JPS60129659A - Air-fuel ratio detecting apparatus - Google Patents

Air-fuel ratio detecting apparatus

Info

Publication number
JPS60129659A
JPS60129659A JP58238262A JP23826283A JPS60129659A JP S60129659 A JPS60129659 A JP S60129659A JP 58238262 A JP58238262 A JP 58238262A JP 23826283 A JP23826283 A JP 23826283A JP S60129659 A JPS60129659 A JP S60129659A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
oxygen
fuel
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58238262A
Other languages
Japanese (ja)
Other versions
JPH0452895B2 (en
Inventor
Shintaro Hirate
平手 信太郎
Tetsumasa Yamada
哲正 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP58238262A priority Critical patent/JPS60129659A/en
Priority to EP84308782A priority patent/EP0147989A3/en
Priority to US06/682,220 priority patent/USH427H/en
Publication of JPS60129659A publication Critical patent/JPS60129659A/en
Publication of JPH0452895B2 publication Critical patent/JPH0452895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Abstract

PURPOSE:To make it possible to accurately detect an air-fuel ratio, by providing a solid electrolyte oxygen concentration cell element provided with a porous electrode and a solid electrolyte oxygen pump element to both terminal surfaces of an oxygen ion conductive solid electrolyte. CONSTITUTION:A small gap (f) is formed between the surface of an oxygen pump element 3 in the side of the porous platinum electrode layer 4 thereof and the surface of an oxygen concn. cell element 10 in the porous platinum layer 12 thereof and both elements are mutually fixed at foot parts thereof through a heat resistant insulating spacer 19 in order to be arranged in opposed relation to each other within an exhaust pipe 1. In detecting the change in a resistance value, an arbitrary reference point is provided to the middle of a max. resistance value and a min. one so as to sense a resistance value smaller or larger than said reference point. Then, when operation is performed in a fuel super-concn. region, the resistance value of a metal oxide semiconductor 17 is smaller than said reference point and the output signal corresponding to the pump current of the oxygen pump element 3 is detected on the basis of this information at this time to enable control or measurement in the fuel super-concn. region. Similarly, control and measurement in a fuel dilute region can be performed.

Description

【発明の詳細な説明】 [〃野] この発明は、内鴬機関、ガス燃焼機器などの燃焼装置の
排気ガス中の酸素濃度もしくは空燃比を測定もしくは制
御するための検知装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [〃No] The present invention relates to a detection device for measuring or controlling oxygen concentration or air-fuel ratio in exhaust gas of a combustion device such as an internal combustion engine or gas combustion equipment.

[従来技術] 従来よりイオン伝導性固体電解質(例えば安定化ジルコ
ニア)に多孔質電極層(例えば白金製多孔質層)を被着
して轡成された酸素センサを用い、排気ガスの酸素分用
と、空気の酸素分圧との差によって生じる起電力の変化
によって理論空燃比、付近の燃焼状態を検知することに
より、例えば自動車の機関を理論空燃比で運転するよう
に制御することは一般に知られ、ている。
[Prior art] Conventionally, an oxygen sensor made by depositing a porous electrode layer (for example, a porous layer made of platinum) on an ion-conducting solid electrolyte (for example, stabilized zirconia) has been used to detect oxygen in exhaust gas. It is generally known that, for example, an automobile engine can be controlled to operate at the stoichiometric air-fuel ratio by detecting the stoichiometric air-fuel ratio and the combustion state in the vicinity based on the change in electromotive force caused by the difference between the oxygen partial pressure and the oxygen partial pressure of the air. Being and being.

ところで上記酸轡セ1ンサは空気と燃料との重量比1率
である運転中、警比(A/F)が理障空燃比14.7で
ある時は大きな変化出力が得られるが他の運転空燃比域
での変化はほどんとなく、理論空燃比以外の空燃比で機
関を運転する場合には1. ii[!酸素センサの出力
を利用することができない。
By the way, the above-mentioned acid sensor can obtain a large change in output when the air/fuel ratio (A/F) is an unreasonable air-fuel ratio of 14.7 during operation when the weight ratio of air and fuel is 1; There is little change in the operating air-fuel ratio range, and when the engine is operated at an air-fuel ratio other than the stoichiometric air-fuel ratio, 1. ii [! Oxygen sensor output cannot be used.

特開昭58−153155号において、板状の酸素イオ
ン導電性固体電解質の先側の両面に電極層を設けた素子
を、2枚間隔をおいて平行状に配して上記先側に間隙部
を段(プで該画素子を固定し、一方の素子を酸素ポンプ
素子、他方の素子を周囲雰囲気と前記間隙部との酸素I
I度差ににって作動J−る酸素濃淡電池素子とした酸素
濃度検知装置を提案している。かかる酸素i11廉検知
装置は応答性はよいが、出力信号に対応する理論空燃比
数14.7より低い燃料過濃域で作動させると燃料希薄
域にお【〕る場合と同じ向きの出力を発生する特性をも
っことが判った。すなわち出力に対して2つの空燃比が
対応するようになるため空燃比制御が燃料過濃域、ある
いは燃料希薄域のいずれであるかはっきりしている場合
等にしか適用できないという問題点があった。
In JP-A No. 58-153155, two elements each having an electrode layer provided on both sides of the front side of a plate-shaped oxygen ion conductive solid electrolyte are arranged in parallel with a gap between them, and a gap is formed on the front side. The pixel elements are fixed with a step (pump), one element is used as an oxygen pump element, and the other element is used as an oxygen pump between the ambient atmosphere and the gap.
We have proposed an oxygen concentration detection device using an oxygen concentration battery element that operates depending on the degree difference. Although such an oxygen i11 low-cost detection device has good responsiveness, if it is operated in a rich fuel region that is lower than the stoichiometric air-fuel ratio number 14.7 corresponding to the output signal, it will produce an output in the same direction as when it is in a lean fuel region. The characteristics that occur are now clear. In other words, since two air-fuel ratios correspond to the output, there is a problem that air-fuel ratio control can only be applied in cases where it is clear whether the area is rich in fuel or lean in fuel. .

[発明の目的] 本発明の第1目的は内燃機関等の燃焼装置の運転空燃比
(A/F)が燃料過1IilI域から燃料希薄域までの
全域または一部区域において正しく検知できる空燃比検
知装置の提供であり、第2の目的は、空燃比のフィード
バック制御を行う場合においてM度に<かつ容易なフィ
ードバック制御ができる利点を有する空燃比検知装置を
提供することである。
[Object of the Invention] The first object of the present invention is to provide an air-fuel ratio detection system that can correctly detect the operating air-fuel ratio (A/F) of a combustion device such as an internal combustion engine in the entire region or a part of the region from the fuel excess region to the fuel lean region. A second object of the present invention is to provide an air-fuel ratio detection device that has the advantage of being able to easily perform feedback control in M degrees when performing feedback control of the air-fuel ratio.

[発明の構成コ 本発明の空燃比検知装置は、酸素イオン伝導性固体電解
質の両端面に多孔性電極を設けた固体電解質酸素濃淡電
池素子および固体電解質酸素ポンプ素子を備え、その少
なくとも一方の片側面に該多孔性電極の部分を間口する
窓を有し、且つ内部に電熱ヒータを内蔵した高熱伝導性
素地を設け、前記酸素濃淡電池素子または酸素ポンプ素
子の前記高熱伝導性素地側面に金属酸化物半導体を設(
〕、前記酸素8I淡電池素子と前記酸素ポンプ素子とを
小間隙を介して対向配回し、前記金属酸化物半導体によ
り与えられ本電気□性質の変化と、前記酸素濃淡電池素
子の起電力または前記酸素ポンプ素子のポンプ電流のい
ずれかによって与えられる出力信号とにJ:り空燃比を
検知するJ:うにしたことを4i成とする。
[Structure of the Invention] The air-fuel ratio detection device of the present invention includes a solid electrolyte oxygen concentration battery element and a solid electrolyte oxygen pump element in which porous electrodes are provided on both end faces of an oxygen ion conductive solid electrolyte, and at least one piece thereof. A highly thermally conductive substrate having a window opening the porous electrode portion on the side surface and having a built-in electric heater therein is provided, and metal oxidation is applied to the side surface of the highly thermally conductive substrate of the oxygen concentration battery element or the oxygen pump element. Established physical semiconductors (
], the oxygen 8I dilute battery element and the oxygen pump element are arranged facing each other through a small gap, and the change in the electrical property given by the metal oxide semiconductor and the electromotive force of the oxygen concentration battery element or the Detecting the air-fuel ratio based on the output signal given by one of the pump currents of the oxygen pump element is defined as a 4i configuration.

