JPS60129971A - Equalization system of reproduced waveform - Google Patents

Equalization system of reproduced waveform

Info

Publication number
JPS60129971A
JPS60129971A JP23639483A JP23639483A JPS60129971A JP S60129971 A JPS60129971 A JP S60129971A JP 23639483 A JP23639483 A JP 23639483A JP 23639483 A JP23639483 A JP 23639483A JP S60129971 A JPS60129971 A JP S60129971A
Authority
JP
Japan
Prior art keywords
waveform
pulse
reproduced
equalization
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23639483A
Other languages
Japanese (ja)
Inventor
Kazunori Moriya
森谷 和典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23639483A priority Critical patent/JPS60129971A/en
Publication of JPS60129971A publication Critical patent/JPS60129971A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/027Analogue recording
    • G11B5/035Equalising

Landscapes

  • Digital Magnetic Recording (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Filters And Equalizers (AREA)
  • Networks Using Active Elements (AREA)

Abstract

PURPOSE:To improve the recording density by subtracting a waveform obtained through the proper adjustment of the amplitude of a second order differentiation of a reproduced waveform from the original reproduced waveform so as to apply more pulse slimming than that executed conventionally thereby decreasing the pattern peak shift. CONSTITUTION:A reproduced isolate pulse read magnetically from a recording medium is expressed in terms of a time function ''(t). The said reproduced isolate pulse ''(t) is differentiated by second order, a waveform K1''(t) obtained by multiplying a weight K1 to the result and a waveform ''(t)-K1''(t) is obtained by subtracting the K1''(t) from the original reproduced isolate pulse pulse waveform ''(t). Thus, pulse slimming is realized without producing the decrease of the amplitude before and after the waveform equalization.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は磁気記録装置などにおける再生波形等化方式に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a reproduction waveform equalization method in a magnetic recording device or the like.

[発明の技術的背景とその問題点] 現在磁気記録装置は大容量化の一途をたどっている。大
容量化は線密度の向上及びトラック密度の向上の2面よ
り考えることができる。今ここでは線密度の向上につい
て注目する。
[Technical background of the invention and its problems] At present, the capacity of magnetic recording devices continues to increase. Increasing capacity can be considered from two aspects: improvement in linear density and improvement in track density. Now, we will focus on improving the linear density.

線密度が向上するにつれて隣接磁化反転の間隔が小さく
なり、波形干渉が著しくなる。この波形干渉を抑制する
ために波形等化を行い、再生波形の品質を向上させるこ
とが行なわれる。具体的には回路的に孤立パルスの裾野
の広がりをせばめること(以後パルススリミングと称す
)等といった操作が施される。この等化方式としては多
数の方式が既に提案されている。ここではそのうちから
一般に広く用いられている余弦形等化方式について説明
する。
As the linear density increases, the interval between adjacent magnetization reversals becomes smaller, and waveform interference becomes more significant. In order to suppress this waveform interference, waveform equalization is performed to improve the quality of the reproduced waveform. Specifically, an operation such as narrowing the width of the base of the isolated pulse (hereinafter referred to as pulse slimming) is performed using a circuit. Many methods have already been proposed as this equalization method. Here, the cosine equalization method, which is generally widely used, will be explained.

