における炉内雰囲気制御図、第
5図は第2図の実施例におけるRxガス、エンリッチガ
スの数値的削合を示す概略図である。 特許出願人 三夢金属株式会社 代理人 白 川 義 Itl 第3図 (侘陸初 第4図
Fig. 1 is a sectional view of an example of a continuous mesh belt type sintering furnace, Fig. 2 is a sectional view of an embodiment of the present invention, and Fig. 3 is a sampling in the sintering section of the embodiment of Fig. 2. rank and R
Diagram showing the relationship between the introduction position IK of x gas and the temperature curve, No. 4
The figure is a furnace atmosphere control diagram in the embodiment of the second L-nu1, and FIG. 5 is a schematic diagram showing numerical reduction of the Rx gas and enrich gas in the embodiment of FIG. 2. Patent Applicant: Sanyume Metal Co., Ltd. Agent Yoshi Shirakawa Itl Figure 3 (Wariku's first Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)脱ろう部、焼結部および冷却部を備えfc粉末冶
金用連続弐現結炉であって、分析用炉内ガス採取管をa
焼結部の中央位置と該位置から炉長子方向に該焼結部全
長の10優に相当する長さだけ隔った位置との間に設置
するとともに該炉内ガス採1174 菅にフィルター、
カーボンポテンシャル測定計を110次取付け、該炉内
ガス採取管の設置位置より炉後部に向って該焼結部長さ
の10〜20%に相当する長さだけ隔った位はに少なく
とも1本の保護雰囲気としての吸熱型変成炉気の導入管
を接続し、かつエンリッチガス装入管を該変成炉気導入
管の炉内開口端より1m以上隔った位置に開口させ、炉
内ガスの採取および分析により上記エンリッチカス装入
量を制御して該炉内ガスのカー・ボンポテンシャルを所
定値に維持するよう構成したことを%改とする連続式焼
結炉。
(1) A continuous double-densification furnace for FC powder metallurgy, which is equipped with a dewaxing section, a sintering section, and a cooling section, and the in-furnace gas sampling pipe for analysis is
A filter is installed between the central position of the sintering part and a position spaced from the central position in the direction of the length of the furnace by a length equivalent to ten or more of the total length of the sintering part, and a filter is installed in the furnace gas sampling tube 1174.
A carbon potential measuring meter is installed at 110 points, and at least one carbon potential measuring meter is installed at a position spaced apart by a length corresponding to 10 to 20% of the length of the sintered part toward the rear of the furnace from the installation position of the in-furnace gas sampling pipe. Connect the inlet pipe for endothermic shift reactor air as a protective atmosphere, and open the enriched gas charging pipe at a position 1 m or more away from the open end of the shift reactor air inlet pipe to collect the in-furnace gas. and a continuous sintering furnace configured to maintain the carbon potential of the gas in the furnace at a predetermined value by controlling the amount of enriched gas charged through analysis.
JP12204483A 1983-07-05 1983-07-05 Continuous sintering furnace Pending JPS6013002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12204483A JPS6013002A (en) 1983-07-05 1983-07-05 Continuous sintering furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12204483A JPS6013002A (en) 1983-07-05 1983-07-05 Continuous sintering furnace

Publications (1)

Publication Number Publication Date
JPS6013002A true JPS6013002A (en) 1985-01-23

Family

ID=14826214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12204483A Pending JPS6013002A (en) 1983-07-05 1983-07-05 Continuous sintering furnace

Country Status (1)

Country Link
JP (1) JPS6013002A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190103A (en) * 1987-01-30 1988-08-05 Mitsubishi Metal Corp Method for controlling carbon potential in sintering furnace
CN102962461A (en) * 2012-11-27 2013-03-13 浙江一火科技有限公司 Metal injection molded continuous sintering furnace
CN102974827A (en) * 2012-11-27 2013-03-20 浙江一火科技有限公司 Method for manufacturing outer shuttle of rotating shuttle by flowing warm pressing forming method
JP2018505376A (en) * 2015-01-08 2018-02-22 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft Apparatus and method for controlling a sintering process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190103A (en) * 1987-01-30 1988-08-05 Mitsubishi Metal Corp Method for controlling carbon potential in sintering furnace
CN102962461A (en) * 2012-11-27 2013-03-13 浙江一火科技有限公司 Metal injection molded continuous sintering furnace
CN102974827A (en) * 2012-11-27 2013-03-20 浙江一火科技有限公司 Method for manufacturing outer shuttle of rotating shuttle by flowing warm pressing forming method
CN102962461B (en) * 2012-11-27 2014-10-08 浙江一火科技有限公司 Metal injection molded continuous sintering furnace
JP2018505376A (en) * 2015-01-08 2018-02-22 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft Apparatus and method for controlling a sintering process

Similar Documents

Publication Publication Date Title
JP4225574B2 (en) Method for producing powder mainly composed of iron
USRE29881E (en) Method of vacuum carburizing
DE10218491B3 (en) Process for avoiding the spontaneous combustion of combustible dusts in process exhaust gases, device for carrying out the process and silicon wafer available from this process
JPS6013002A (en) Continuous sintering furnace
JP2001208658A (en) Device for removing tar from coal gas
DE60313177T2 (en) METHOD AND DEVICE FOR PRODUCING CARBON PRODUCTS FROM CARBON PREPARED PRODUCTS
Osborne et al. The oxidation of zinc vapor in CO-CO2-N2 gas mixtures
KR20220141783A (en) Heat treatment of coke produced from carbon oxides
Passaretti et al. The preparation of amorphous RuS2 at ambient temperature
JPS5952697B2 (en) How to operate a copper refining furnace
JP3188301B2 (en) Cleaning method for zinc oxide whisker manufacturing equipment
DE3835825C1 (en)
EP1007475B1 (en) Filtering system for reactor converting uf 6? into uranium oxide
CN220224262U (en) Titanium wire dish annealing stove
DE3142548A1 (en) Process for producing oxide layers on substrate wafers consisting of silicon or another oxidisable material in an extremely dry oxygen atmosphere or in an oxygen atmosphere with hydrogen chloride gas added
KR101495517B1 (en) Heating Device using during carbothermal reduction of ghraphitizion processing apparatus
JP2004182520A (en) Apparatus for manufacturing high purity magnesium oxide and method of manufacturing high purity magnesium oxide fine powder using the same
DE102019220416A1 (en) Method for operating a fresh air supply to a metallurgical plant and also a metallurgical plant
Svjażin et al. Solubility of nitrogen in liquid iron-carbon alloys
WO1999049953A1 (en) Method for cleaning metal or ceramic equipment and machine parts soiled with polymer deposits
Hildebrand Magnetic analysis of precipitation and coarsening of carbides in steels
Weller et al. Low-temperature Heat Capacities and Entropies at 298.15° K of Lead Molybdate and Lead Tungstate
JP2005127767A (en) Method for treating exhaust gas in furnace for melting radioactive waste
DE3003000A1 (en) Filter for removing dust from hot gases - has layer of material resistant to temp. exceeding 800 degrees C., esp. for treating gas from metallurgical reactors, coal gasifiers etc.
SU1401332A1 (en) Apparatus for sampling gas