[発明の効果] 本発明の空燃比検知装置は、上記構成にJ、りつぎの効
□果を秦する。 □ 1つのセン号ブロータを用いて空燃比(△/[)を−判
過濃域から燃料希薄域までの全域もしくは一部区域にお
いて正しく゛検知することができる。
[Effects of the Invention] The air-fuel ratio detection device of the present invention has the following effects in the above configuration. □ The air-fuel ratio (△/[) can be accurately detected in the entire region or in a part of the range from the fuel-rich region to the fuel-lean region by using one sen brotor.

[実庸例] つぎに本発明を図に示す一実施例に基づぎ説明する。 
・ 第1図〜第6図は本発明の実施例を示j。
[Practical Example] Next, the present invention will be explained based on an example shown in the drawings.
- Figures 1 to 6 show embodiments of the present invention.

′1は燃焼装置である内燃機関の排気管、2は該排気管
1]輻に配設された空燃比検知装置の検知枠部分である
。3は空燃比検知極部分2の固体電解5− 質酸素ポンプ素子で、両側面にそれぞれ厚膜技術を用い
て約20μの厚さの多孔質白金電極層4および5を設(
)た厚さが約0.5mmの平板状のイオン伝導性固体電
解質(例えば安定化ジルコニア) 6と、イオン伝導性
固体電解質6の片側面、例えば多孔質白金電極層5の設
()られた側の面に、気密に取付けられた多孔質白金電
極層5の部分を塞がないように多孔質白金電極層5の形
状に適応した開口である窓部aを有する□厚さが約(i
、’251mの平板状で熱伝導性に優れ、電気絶縁性の
蔀材(例えばアルミナやスピネルなど)よりなる高熱伝
導性素地7と、高熱伝導性素地7のイオン伝導性固体電
解質6の側の面とは反対側の面で窓部aの外周部で窓部
aの外周縁部と高熱伝導性素地7の外周縁部に□間隙を
有するよう設けられIC電熱ヒータ8と、電熱ヒータ8
が設けられた高熱伝導性素地7の面で電熱ヒータ8を内
設し、外部と連断するよう設けられた高熱伝導性素地7
と同様の多孔質白金電極層5を開口する窓部1)を有し
た平板状め高熱伝6− 導性素地9とにJ:り構成されている。10は空燃比検
知枠部分2の固体電解質酸素濃淡電池素子で、両側面に
前記多孔質白金電極層4および5と同様に厚膜技術を用
いて多孔質白金電極層11J5よび12を設けて構成さ
れた前記イオン伝導性固体電解質6と同様の平板状のイ
オン伝導性固体電解質13と、前記高熱伝導性素地7と
同様にイオン伝導性固体電解質13の片側面である多孔
質白金電極層11の設けられた側の面に取付(プられた
多孔質白金電極層11の部分を開口J8窓部Cを有した
高熱伝導性素地14と、前記電熱ヒータ8ど同様に高熱
伝導性素地14のイオン伝導性固体電解質13の側の面
とは反対側の面で窓部Cの外周部に設けられた電熱ヒー
タ15と、電熱ヒータ15の設けられた高熱伝導性素地
14の面で、電熱ヒータ15を内設し、外部と遮断する
よう設【)られた高熱伝導性素地14と同様多孔質白金
電極層11を開口する窓部dを有した平板状の高熱伝導
性素地16と、高熱伝導性素地16の電熱ヒータ15を
内設した側の面とは反対側の面の窓部dの上部で厚膜技
術を用いて約50μはどの厚さに設けられた金属酸化物
半導体(例えばチタニアエレメント)17とから構成さ
れている。なお前記酸素ポンプ素子3および酸素濃淡電
池素子1olL:設けられた各電気索子(4,5,8,
11,12,15,17)には外部に導通すべくそれぞ
れにリード線素子18が厚膜技術により設けである。
1 is an exhaust pipe of an internal combustion engine, which is a combustion device, and 2 is a detection frame portion of an air-fuel ratio detection device disposed in the exhaust pipe 1. 3 is the solid electrolytic oxygen pump element of the air-fuel ratio sensing electrode part 2, and porous platinum electrode layers 4 and 5 with a thickness of approximately 20μ are provided on both sides using thick film technology (
) with a thickness of about 0.5 mm and a flat plate-shaped ion conductive solid electrolyte (e.g. stabilized zirconia) 6, and one side of the ion conductive solid electrolyte 6, for example, a porous platinum electrode layer 5 is provided (). The side surface has a window a which is an opening adapted to the shape of the porous platinum electrode layer 5 so as not to block the part of the porous platinum electrode layer 5 attached airtightly.
, a 251 m flat plate-like high thermal conductive substrate 7 made of an electrically insulating material (such as alumina or spinel), and a high thermal conductive substrate 7 on the side of the ion conductive solid electrolyte 6 of the high thermal conductive substrate 7. An IC electric heater 8 and an electric heater 8 are provided at the outer periphery of the window a on the opposite side to the surface with a □ gap between the outer periphery of the window a and the outer periphery of the highly thermally conductive substrate 7.
An electric heater 8 is installed inside the surface of the highly thermally conductive substrate 7 provided with the high thermally conductive substrate 7, which is connected to the outside.
It is constructed of a flat plate having a window 1) opening a porous platinum electrode layer 5 similar to that of 6 and a conductive base 9. Reference numeral 10 denotes a solid electrolyte oxygen concentration battery element of the air-fuel ratio detection frame portion 2, which is constructed by providing porous platinum electrode layers 11J5 and 12 on both sides using the thick film technology in the same manner as the porous platinum electrode layers 4 and 5. A flat plate-shaped ion conductive solid electrolyte 13 similar to the ion conductive solid electrolyte 6 and a porous platinum electrode layer 11 on one side of the ion conductive solid electrolyte 13 similar to the high thermal conductivity substrate 7. Attach the porous platinum electrode layer 11 to the surface on which the porous platinum electrode layer 11 is provided (the porous platinum electrode layer 11 is attached to a highly thermally conductive substrate 14 having an opening J8 window C, and ions of the highly thermally conductive substrate 14 like the electric heater 8 etc. An electric heater 15 is provided on the outer periphery of the window C on the surface opposite to the surface of the conductive solid electrolyte 13, and an electric heater 15 is provided on the surface of the highly thermally conductive base 14 on which the electric heater 15 is provided. A flat plate-shaped high thermal conductive substrate 16 having a window portion d opening the porous platinum electrode layer 11, similar to the high thermal conductive substrate 14 which is installed inside and isolated from the outside, A metal oxide semiconductor (for example, a titania element) is formed to a thickness of about 50μ using thick film technology on the surface of the substrate 16 opposite to the surface on which the electric heater 15 is installed. ) 17. Note that the oxygen pump element 3 and the oxygen concentration battery element 1olL: Each of the provided electric cords (4, 5, 8,
11, 12, 15, and 17) are each provided with a lead wire element 18 using thick film technology so as to be electrically conductive to the outside.

前記酸素ポンプ素子3の多孔質白金電極層4側の面と前
記酸素濃淡電池素子1Oの多孔質白金電極層12側の面
を0.1mm程度の間隔寸法の小間隙fを形成して排気
管1の内部で対向配置させるため足元部を耐熱性で絶縁
性のスペーサ(充填接着剤でよい)19を介して互いに
固定されている。スペーサ19により互いに固定された
酸素ポンプ素子3おにび酸素濃淡電池素子10の足元部
の外辺部にはねじ部20を有した支持台21が、耐熱性
で絶縁性である接着部材22により取付けられている。
A small gap f of about 0.1 mm is formed between the surface of the oxygen pump element 3 on the porous platinum electrode layer 4 side and the surface of the oxygen concentration battery element 1O on the porous platinum electrode layer 12 side to form an exhaust pipe. 1, the foot parts are fixed to each other via heat-resistant and insulating spacers 19 (filling adhesive may be used). A support base 21 having a screw portion 20 is attached to the outer edge of the foot of the oxygen pump element 3 and the oxygen concentration battery element 10, which are fixed to each other by a spacer 19, and is attached by a heat-resistant and insulating adhesive member 22. installed.

排気管1に設けられた空燃比検知枠部分2のセンサ取付
用ねじ部23に前記支持台21のねじ部20をねじ込む
ことにより空燃比検知枠部分2が排気管1に取付られて
いる。
The air-fuel ratio detection frame portion 2 is attached to the exhaust pipe 1 by screwing the threaded portion 20 of the support base 21 into the sensor mounting screw portion 23 of the air-fuel ratio detection frame portion 2 provided on the exhaust pipe 1.