第1図は余弦形等化方式の原理を説明する図である。第
1図(a)は記録媒体上から磁気ヘッドによって読み出
された孤立パルスを示している。この今生孤立パルス波
形を時間関数j(りで表わされるものとする。(b)は
この再生孤立パルスを基準としてその再生孤立パルスに
時間τだけの進み及び遅れを与えて、その振幅に重みに
/2を乗じた2つのK K 波形、つまり時間関数的(呵は−fCt+τ)及びT1
(t+τ)を示している。(c)は上記再生孤立パルス
に時間的進み及び遅れを与えて重みづけした2つのに 波形を加え合せたもの、つまt)Tげ(t+τ)+f(
t−τ))を示している。(d)は(a)の基準となる
再生孤立パルスから(C)の波形を減じたもの、つまり
K f(り−7(j(t+τ)+f(t−τ))示し、これ
が余弦形の等化を施すことによって得る最終的な孤立波
形である。上記一連の操作を施すことにより再生孤立パ
ルスの裾野部分が取り除かれ、細化された孤立パルスを
得ることができる。
FIG. 1 is a diagram explaining the principle of the cosine equalization method. FIG. 1(a) shows isolated pulses read out from a recording medium by a magnetic head. Let this solitary pulse waveform be expressed by a time function j (ri). (b) is based on this regenerated solitary pulse, gives the regenerated solitary pulse a lead and a delay of time τ, and changes its amplitude to a weight. The two K K waveforms multiplied by
(t+τ) is shown. (c) is the sum of the waveforms of the two weighted reproduced isolated pulses given time advance and delay, that is, t) T (t + τ) + f (
t-τ)). (d) shows the waveform of (C) subtracted from the reproduction isolated pulse that is the reference of (a), that is, K f(ri-7(j(t+τ)+f(t-τ)), which is a cosine-shaped This is the final isolated waveform obtained by applying equalization. By performing the above series of operations, the base portion of the reproduced isolated pulse is removed, and a narrowed isolated pulse can be obtained.

しかし、上記説明でもわかるとうり、余弦形等化方式で
は等死後の孤立パルス波形の振幅が等化前の再生孤立パ
ルス波形の振幅よりも小さくなってしまう。そのため復
調の際にスレッシュホールドレベルの設定がきびしくな
るという欠点を有している。
However, as can be seen from the above description, in the cosine equalization method, the amplitude of the isolated pulse waveform after iso-death is smaller than the amplitude of the reproduced isolated pulse waveform before equalization. Therefore, it has the disadvantage that the threshold level must be set more strictly during demodulation.

[発明の目的] 本発明は上述した従来の波形等化方式の欠点を改良した
もので、振幅の低下を起こすことなくパルススリミング
を実行する波形等化方式を提供することを目的としたも
のである。
[Object of the Invention] The present invention improves the drawbacks of the conventional waveform equalization method described above, and aims to provide a waveform equalization method that performs pulse slimming without causing a decrease in amplitude. be.

[発明の概要] 本発明は磁気記録装置における再生、復調過程において
、再生波形からその再生波形を2階微分した波形に適切
な振幅調整を施した波形を減するといった波形等化を施
すことにより、波形等化の前と後において振幅の減少を
生ずることなくパルススリミングを実現できるようにし
たものである。
[Summary of the Invention] The present invention performs waveform equalization during reproduction and demodulation processes in a magnetic recording device by subtracting a waveform obtained by appropriately adjusting amplitude from a reproduced waveform to a waveform obtained by second-order differentiation of the reproduced waveform. , it is possible to realize pulse slimming without causing a decrease in amplitude before and after waveform equalization.

[発明の効果] 本発明によれば、振幅を減少させることなくパルススリ
ミングを実現することができる。その結果、波形干渉に
よる再生波形のピークの位置ずれ(以後パターンピーク
シフトと称す)を小さくすることができ、ここに生ずる
余裕分だけ記録密度を向上させることができる。
[Effects of the Invention] According to the present invention, pulse slimming can be realized without reducing the amplitude. As a result, the positional shift of the peak of the reproduced waveform due to waveform interference (hereinafter referred to as pattern peak shift) can be reduced, and the recording density can be improved by the margin generated.