ここで上記空燃比検知枠部分2を製造するのに、平板状
クイオン伝導性固体電解質である例えばジルコニア固体
電解質グリーンシートの両側面に多孔質白金電極層とそ
のリード線素子を厚膜技術を用いてそれぞれ所定のパタ
ーンでプリントし1.その一方側面で高熱伝導性素地で
ある例えば平板状で窓部を有したスピネル質の2枚のグ
リーンシートの間に、電熱ヒータとする白金質の抵抗体
およびそのリード線素子をはさんで積層圧着後一体焼結
することにより得たセラミック積層構造の酸素ポンプ素
子3と、酸素ポンプ素子3と同様の過程より形成された
素子の多孔質白金電極層を有しない面に、・例えばチタ
ニアなどの金属酸化物半導体用のリード線素子を厚膜技
術を用いて所定のパターンでプリントし焼結された酸素
濃淡電池素子10(金属酸化物の厚膜は上記素子を焼結
後、雰囲気焼成して形成する)とをシークネスゲージを
はさ9− んで重ね合わせにした状態でその足元部をスペーサ(耐
熱性はラミック質接着剤)19により接着固定すること
は有利である。
Here, to manufacture the air-fuel ratio detection frame part 2, a porous platinum electrode layer and its lead wire elements are formed on both sides of a flat ion-conducting solid electrolyte, such as a zirconia solid electrolyte green sheet, using thick film technology. 1. Print each with a predetermined pattern. On one side, a platinum resistor used as an electric heater and its lead wire element are sandwiched between two green sheets of a highly thermally conductive material such as spinel with a flat plate shape and a window. The oxygen pump element 3 has a ceramic laminated structure obtained by integrally sintering after pressure bonding, and the surface without the porous platinum electrode layer of the element formed by the same process as the oxygen pump element 3 is coated with a material such as titania. Oxygen concentration battery element 10 is made by printing lead wire elements for metal oxide semiconductors in a predetermined pattern using thick film technology and sintering them (the metal oxide thick film is made by sintering the above element and then firing it in an atmosphere). It is advantageous to bond and fix the foot portions of the two (forming) with a spacer (heat-resistant lamic adhesive) 19 in a state where they are placed one on top of the other with the seekness gauge in between.

24は、付属する電子制御装置部分の例であり、上記酸
素濃淡電池素子10の多孔質白金電極@11.12間に
発生する起電力eを抵抗(R1)を介して演算増幅器(
A)の反転入力端子に印加し、上記演算増幅器(A)の
非反転入力端子に印加されている基準電圧(Vr)と上
記起電力eとの差異に比例した上記演算増幅器(A>の
出力によりトランジスタ(Tr)を駆動して上記酸素ポ
ンプ索子3の多孔質白金電極層4.5間に流すポンプ電
流Tpを制御する機能を備えている。すなわち、上記起
電力eを一定値の基準電圧(Vr)に保つのに必要な上
記ポンプ電流II)を供給する作用をする。直流電源(
B)から供給される上記ポンプ電流I11に対応した出
力信号を出力端子25に得るために:抵抗(Ro)を備
えている。(C)はコンデンサである。また酸素濃淡電
池素子10が排気管110− 内で酸素部面の差に応じて生ずる金属酸化物半導体17
の抵抗値の変化を検知するための出力端子26を備えて
おり、刊気管1内で金属酸化物半導体17ど多孔質白金
電極層4.5および11.12を加熱する電熱ヒータ8
.15には、それぞれ加熱用の電源27および28が導
通されている。
24 is an example of an attached electronic control unit part, in which the electromotive force e generated between the porous platinum electrodes @ 11 and 12 of the oxygen concentration battery element 10 is transferred to an operational amplifier (
The output of the operational amplifier (A) is proportional to the difference between the reference voltage (Vr) applied to the inverting input terminal of A) and the non-inverting input terminal of the operational amplifier (A) and the electromotive force e. The device has a function of controlling the pump current Tp flowing between the porous platinum electrode layers 4.5 of the oxygen pump cord 3 by driving the transistor (Tr).That is, the electromotive force e is set as a constant value reference. It functions to supply the pump current II) necessary to maintain the voltage (Vr). DC power supply (
In order to obtain an output signal corresponding to the pump current I11 supplied from B) at the output terminal 25, a resistor (Ro) is provided. (C) is a capacitor. In addition, the oxygen concentration battery element 10 is a metal oxide semiconductor 17 generated in accordance with the difference in the oxygen area within the exhaust pipe 110.
The electric heater 8 heats the metal oxide semiconductor 17 and the porous platinum electrode layers 4.5 and 11.12 in the air tube 1.
.. Power sources 27 and 28 for heating are electrically connected to the power sources 15, respectively.

第7図および第8図は−に記第1図〜第6図に示した空
燃比検知装置の特性図である。
FIGS. 7 and 8 are characteristic diagrams of the air-fuel ratio detection device shown in FIGS. 1 to 6 shown in -.

第7図には出力端子26にて金属酸化物半導体17の抵
抗値の変化を示したもので、理論空燃比14.7より小
さい範囲の空燃比域(燃料過濃域)では小さな抵抗値を
示し、そして理論空燃比14.7付近で急激に増大し、
理論空燃比14.1より大きい範囲の空燃比域(燃料希
薄域)では、大ぎな抵抗値を示す。第8図は基準電圧(
Vr )を例えば20m V 一定にしたもので、起電
力eを20m Vにするべく理論空燃比14.7より小
さい範囲の空燃比域(燃料過11域)で上記汲み出し方
向のポンプ電流tpは空燃比の増大に対して減少し、理
論空燃比14.7より大きい範囲の空燃比域(燃料@V
ilffl )では上記ポンプ電流1pは空燃比の増大
に対して増大する。
Figure 7 shows the change in the resistance value of the metal oxide semiconductor 17 at the output terminal 26, and shows a small resistance value in the air-fuel ratio range (fuel rich range) smaller than the stoichiometric air-fuel ratio 14.7. and increases rapidly around the stoichiometric air-fuel ratio of 14.7,
In an air-fuel ratio range (fuel lean range) greater than the stoichiometric air-fuel ratio of 14.1, a large resistance value is exhibited. Figure 8 shows the reference voltage (
Vr) is kept constant at, for example, 20 mV, and in order to make the electromotive force e 20 mV, the pump current tp in the pumping direction is set at The air-fuel ratio range (fuel @ V
ilffl), the pump current 1p increases as the air-fuel ratio increases.

この実施例は第7図おJ:び第8図に示Jごとぎ特性を
利用するものである。
This embodiment utilizes the characteristics shown in FIGS. 7 and 8.

抵抗値の変化を検知する出力端子26については、最大
抵抗値と最小抵抗値との中間に任意の基準点であるP点
を設定し、抵抗値がP点J:り小さい時(燃料過濃域)
とP点より大ぎい時(燃料希薄域)を感知さゼるように
する。そこで」−記機関が燃料過濃域で運転された場合
は、上記金属酸化物半導体17の抵抗値はP点より小さ
く、この情報と、この時の酸素ポンプ素子3のポンプ電
流fpに対応した出力信号を検知することにより燃料過
濃域での木目細かな制御または測定かできる。また上記
機関が燃料希薄域で運転された場合は、上記金属酸化物
半導体17の抵抗値はP点より大きく、この情報と、こ
の時の酸素ポンプ素子3のポンプ電流lpに対応した出
力信号を検知することにより燃料希薄域での木目細かな
制御またはi1+11定ができる。
For the output terminal 26 that detects a change in resistance value, an arbitrary reference point P point is set between the maximum resistance value and the minimum resistance value, and when the resistance value is smaller than point J: area)
It is designed to detect when the fuel is greater than the P point (fuel lean region). Therefore, when the engine is operated in a fuel rich region, the resistance value of the metal oxide semiconductor 17 is smaller than point P, and this information corresponds to the pump current fp of the oxygen pump element 3 at this time. By detecting the output signal, it is possible to perform detailed control or measurement in the fuel rich region. Further, when the engine is operated in a fuel lean region, the resistance value of the metal oxide semiconductor 17 is greater than point P, and this information and the output signal corresponding to the pump current lp of the oxygen pump element 3 at this time are used. By detecting this, fine-grained control or i1+11 constant in the fuel lean region can be performed.

また上記機関を理論空燃比14.7にて制御する場合は
、抵抗値を検知する出力端子26では理論空燃比14.
7付近で抵抗値が急激に低減する特性を利用し、直接フ
ィードバック制御信号として空燃比制御を行なう。上記
構成により燃料過濃域および燃料希薄域の広い範囲にお
いても上記機関の空燃比の数値を正確に測定することが
可能な空燃比検知装置を得ることができるのである。こ
のことを利用すれば希望の空燃比を設定すれば排気管1
に取付けられた空燃比検知枠部分2により現状の空燃比
を検知し、そのフィードバックにより連続して希望の空
燃比を制御することができる。
Further, when controlling the above engine at a stoichiometric air-fuel ratio of 14.7, the output terminal 26 for detecting the resistance value has a stoichiometric air-fuel ratio of 14.7.
Utilizing the characteristic that the resistance value rapidly decreases around 7, the air-fuel ratio is controlled as a direct feedback control signal. With the above configuration, it is possible to obtain an air-fuel ratio detection device that can accurately measure the numerical value of the air-fuel ratio of the engine even in a wide range of fuel-rich and fuel-lean regions. Using this fact, if you set the desired air-fuel ratio, the exhaust pipe 1
The current air-fuel ratio is detected by the air-fuel ratio detection frame portion 2 attached to the air-fuel ratio, and the desired air-fuel ratio can be continuously controlled based on the feedback.

上記のように燃料希薄域においてポンプ電流■pが空燃
比に比例して変化することについては例えば前記特開昭
58−153155号に記載されている。
The fact that the pump current (P) changes in proportion to the air-fuel ratio in the fuel lean region as described above is described in, for example, Japanese Patent Laid-Open No. 153155/1983.

すなわち小間隙「内に導入された排気ガスの酸素分圧を
上記酸素ポンプ素子3の作用により変更することにより
排気管1内を流れる排気ガスの酸素分圧と差異をもたけ
、この酸素分圧の差異に応じ13− て発生する上記酸素濃淡電池素子1()の起電力eが一
定となるように上記酸素ポンプ素子3に供給される汲み
出しポンプ電流I0を制御する時、このポンプ電流II
)は、F記排気ガス中の酸素濃度に比例して変化するこ
とが判明したのである。なお燃料過濃域の酸素汲み出し
モードにおいて上記のような動作をする理由はCOガス
に感応するためと思われる。・ 第9図に空燃比検知枠部分2の他の実施例を示す。
That is, by changing the oxygen partial pressure of the exhaust gas introduced into the small gap by the action of the oxygen pump element 3, a difference is created between the oxygen partial pressure of the exhaust gas flowing inside the exhaust pipe 1, and this oxygen partial pressure is changed. When controlling the pump current I0 supplied to the oxygen pump element 3 so that the electromotive force e of the oxygen concentration battery element 1 () generated by the difference in 13- is constant, this pump current II
) was found to change in proportion to the oxygen concentration in the exhaust gas. The reason for the above operation in the oxygen pumping mode in the fuel-rich region is thought to be that it is sensitive to CO gas. - Fig. 9 shows another embodiment of the air-fuel ratio detection frame portion 2.

゛本実施例では電熱ヒータ8および15を内設する高熱
伝導性素地1.9おJ:び14.16の外周部が、各々
のイオン伝導性固体電解質6および13をなす部分から
外方に張り出して形成されたものである。
゛In this embodiment, the outer peripheries of the highly thermally conductive substrates 1.9 and 14.16 in which the electric heaters 8 and 15 are installed extend outward from the portions forming the ion conductive solid electrolytes 6 and 13, respectively. It is formed in an overhanging manner.

このことにより高熱伝導性素地7.9および14.16
の各面積が増大するため、高熱伝導性素地1.9おJ:
び14.16に設けられる電熱ヒータ8.15と金属酸
化物半導体17および各リード線素子18の設置が容易
となる。
This results in high thermal conductivity substrates 7.9 and 14.16.
Since each area of the high thermal conductivity substrate increases by 1.9 J:
The electric heaters 8.15 and 14.16, the metal oxide semiconductor 17, and each lead wire element 18 can be easily installed.

14− 上記実施例では金属酸化物半導体17の抵抗値を用いて
燃料過濃域と燃r3+希薄域との判断基準としたが、他
に第10図に示す如く直列抵抗と相合わせた金属酸化物
半導体17を通過した電圧の比率(印加電圧の%)の変
化の特性を利用しても良い。
14- In the above embodiment, the resistance value of the metal oxide semiconductor 17 was used as a criterion for determining the fuel rich region and the fuel r3+ lean region, but as shown in FIG. The characteristics of the change in the ratio of the voltage passing through the semiconductor 17 (% of the applied voltage) may also be used.

酸素ポンプ素子3のポンプ電流Ipの向きは小間隙fか
ら酸素を汲み出す方向up>0)に流したが、逆に排気
管1内の排気ガス中から酸素を汲み込む方向(、Il)
<9)に流しても酸素濃淡電池素子10の出力を一定と
するポンプ電流I11は第11図に示す如(空燃比に対
応して変化するので、そのようにしたときの特性を利用
してもよい。
The direction of the pump current Ip of the oxygen pump element 3 was to flow in the direction (up>0) that pumps out oxygen from the small gap f, but on the contrary, it flows in the direction that pumps oxygen from the exhaust gas in the exhaust pipe 1 (, Il).
The pump current I11, which keeps the output of the oxygen concentration cell element 10 constant even when the current is applied to <9), is as shown in FIG. Good too.

また酸素ポンプ素子3のポンプ電流II) (小間隙f
からの酸素の汲み出しの場合と汲み込みの場合との両方
を含む)を一定に制御したときの酸素濃淡電池素子10
の発生起電力eも空燃比に対応して変化するのでそのよ
うにしたときの特性を利用することもできる。
Also, the pump current II of the oxygen pump element 3) (small gap f
Oxygen concentration battery element 10 when the oxygen concentration (including both the case of pumping out oxygen and the case of pumping it in) is controlled to be constant
Since the generated electromotive force e also changes according to the air-fuel ratio, the characteristics when doing so can also be utilized.