[発明の実施例] 本発明の詳細な説明する。第2図がこの発明による等化
方式の原理を説明する図である。(a)は記録媒体上か
ら磁気によって読み出された再生孤立パルスを示してお
り、時間関数f (t)で表わされるものとする。(b
) flこの再生孤立パルスを2階微分して、その振幅
に重みKlを乗じた波形であり、Kxf″(1)と表わ
される。(C)は(a)の再生孤立パルス波形から(b
)の波形を減じた波形であり、f(t) K1 f’(
t)と表わされる。この(c)の波形がこの発明の等化
を施すことによって最終的に得られる孤立波形である。
[Embodiments of the Invention] The present invention will be described in detail. FIG. 2 is a diagram explaining the principle of the equalization method according to the present invention. (a) shows a reproduced isolated pulse magnetically read out from a recording medium, and is assumed to be expressed by a time function f (t). (b
) fl This is a waveform obtained by second-order differentiating this reproduced isolated pulse and multiplying its amplitude by a weight Kl, and is expressed as Kxf'' (1).
) is the waveform obtained by subtracting the waveform of f(t) K1 f'(
t). This waveform (c) is an isolated waveform finally obtained by applying the equalization of the present invention.

(a)の波形等化前の再生孤立パルスと(C)の波形等
化後の孤立パルスとを比較すれば、振幅が増加し、パル
ススリミングが行われているのは明がである。
Comparing the reproduced isolated pulse before waveform equalization in (a) and the isolated pulse after waveform equalization in (C), it is clear that the amplitude has increased and pulse slimming has been performed.

以下(二本発明による波形等化と余弦形等化との比較を
示す。
A comparison between waveform equalization and cosine equalization according to the present invention is shown below.

まず本発明の等化方式で孤立パルスを凝似ピークを発生
することなしにどこまでパルススリミングできるかとい
うことを考える。
First, let us consider to what extent an isolated pulse can be slimmed by the equalization method of the present invention without generating a condensed peak.

ここに再生孤立パルスはローレンツ形でと示されると仮
定する。すると よって、本発明の波形等化を施した後の孤立パルス波形
Fl(t)は、 Fl(t) = f(t) −Kdτt)この等死後孤
立パルス波形Fl(t)が凝似ピークを持たないために
はF2’(t) = 0の解が1==Q以外に存在しな
ければよい。この条件を満たすためにはであればよい。
Assume here that the regenerated solitary pulse is expressed in Lorentzian form. Therefore, the isolated pulse waveform Fl(t) after applying the waveform equalization of the present invention is as follows: Fl(t) = f(t) - Kdτt) This post-mortem isolated pulse waveform Fl(t) has a condensation peak. In order to avoid this, there must be no solution for F2'(t) = 0 other than 1 = = Q. It is sufficient to satisfy this condition.

今に=暑の臨界の条件を持ったとすると波形等化後の孤
立パルス波形は(81式より この時の等死後孤立波形の形状を第3図(i)に、等死
後孤立波形の振幅を等化前の孤立パルスの振幅に正規化
したものを第4図(、i、)に示す。比較のために等化
前の再生孤立波形を(h)及び(k)に示すが、振幅が
ヱ倍になり、半値幅も減少していることがわかる。
Assuming that we have the critical condition of hot weather, the isolated pulse waveform after waveform equalization is (from equation 81). The amplitude normalized to the amplitude of the isolated pulse before equalization is shown in Figure 4 (,i,).For comparison, the reproduced isolated waveform before equalization is shown in (h) and (k). It can be seen that the value has increased by a factor of 1, and the half width has also decreased.

一次に余弦形等化方式について考える。等死後の孤立パ
ルスp(t)は ・・・(6) と示される。この余弦形等化を施した時の凝似ビ一りを
生じない条件は で与えられる。今この凝似ピークを生じない条件の臨界
でイコールが成り立つ場合を考えて、1(=0.5とす
るとて=1.37゜ この条件を(6)式に与えて ・・・(γ) を得る。この余弦等化後孤立波形の形状を第3図(j)
に、振幅を等化前の孤立パルスの振幅に正規化したもの
を第4図(m)に示す。第3図より明らかなように余弦
等化を施した孤立パルスは等化前孤立パルスよりも振幅
が小さくなり、半値幅は本発明による等化を施した場合
の孤立パルスよりも大きな値となる。
Let us consider the first-order cosine equalization method. The isolated pulse p(t) after iso-death is shown as...(6). The conditions under which no condensation bias occurs when this cosine equalization is applied are given by: Now, considering the case where equality holds at the criticality of the condition that does not produce this condensed peak, 1 (= 0.5 = 1.37°) Applying this condition to equation (6)... (γ) The shape of the isolated waveform after cosine equalization is shown in Figure 3 (j).
FIG. 4(m) shows the amplitude normalized to the amplitude of the isolated pulse before equalization. As is clear from Figure 3, the amplitude of the isolated pulse subjected to cosine equalization is smaller than that of the isolated pulse before equalization, and the half-width is larger than that of the isolated pulse subjected to equalization according to the present invention. .

上記余弦等化を施した時の凝似ピークを生じない条件で
Kを0.5よりも大きな値とすれば、半値幅は減少し、
本発明による等化方式の場合の値に近づくが、振幅の減
少が著しくなる。またKを0.5よりも小さな値とすれ
ば、振幅は増大するが半値幅も増大し、等化前孤立パル
スの形状に近づくのみであす、波形等化の効果が小さく
なる。
If K is set to a value larger than 0.5 under conditions that do not produce condensed peaks when performing the above cosine equalization, the half-width decreases,
Although the value approaches that of the equalization method according to the present invention, the amplitude decreases significantly. If K is set to a value smaller than 0.5, the amplitude will increase, but the half-width will also increase, and the shape will only approach that of the isolated pulse before equalization, but the effect of waveform equalization will become smaller.

次に、本発明の波形等化方式を実現するための回路構成
の一例を第5図に示す。第5図において1は入力端で再
生波形が入力される。2はタイミング調整回路、3は2
階数分器、4け利得調整回路、5は差動増幅器で6が等
死後の波形の出力端である。
Next, FIG. 5 shows an example of a circuit configuration for realizing the waveform equalization method of the present invention. In FIG. 5, reference numeral 1 denotes an input terminal to which a reproduced waveform is input. 2 is a timing adjustment circuit, 3 is 2
A rank divider, a 4-digit gain adjustment circuit, 5 is a differential amplifier, and 6 is the output terminal of the waveform after equalization.

1に入力された再生信号は2つに分割されて、一方は2
のタイミング調整回路で一定時間遅延されて5の差動増
幅器に到達する。分割された他方の再生信号は302階
微分器で2階数分され4の利得調整回路で適当な振幅に
されて5の差動増幅器に入力される。5の差動増幅器に
おいて2つの入力波形の減算がなされ6に出力される。
The playback signal input to 1 is divided into two parts, one of which is
The signal is delayed for a certain period of time by the timing adjustment circuit 5 and reaches the differential amplifier 5. The other divided reproduced signal is divided into two orders by a 302-order differentiator, adjusted to an appropriate amplitude by a gain adjustment circuit 4, and inputted to a differential amplifier 5. The two input waveforms are subtracted in the differential amplifier 5 and output to 6.

2のタイミング調整回路で遅延される時間は3の2階数
分回路と4の利得調整回路で生じる時間遅れ量に等しく
なるように設定する。この上うな回路構成にすれば前記
本発明による波形等化を実現することができる。
The time delayed by the timing adjustment circuit No. 2 is set to be equal to the amount of time delay caused by the second order circuit No. 3 and the gain adjustment circuit No. 4. Moreover, with such a circuit configuration, the waveform equalization according to the present invention can be realized.