本発明は上記空燃比検知枠部2より得られる緒特性など
を中独、もしくは複数利用してそれぞれフィードバック
制御するように必要に応じC必要に応じ随時頻繁にモー
ドを切換えながら全運転範囲で連続的に空燃比のフィー
ドバック制御を行わしめるものである。
The present invention utilizes the characteristic characteristics obtained from the air-fuel ratio detection frame 2, or multiple modes, and performs feedback control, continuously over the entire operating range while frequently switching modes as necessary. This system performs feedback control of the air-fuel ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の空燃比検知装置の実施例を示す構成図
、第2図は第1図のI−I線に沿う断面図、第3図は第
2図のII−II線に沿う断面図、第4図は第2図の■
−■線に沿う断面図、第5図は酸素濃淡電池素子の分解
図、第6図は酸素ポンプ素子の分解図、第7図は空燃比
と金属酸化物半導体の抵抗値との変化を示す特性図、第
8図は酸素濃淡電池素子の起電力eを一定とする酸素ポ
ンプ素子の汲み出しポンプ電流II)の空燃比に対する
変化を示す特性図、第9図は空燃比検知部分の他の実施
例を示す断面図、第10図は空燃比と印加電圧の%との
変(ヒを示す特性図、第11図は酸素濃淡電池素子の起
電力eを一定とづる酸素ポンプ素子の押し込みポンプ電
流111の空燃比に対する変化を示す特性図である。 図中 1・・・排気管 3・・・固体電解質酸素ポンプ
素子 10・・・固体電解質酸素濃淡電池素子 alb
、c、d・・・窓部 f・・・小間隙代理人 石黒健ニ =17− 第7図 □ 第8図 □ 完爆よw(A/F) 第9図 第10図 舎・)Iにトド(Δ/F) ZE >kX: LL1% M/ l /手続補正用 昭和59年5月21日 特許庁長官 殿 空燃比検知装置 3、補正をする者 事件との関係 特許出願人 住 所 名古屋市瑞穂区高辻町14番18号氏 名 日
本特殊陶業株式会社 (454)代表者 小 月「□修 次 4、代 埋 人 〒465電話052−773−24/
19G、補正の対象 明細書全文 別 藤 明細書 1、発明の名称 空燃比検知装置 2、特許請求の範囲 1)酸素イオン伝導性固体電解質の両面に多孔性電極を
設けた固体電解質酸素濃淡電池素子および固体電解質m
県ポンプ素子を備え、その少なくども一方の片側面の該
多孔性電極の部分を除く部分に電気絶縁性素地を設け、
前記酸素濃淡電池素子または酸素ポンプ素子の前記電気
絶縁性素地の表面に金属酸化物半導体を設け、前記酸素
濃淡電池素子と前記酸素ポンプ素子とを小間隙を介して
対向配置し、 前記金属酸化物半導体により与えられる電気性質の変化
と、前記酸素濃淡電池素子の起電力または前記酸素ポン
プ素子のポンプ電流のいずれかによって与えられる出力
信号とにより空燃比を検知=1− するようにした空燃比検知装置。 3、発明の詳細な説明 [分野] この発明は、内燃機関、ガス燃焼機器などの燃焼4i!
′置の排気ガス中の酸断濃度もしくは空燃比を測定もし
くは制御するための検知装置に関する。 [従来技術1 従来よりイオン伝導性固体電解質(例えば安定化ジルコ
ニア)に多孔質電極層(例えば白金製多孔質層)を被着
して構成された酸素センサを用い、排気ガスの酸素分圧
と空気の酸素分圧との差によって生じる起電力の変化に
よって理論空燃比付近の燃焼状態を検知することにより
、例えば自動車の機関を理論空燃比で運転するように制
御することは一般に知られている。 どころで上記酸素センサは空気と燃料との重量比率であ
る運転空燃比(A/F)が理論空燃比14.7である時
は大きな変化出力が得られるが他の運転空燃比域での変
化はほとんどなく、理論空燃比2− 以外の空燃比で機関を運転する場合には上記酸素センサ
の出力を利用することができない。 特開昭58−153155号において、板状の酸素イオ
ン導電性固体電解質の先側の両面に電極層を設けた素子
を、2枚間隔をおいて平行状に配して上記先側に間隙部
を設けて該画素子を固定し、一方の素子を酸素ポンプ素
子、他方の素子を周囲雰囲気と前記間隙部との酸素mi
差によって作動する酸素濃淡電池素子とした酸素濃度検
知装置を提案している。かかる酸素濃度検知装置は応答
性はよいが、出力信のに対応する理論空燃比数14.7
より低い燃料過ili賊で作動させると燃料希薄域にお
ける場合と同じ向きの出力を発生する特性をもっことが
判った。ずなわち出力に対して2つの空燃比が対応する
ようになるため空燃比制御が燃料過瀧域、あるいは燃料
希薄域のいずれであるかはっきりしている場合等にしか
適用できないという問題点があった。 [発明の目的] 3− 本発明の第1目的は内燃機関等の燃焼装置の運転空燃比
(Δ/F)が燃料過濃域から燃料希薄域までの全域また
は一部区域において正しく検知できる空燃比検知装置の
提供であり、第2の目的は、空燃比のフィードバック制
御を行う場合において精度よくかつ容易なフィードバッ
ク制御ができる利点を有する空燃比検知装置を提供する
ことである。 [発明の構成] 本発明の空燃比検知装置は、酸素イオン伝導性固体電解
質の両面に多孔性電極を設けた固体電解質酸素濃淡電池
素子および固体電解質酸素ポンプ素子を備え、その少な
くとも一方の片側面の該多孔性電極の部分を除く部分に
電気絶縁性素地を設け、前記酸素濃淡電池索子または酸
素ポンプ素子の前記電気絶縁性素地の表面に金属酸化物
半導体を設【フ1.前記酸素濃淡電池素子と前記酸素ポ
ンプ素子とを小間隙を介して対向配置し、前記金属酸化
物半導体により与えられる電気性質の変化と、前記酸素
濃淡電池素子の起電力または前記酸素ポンプ素子のポン
プ電流のいずれかにJ:つで与えられる出力信号とによ
り空燃比を検知するようにしたことを構成とする。 [発明の効果] 本発明の空燃比検知装置は、上記構成によりつぎの効果
を奏する。 1つのレンサブローブを用いて空燃比(A/F)を燃料
過濃域から燃料希薄域までの全域もしくは一部区域にお
いて正しく検知することができる。 [実施例] つぎに本発明を図に示す一実施例に基づき説明する。 第1図〜第6図は本発明の実施例を示す。 1は燃焼装置である内燃機関の排気管、2は該排気管1
内に配設された空燃比検知装置の検知枠部分である。、
3は空燃比検知枠部分2の固体電解質酸素ポンプ素子で
、両側面にそれぞれ厚膜技術を用いて約20μの厚さの
多孔質白金電極層4および5を設(′Jだ厚さが約0.
5mmの平板状のイオン伝導性固体電解質(例えば安定
化ジルコニア)6と、イオン伝導性固体電解質6の片側
面、例えば多孔質白金電極層5の設(すられた側の面に
取(1りられた多孔質白金電極層5の部分を塞がないよ
うに多孔質白金電極層5の形状に適応した開口である窓
部aを有する厚さが約0.2511111の平板状で熱
伝導性に優れ、電気絶縁性の部材(例えばアルミナやス
ピネルなど)よりなる高熱伝導性電気絶縁性素地1ど、
高熱伝導性電気絶縁性素地7のイオン伝導性固体電解質
69側の面と4よ反対側の面の窓部aの外周部で、窓部
aの外周縁部と高熱伝導性電気絶縁性素地7の外周縁部
とにそれぞれ間隙を有するよ、う設番プられに電熱ヒー
タ8と、電熱ヒータ8が設【ノられた高熱伝導性電気絶
縁性素地79面で電熱ヒータ8を内設し、外部ζ遮断す
るよう設けられた高熱伝導性電気絶縁性素地1と同様の
多孔質白金電極層5を間口する窓部すを有した平板状の
高熱伝導性電気絶縁性素地9とにより構成さ6− れている。10は空燃比検知枠部分2の固体電解質酸素
濃淡電池素子で、両側面に前記多孔質白金電極層4およ
び5と同様に厚膜技術を用いて多孔質白金電極層116
半び12を設けて構成された前記イオン伝導性固体電解
質6と同様の平板状のイオン伝導性固体電解質1pと、
前記高熱伝導性電気絶縁性素地7と同様にイオン伝導性
固体電解質13の片側面である多孔質白金電極層11の
設けられた側9面に取付けられた多孔質白金電極層11
の部分を開口する窓部Cを有した高熱伝導性電気絶縁性
素地14ど、前記電熱ヒータ8と同様に高熱伝導性電気
絶縁性素地14のイオン伝導性固体電解質13の側の面
々は反対側の面で窓部Cの外周部に設けられた電熱ヒー
タ15と、電熱ヒータ15の設けられた高熱伝導性電気
絶縁性素地14の面で、電熱ヒータ15を内股し、外部
と遮断烹るよう設けられた高熱伝導性電気絶縁性素地1
4と同様多孔質白金電極層11を開口する窓部dを有し
た平板状の高熱伝導性電気絶縁性素地16と、高熱伝導
性電気絶縁性素地1697− 電熱ヒータ15を内設した側の面とは反対側の面の窓部
dの上部で厚膜技術を用いて約50μはどの厚さに設け
られtこ金属酸化物半導体(例えばチタニアエレメント
)17とから構成されている。なお前記酸素ポンプ素子
3および酸素濃淡電池素子10に設けられた各電気素子
(4,5,8,11,12,15,17)には外部に導
通ずべくそれぞれにリード線18が厚膜技術により設け
である。 前記酸素ポンプ素子3の多孔質白金電極層4側の而と前
記酸素濃淡電池素子10の多孔質白金電極層12側の面
をO,1mmPi!度の間隔寸法の小間隙fを形成して
排気管1の内部で対向配置させるため足元部を耐熱性で
絶縁性のスペーサ(充填接着剤でよい)19を介して互
いに固定されている。スペーサ19により互いに固定さ
れた酸素ポンプ素子3および酸素濃淡電池素子1Oの足
元部の外辺部にはねじ部20を有した支持台21が、耐
熱性で絶縁性である接着部材22により取付けられてい
る。排気管1に設けられた空燃比検知枠部分2の取付用
ねじ部23に前記支持台21のねじ部20をすし込むこ
とにより空燃比検知枠部分2が排気管1に取付られてい
る。 ここで上記空燃比検知枠部分2を製造するのに、第6図
に示したように、平板状のイオン伝導性固体電解質であ
る例えばジルコニア固体電解質グリーンシートの両側面
に多孔質白金電極層とそのリード線を厚膜技術を用いて
それぞれ所定のパターンでプリントし、その一方側面で
高熱伝導性電気絶縁性素地である、例えば平板状で窓部
な有したスピネル質の2枚のグリーンシートの間に、電
熱ヒータとする白金質の抵抗体およびそのリード線′を
はさんで積層圧着後一体焼結することにより得たセラミ
ック積層1i造の酸素ポンプ素子3と、第5図に示した
ように、酸素ポンプ素子3と同様の過程より形成された
素子の高熱伝導性電気絶縁性素地の表面に、例えばチタ
ニアなどの金属酸化物半導体用のリード線を厚膜技術を
用いて所定のパターンでプリントし焼結された酸素濃淡
電池素子10(金属酸化物の厚膜は上記素子を焼結後、
雰囲気焼成して形成する)とをシークネスゲージをはさ
んで重ね合わせにした状態でその足元部をスペーサ(耐
熱性セラミック質接着剤)19により接着固定すること
は有利である。 24は、付属する電子制御装置部分の例であり、上記酸
素′m淡Nlt!!素子1Oの多孔質白金電極層11.
12問に発生する起電力eを抵抗(R1)を介してi等
地幅器(A)の反転入力端子に印加肱上記−鼻増i器(
A)の非反転入力端子に印加されているi準電圧(Vr
’)と上記起電力eとの差異に比例した上記演算増幅器
(A>の出力によりトランジスタ<Tr )を駆動して
上記酸素ポンプ素子′3の多孔質白金電極層4.5間に
流すポンプ電流r6を制御する機能を備えている。すな
わち、上記起電力eを一定値の基準電圧(Vr )に保
つのj、x、疲な上記ポンプ電流■0を供給する作用を
する。直流電源(B)から供給される上記ポンプ電流1
に対応した出力信号を出力端子25に得るた1O− めに抵抗(Ro)を備えている。(C)はコンデンサで
ある。また酸素濃淡電池素子1Oが排気管1内で酸素濃
度の差に応じて生ずる金属酸化物半導体17の抵抗値の
変化を検知するための出力端子26を備えており、排気
管1内で金属酸化物半導体17と多孔質白金電極層4.
5および11.12を加熱する電熱ヒータ8.15に拳
よ、それぞれ加熱用の電源27および28が導通されて
いる。 第7図および第8薗は上記第1図〜第6図に示した空燃
比検知装置の特性図である。 第7図には出力端子26にて金属酸化物半導体17の抵
抗値の変化を示したもので、理論空燃比14.7より小
さい範囲の空燃比域(燃料過濃域)では小さな抵抗値を
示し、そして理論空燃比14.7付近で急激に増大し、
理論空燃比14.7より大きい範囲の空燃比域(燃料希
簿域)では、大きな抵抗値を示す。第8図は基準電圧(
■「)を例えば2’(1111V 一定にしたもので、
起電力eを20111■にするべく理論空燃比14.7
より小さい範囲の空燃比域(燃料過11− 部域)で」−記汲み出し方向のポンプ電流1+]は空燃
比の増大に銅して減少し、理論空燃比14.7より大き
い範囲の空燃比域(燃料希薄域)では上記ポンプ電流1
pは空燃比の増大に対して増大する。 この実施例は第7図および第8図に示すごとき特性を利
用するものである。 抵抗値の変化を検知する出力端子26については、最大
抵抗値と最小抵抗値との中間に任意のM単点であるP点
を設定し、抵抗値がP点より小さい時(燃料過濃域)と
P点より大きい時(燃料希薄域)を感知させるようにす
る。そこで上記機関が燃料過濃域で運転された場合は、
上記金属酸化物半導体17の抵抗値はP点より小さく、
この情報と、この時の酸素ポンプ素子3のポンプ電流I
t1に対応した出力信号を検知することにより燃料過濃
域での木目細かな制御または測定ができる。また上記機
関が燃料希薄域で運転された場合は、上記金属酸化物半
導体17の抵抗値はP点より大きく、この情報と、この
時の酸素ポンプ素子3のポンプ電流Ipに対応した出力
信号を検知することにより燃料希薄域での木目細かな制
御または測定かできる。 また上記機関を理論空燃比14.7にて制御する場合は
、抵抗値を検知する出力端子26では理論空燃比14.
7付近で抵抗値が急激に低減する特性を利用し、直接フ
ィードバック制御信号として空燃比制御を行なう。上記
構成により燃料過lI域および燃1!!l希薄域の広い
範囲においても上記機関の空燃比の数値を正確に測定す
ることが可能な空燃比検知装置を得ることができるので
ある。このことを利用すれば希望の空燃比を設定すれば
排気管1に取付けられた空燃比検知枠部分2により現状
の空燃比を検知し、そのフィードバックにより連続して
希望の空燃比を制御することができる。 上記のように燃料希薄域においてポンプ電流Ipが空燃
比に比例して変化することについては例えば前記特開昭
58−153155号に記載されている。 すなわち小間隙f内に導入された排気ガスの酸素分圧を
上記酸素ポンプ素子3の作用により変更することににり
排気管1内を流れる排気ガスの酸素分圧と差異をもたせ
、この酸素分圧の差異に応じて発生する上記酸素濃淡電
池索子10の起電力eが一定となるように上記酸素ポン
プ素子3に供給される汲み出しポンプ電流Ipを制御す
る時、このポンプ電流It1は上記排気ガス中の酸素I
N麿に比例して変化することが判明したのである。なお
燃料過濃域の酸素汲み出しモードにおいて上記のような
動作をする理由はCOガスに感応す企ためと思われる。 第9図に空燃比検知枠部分2の他の実施例を示す。 本実施例では電熱ヒータ8および15を内設すφ高熱伝
導性電気絶縁性素地7.9および(4,16の外周部が
、各々のイオン伝導性固体電解質6および13をなす部
分から外方に張り出して形成されたものである。このこ
とにより高熱伝導性電気絶縁性素地7.9および14.
16の各面積が増杢するため、高熱伝導性電気絶縁性素
地7.9および14、14− 16に設けられる電熱ヒータ8.15と金属酸化物半導
体17および各リード線18の設置が容易となる。 上記実施例ではm素ポンプ素子または酸素濃淡電池素子
のいずれかの表面に配設され、且つ表面に金属酸化物半
導体を維持するための高熱伝導性電気絶縁性素地の内部
にヒータを埋設した場合を示したが、被測定ガスの温度
が常に充分に高くて、特に加熱しなくても各素子おJ:
び金属酸化物半導体が活性化されるような場合には、ヒ
ータを省略しつる。 上記実施例では金属酸化物半導体17の抵抗値を用いて
燃料過濃域と燃料部Mbliとの判断基準としたが、他
に第10図に示す如く直列抵抗と組合わせた金属酸化物
半導体17を通過した電圧の比率(印加電圧の%)の変
化の特性を利用しても良い。 酸素ポンプ素子3のポンプ電流II)の向きは小間隙f
から酸素を汲み出す方向(Ip>0)に流したが、逆に
排気管1内の排気ガス中から酸素を汲み込む方向(It
l<0)に流しても酸素濃淡電15− ?l!!素子10の出力を一定とするポンプ電流1pは
第11図に示す如く空燃比に対応して変化するので、そ
のようにしたときの特性を利用してもよい。 また酸素ポンプ素子3のポンプ電流Ip (小間隙fか