以上述べたように、本発明は再生波形からその再生波形
の2階数分波形の振幅を適当に調整した波形を減じるこ
とにより、従来実行されている以上にパルススリミング
を行い、パターンピークシフトを減少させ、記録密度の
向上を実現する。
As described above, the present invention performs pulse slimming more than conventionally performed and reduces pattern peak shift by subtracting from the reproduced waveform a waveform in which the amplitude of the second-order waveform of the reproduced waveform is appropriately adjusted. This will improve recording density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は余弦形等化方式の原理を説明するための図、第
2図は本発明による等化方式の原理を説明するための図
、第3図及び第4図は余弦形等化方式と本発明による等
化方式の効果を比較するための図、第5図は本発明によ
る等化方式を実現するための回路構成の一実施例である
。 2・・・タイミング調整 、3・・・2階数分器4・・
・利得調整回路 代理人 弁理士 則 近 憲 佑(ほか1名)第 1 
図 第 2 図 第 3 図 第 4 図 第 5 図
Fig. 1 is a diagram for explaining the principle of the cosine equalization method, Fig. 2 is a diagram for explaining the principle of the equalization method according to the present invention, and Figs. 3 and 4 are diagrams for explaining the principle of the cosine equalization method. FIG. 5 is a diagram for comparing the effects of the equalization method according to the present invention and FIG. 5 is an example of a circuit configuration for realizing the equalization method according to the present invention. 2...Timing adjustment, 3...Second floor number divider 4...
・Gain Adjustment Circuit Agent Patent Attorney Noriyuki Chika (and 1 other person) No. 1
Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 磁気記録装置における再生、復調過程において、再生波
形からその再生波形の2階微分波形に適当方式。
An appropriate method for converting a reproduced waveform into a second-order differential waveform of the reproduced waveform during the reproduction and demodulation processes in a magnetic recording device.
JP23639483A 1983-12-16 1983-12-16 Equalization system of reproduced waveform Pending JPS60129971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23639483A JPS60129971A (en) 1983-12-16 1983-12-16 Equalization system of reproduced waveform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23639483A JPS60129971A (en) 1983-12-16 1983-12-16 Equalization system of reproduced waveform

Publications (1)

Publication Number Publication Date
JPS60129971A true JPS60129971A (en) 1985-07-11

Family

ID=17000112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23639483A Pending JPS60129971A (en) 1983-12-16 1983-12-16 Equalization system of reproduced waveform

Country Status (1)

Country Link
JP (1) JPS60129971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228534A2 (en) * 1985-12-31 1987-07-15 International Business Machines Corporation Electrical apparatus for increasing digital data density by signal processing
JPS62219327A (en) * 1986-03-20 1987-09-26 Hitachi Maxell Ltd Solid additive for magnetic recording medium and magnetic recording medium using such additive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228534A2 (en) * 1985-12-31 1987-07-15 International Business Machines Corporation Electrical apparatus for increasing digital data density by signal processing
JPS62219327A (en) * 1986-03-20 1987-09-26 Hitachi Maxell Ltd Solid additive for magnetic recording medium and magnetic recording medium using such additive

Similar Documents

Publication Publication Date Title
US4219890A (en) Digital signal regulation system
JPS5928205A (en) Waveform shaping circuit
JPH0458112B2 (en)
JPS60129971A (en) Equalization system of reproduced waveform
CA1171522A (en) Multitrack recording with minimal intermodulation
Melbye et al. Nonlinearities in high density digital recording
Chi Characterization and spectral equalization for hight-density disk recording
US4323932A (en) Readback pulse compensator
US5467232A (en) Magnetic recording and reproducing method using phase discrimination and apparatus therefor
Chi Spacing loss and nonlinear distortion in digital magnetic recording
JPH04177603A (en) Magnetic disk drive
JPS6353609B2 (en)
JPH0376522B2 (en)
JPS63195809A (en) Reading circuit for magnetic recorder
JPS58182115A (en) Waveform equalizing circuit
JP2690946B2 (en) MIG head waveform reproducing device
US3778792A (en) Blanking circuit for high resolution data recovery systems
SU1195378A1 (en) Method of recording digital information signals on magnetic medium
JPH07320207A (en) Data recording method, and method and device for recording/reproducing data
JPS59140613A (en) Compensating method for waveform
JPS613373A (en) Demodulating circuit
JP2675018B2 (en) Magnetic recording method for digital signals
JPS6243246B2 (en)
JPH05325512A (en) Magnetic recording device and magnetic recording medium
JPH0640367B2 (en) Perpendicular magnetic recording / reproduction equalization method