らのM索の汲み出しの場合と汲み込みの場合との両方を
含む)を一定に制御したときの酸素濃淡電池素子10の
発生起電力eも空燃比に対応して変化するのでそのよう
にしたときの特性を利用することもできる。 本発明は上記空燃比検知枠部2より得られる緒特性など
を単独、もしくは複数利用してそれぞれフィードバック
制御するように必要に応じて随時頻繁にモードを切換え
ながら全運転範囲で連続的に空燃比のフィードバック制
御を行わしめるものである。 4、図面の簡単な説明 第1図は本発明の空燃比検知装置の実施例を示す構成図
、第2図は第1図のI−I線に沿う断面図、第3図は第
2図のX−V線に沿う断面図、第4図は第2図のl1r
−II線に沿う断面図、第5図は酸素濃淡電池素子の分
解図、第6図は酸素ポンプ素子の分解図、第7図は空燃
比と金属酸化物半導体の抵抗値との変化を示す特性図、
第8図は酸素濃淡電池素子の起電力eを一定とする酸素
ポンプ素子の汲み出しポンプ電流Ipの空燃比に対する
変化を示す特性図、第9図は空燃比検知部分の他の実施
例を示す断面図、第10図は空燃比と印加電圧の%との
変化を示す特性図、第11図は酸素濃淡電池素子の起電
力eを一定とする酸素ポンプ素子の押し込みポンプ電流
TI)の空燃比に対する変化を示す特性図である。 図中 1・・・排気管 3・・・固体電解質酸素ポンプ
素子 7.9.14.16・・・高熱伝導性電気絶縁性
素地 10・・・固体電解質酸素濃淡電池索子 17・
・・金属酸化物半導体 f・・・小間隙 代理人 石黒健二 手続補正書 昭和59年11月5日 2、発明の名称 空燃比検知vi置 3、 @正をする者 事件との関係 特許出願人 住 所 名古屋市瑞穂区高辻町141に18号氏 名 
日本特殊陶業株式会社 (454’)代表者 小川修法 4、代理人〒465電話052” 773−24’49
1− 511 諸& 明細書 1、発明の名称 空燃比検知装置 2、特許請求の範囲 1)酸素イオン伝導性固体電解質の両面に多孔性電極を
設けた固体電解質酸素濃淡電池素子および固体電解質酸
素ポンプ素子を備え、その少なくとも一芳の片側面の該
多孔性電極の部分を除く部分に電気絶縁性素地を設け、
前記酸素濃淡電池素子または酸素ポンプ素子の前記電気
絶縁性素地の表面に金属酸化物半導体を設け、前記酸素
1淡電池素子と前記酸素ポンプ素子とを小間隙を介して
対向配置し、 前記金属−化物半導体により与えられる電気性質の変化
と、前記酸素濃淡°電池素子の起電力または前記酸素ポ
ンプ素子のポンプ電流のいずれかによって与えられる出
力信号とにより空燃比を検知するようにした空燃比検知
B it!。 3、発明の詳細な説明 [分野] この発明は、内燃機関、ガス燃焼機器などの燃焼装置の
排気ガス中の酸素濃度もしくは空燃比を測定もしくは制
御するための検知装置に関する。 し従来技術] 従来よりイオン伝導性固体電解質(例えば安定化ジルコ
ニア〉に多孔質電極層(例えば白金製多孔質層)を被着
して構成された酸素センサを用い、排気ガスの酸素分圧
と空気の酸素分圧との差によって生じる起電力の変化に
よって理論空燃比付近の燃焼状態を検知することにより
、例えば自動車の機関を理論空燃比で運転するように1
lilJ m−Jることは一般に知られている。 ところで上記酸素センサは空気と燃料との重量比率であ
る運転空燃比(A/F)が理論空燃比14.7である時
は大きな変化出力が得られるが他の運転空燃比域での変
化ばほとんどな(、理論空燃比以外の空燃比で機関を運
転する場合には上記酸素センサの出力を利用することが
できない。 特開昭58−153155号において、板状の酸素イオ
ン導電性固体電解質の先側の両面に電極層を設けた素子
を、2枚間隔をおいて平行状に配して上記先側に間隙部
を設【)て該画素子を固定し、一方の素子を酸素ポンプ
素子、他方の素子を周囲雰囲気と前記間隙部との酸素m
度差によって作動する酸素濃淡電池素子とした酸素濃度
検知装置を提案している。かかる酸素濃度検知装置は応
答性はよいが、出力信号に対応する理論空燃比数14.
7より低い燃料過濃域で作動させると燃料希薄域におけ
る場合と同じ向きの出力を発生する特性をもつことが判
った。すなわち出力に対して2つの空燃比が対応するよ
うになるため空燃比制御が燃料過濃域、あるいは燃料希
薄域のいずれであるかはつぎすしている場合等にしか適
用できないという問題点が見出された。またこの検知装
置では理論空燃比またはその近傍の空燃比の検知または
制御を制度よくまたは応答性よく行わせることが困難で
あるという問題も見出された。 [発明の目的] 本発明の第1目的は内燃機関等の燃焼装置の運転空燃比
(A/F、)、が燃料過濃域、理論空燃比および燃料希
薄域の全域または一部区域において正しくかつ応答よ≦
検知できる空燃比検知装置の提供であり、第2の目的は
、したがって上記の空燃比範囲で空燃、比のフィードバ
ック制御を行う場合において精度よくかつ容易なフィー
ドバック制御がで今る利点、を有する空燃比検知装置を
提供、することである。 、。 [発明の構成] 本発明の空燃比検知装置は、酸素イオン伝導性固体電解
質の両面に多孔性電極を設けた固体電解質酸素濃淡電池
素子および固体寓解質準累ポンプ素子を備え、その少な
くとも一方の片側面の該多孔性電極の部分を除く部分に
電気絶縁性素地を設け、前記酸素濃淡電池素子または酸
素ポンプ素子−4= の前記電気絶縁性素地の表面に金属酸化物半導体を設け
、前記酸素濃淡電池素子と前記酸素ポンプ素子とを小間
隙を介して対内配置し、前記金属酸化物事導体により与
えられる電気性質の変化と、前記酸素濃淡電池素子の起
電力または前記酸素ポンプ素子のポンプ電流のいずれか
によって与えられる出力信号とにより空燃比を検知する
ようにしたことを構成とする。 [発明の効果] 本発明の空燃比検知装置は、上記構成によりつぎの効果
を奏する。 1つのセンザブローブを用いて空燃比(A/F)を燃料
過濃域から燃料#J薄域までの全域もしくは一部区域に
おいて正しく検知することができる。 [実施例コ つぎに本発明を図に示す一実旋例に基づき説明する。 第1図〜第6図は本発明の実施例を示す。 1は燃焼装置である内燃機関の排気管、2は該5− 排気管1内に配設された空燃比検知装詔の検知枠部分で
ある。3は空燃比検知枠部分2の固体電解質酸素ポンプ
素子で、両側面にそれぞれ厚膜技術を用いて約20μの
厚さの多孔質白金電極層4および5を設【プた厚さが約
o、 5mmの平板状のイオン伝導性固体電解質(例え
ば安定化ジルコニア) 6と、イオン伝導性固体電解質
6の片側面、例えば多孔質白金電極層5の設けられた側
の面に取付けられた多孔質白金電極層5の部分を塞がな
いように多孔質白金電極M5の形状に適応した開口であ
る窓部aを有する厚さが約0.25n+mの平板状で熱
伝導性に優れ、電気絶縁性の部材(例えばアルミナやス
ピネルなど)よりなる高熱伝導性電気絶縁性素地(素地
は成形された板であっても印刷された膜であってもよい
)1と、高熱伝導性電気絶縁性素地1のイオン伝導性固
体電解質6の側の面とは反対側の面の窓部aの外周部で
、窓部aの外周縁部と高熱伝導性電気絶縁性素地7の外
周縁部とにそれぞれ間隙を有するよう設けられた電熱ヒ
ータ8と、電熱ヒータ8が設けられた高熱伝導性電気絶
縁性素地70面で電熱ヒータ8を内設し、外部と遮断す
るよう設(Jられた高熱伝導性電気絶縁性素地7と同様
の多孔質白金電極層5を間口する窓部すを有した平板状
の高熱伝導性電気絶縁性素地9とにより構成されている
。10は空燃比検知枠部分2の固体電解質酸素濃淡電池
素子で、両側面に前記多孔質白金電極層4および5と同
様に厚膜技術を用いて多孔質白金電極層11および12
を設けて構成された前記イオン伝導性固体電解質6と同
様の平板状のイオン伝導性固体電解質13と、前記高熱
伝導性電気絶縁性素地7と同様にイオン伝導性固体電解
質13の片側面である多孔質白金電極層11の設けられ
た側の面に取付けられた多孔質白金電極層11の部分を
開口する窓部Cを有した高熱伝導性電気絶縁性素地14
と、前記電熱ヒータ8と同様に高熱伝13f!I電気絶
縁性索地14のイオン伝導性固体電解質13の側の面と
は反対側の面で窓部Cの外周部に設けられた電熱ヒータ
15と、電熱ヒータ15の設げられた高熱伝導性電気絶
縁性素地14の面で、電熱ヒータ15を内設し、外部と
遮断するよう設けられた高熱伝導性電気絶縁性素地14
と同様多孔質白金電極層11を間口する窓部dを有した
平板状の高熱伝導性電気絶縁性素地16と、高熱伝導性
電気絶縁性素地1Gの電熱ヒータ15を内股した側の面
とは反対側の面の窓部dの上部で厚膜技術を用いて約5
0μはどの厚さに設けられた金属酸化物半導体(例えば
ヂタニアエレメント)17とから構成されている。、な
お前記酸素ポンプ素子3および酸素濃淡電池素子10に
設けられた各電気素子(4,5,8,11,12,15
,17)には外部に導通すべくそれぞれにリード線18
が厚膜技術により設けである。 前記酸゛素ポンプ累子3の多孔質白金電極層4側の面と
前記酸素濃淡電池素子10の多孔質白金電極層12側の
面を0.1關〜0.05mm程度の間隔寸法の小間隙f
を形成して排気管1の内部で対向配置させるため足元部
を耐熱性で絶縁性のスペーサ(充填接着剤でよい)19
を介して互いに固定されてい8− る。スペーサ19により亙いに固定された酸素ポンプ水
子3および酸素濃淡電池素子10の足元部の外辺部には
ねじ部20を右した支持台21が、゛耐熱性で絶縁性で
ある接着部材22により取付【プられている。 排気管1に設けられた゛空燃比検知枠部分2の取付用ね
じ部23に前記支持台21のねじ部20をねじ込むこと
により空燃比検知枠部分2が排気管1に取付られている
。 ここで上記空燃比検知枠部分2を製造するのに、第6図
に示したように、平板状のイオン伝導性固体電解質であ
る例えばジルコニア固体電解質グリーンシートの両側面
に多孔質白金電極層とそのリード線を厚膜技術を用いて
それぞれ所定のパターンでプリントし、その一方側面で
高熱伝導性電気絶縁性両地である、例えば平板状で窓部
な有したスピネル質の2枚のグリーンシートの間に、電
熱ヒータどする白金質の抵抗体およびモのリード線をは
さんで積層圧着後一体焼結することにより得たセラミッ
ク@層構造の酸素ポンプ素子3と、第9− 5図に示したように、酸素ポンプ素子3と同様の過程に
り形成された素子の高熱伝導性電気絶縁性素地の表面に
、例えばヂタニアなどの金属酸化物半導体用のリード線
を厚膜技術を用いて所定のパターンでプリントし焼結さ
れた酸素濃淡電池素子10(金属酸化物の厚膜は上記素
子を焼結後、雰囲気焼成して形成する)とをシークネス
ゲージをはさんで重ね合わせにした状態でその足元部を
スペーサ(if熱性セラミック質接着剤)19により接
着固定することは有利である。 24は、付属する電子制御装置部分の例であり、上記酸
素濃淡電池素子10の多孔質白金電極層11.12問に
発生する起電力eを抵抗(R1)を介して演算増幅器(
A)の反転入力端子に印加し、上記演算増幅器CA>の
非反転入ノコ端子に印加されている基準電圧(Vr )
と上記起電力eとの差異に比例した上記演算増幅器(A
>の出力によりトランジスタ(Tr )を駆動して上記
S累ポンプ索子3の多孔質白金電極層4.5問に流すポ
ンプ電流ipを制御する機能を備えている。すなわち、
上記起電力eを一定値の基準電圧(Vr )に保つのに
必要な上記ポンプ電流Ipを供給する作用をする。直流
電源(B)から供給される上記ポンプ電流Illに対応
した出力信号を出力端子25に得るために抵抗(Ro)
を備えている。(C)はコンデンサである。また酸素濃
淡電池素子10が排気管1内で酸素濃麿の差に応じて生
ずる金属酸化物半導体17の抵抗値の変化を検知するた
、めの出力端子26を備えており、排気管1内で金属酸
化物半導体17と多孔質白金電極層4.5および11.
12を加熱する電熱ヒータ8.11)には、それぞれ加
熱用の電源27おJ:び28が導通されている。 第7図および第8図は上記第1図〜第6図に示した空燃
比検知装置の特性図である。 第7図には出力端子26にて金属酸化物半導体17の抵
抗値の変化を示したもので、理論空燃比14.7より小
さい範囲の空燃比域(燃石過m域)では小さな抵抗値を
示し、イして理論空燃比14.7付近で急激に増大し、
理論空燃比14.7より大きい範囲の空燃比域(燃料希
薄域)では、大きな抵抗値を示す。第8図は基準電圧(
Vr )を例えば20m V 一定にしたもので、起電
力eを20m Vにするべく理論空燃比14.7より小
さい範囲の空燃比域(燃料過濃域)で上記汲み出し方向
のポンプ電流I11は空燃比の増大に対して減少し、理
論空燃比14.7より大きい範囲の空燃比域(!料希薄
域)では上記ポンプ電流I11.は空燃比の増大に対し
て増大する。 この実施例は第7図および第8図に示すこと杢特性を利
用するものである。 抵抗値の変化を検知する出力端子26については、最大
抵抗値と最小抵抗値との中間に任意の基準点で邸るPQ
を設定し、抵抗値がP点より小さい時(燃料過濃域)と
P点より大きい時(燃料希薄域)を感知させるようにず
や。そこで上記機関が燃料過濃域で運転された場合は、
上記金属酸化物半導体17の抵抗値はP点より小さく、
この情報と、この時の酸素ポンプ素子3のポンプ電流1
pに対応12− した出力信号を検知づることにj:り燃料過濃域での木
目細かな制御または測定ができる。また上記機関が燃料
希薄域で、運転された場合は、上記金属酸化物半導体1
7の抵抗値は[)点より大きく、この情報と、この時の
酸素、ポンプ素子3のポンプ電、流すに対応した出力信
号を検知することによ、り燃料希薄域での木目細かな制
御または測定がで、きる。 ・また1−記機関を理fii1空燃比14.7にく制御
する場合は、抵抗値を検知する出〃嘲了26では理論空
燃比14.7(−1近で低粋値が急激に低減する特性を
!す用し、直接または間接的なフィードバック1制御信
号とし、て用いて空燃比fi制御を行なう。上記格成に
より燃料過淵域理諭空燃比点および燃料希薄域の全範囲
においてト記機関の空燃比を正確にかつ応答性よく測定
することが可能な空燃比検知装置を得ることがrぎるの
であや。またこのことを利用すれば希望の空燃比を設定
、°づれば排気管1に取付けられた空燃比検知枠部分2
により現状の空燃比をすみやかに検知し、そのフィード
バックにより連続し13− て希望の空燃比を制御することができる。 上記のように燃r;希薄域においてポンプ電流lpが空
燃比に比例して変化することについては例えば前記特開
昭58−153155号に記載されている。 すなわら小間隙f内に導入された排気ガスの酸素分圧を
上記酸素ポンプ素子3の作用により変更することにより
1ノ1気管1内を流れる排気ガスの酸素分圧と差賃をも
たせ、この酸素分圧の差異に応じて発生する」−記酸素
濃淡電池素子10の起電力Cが一定となるにうに上記酸
素ポンプ索子3に供給される汲み出しポンプ電流Ipを
制御する時、このポンプ電流Ipは上記v1気ガス中の
酸素8M麿に比例して変化することが判明したのである
。なお燃料過濃域の酸素汲み出しモードにおいて上記の
ような動作をする理由はCOガスに感応覆るためと思わ
れる。 第9図に空燃比検知枠部分2の他の実施例を示す。 本実施例では電熱ヒータ8および15を内股する高熱伝
導性電気絶縁性素地7.9および14.16の外周部が
、各々のイオン伝導性固体電解質6おj、び13をなづ
部分から外力に張り出して形成されたものである。この
ことにより高熱伝導性電気絶縁性素地7.9 a3よび
14.16の各面積が増大するため、高熱伝導性電気絶
縁性素地7.9および14.16に設【ノられる電熱ヒ
ータ8.15と金属酸化物半導体17および各リード線
18の設置が容易どなる、7上記実施例では酸系ポンプ
素子または酸素濃淡電池素子のいずれかの表面に配設さ
れ、月つ表面に金属酸化物半導体を維持するための高熱
伝導性電気絶縁性素地の内部にヒータを埋設した場合を
示したが、被測定ガスの温庶が常に充分に高くて、特に
加熱しなくても各素子および金属酸化物4′導体が活性
化されるj;うな場合には、ヒータ゛を省略しうる。 上記実施例では金属酸化物半導体17の抵抗値を用いて
燃料過濃域と燃判希N域との判断基準とtノだが、他に
第10図に示づ如く直列抵抗と相合わせた金属酸化物半
導体17を通過した電圧の比率(印加電圧の%)の変化
の特性を利用しても良い。 酸素ポンプ素子3のボンレ電流I11の向きは小間隙f
から酸素を汲み出す方向(’I p >’ O)に流し
たが、逆に排気管1内の゛i1気゛ガス中から酸素を汲
み込む方向up<0)に流しても酸素81淡電池素子1
0の出力を一定とするポンプ電流It)は第6図に示す
如く空燃比に対応して変化するので、そのようにしたと
きの特性番利用してもよい。 また酸素ポンプ素子3のポンプ電流1p (小間隙fか
らの酸素の汲み出しの場合と汲み込みの場合との両方を
含む)を一定に制゛御したとぎの酸素濃淡電池素子10
の発生起電力。も空燃比に蘂応して変化するのでそのよ
うに′したときの特性を利用本発明は上記空燃比検知枠
部2より得られる緒特性などを°単独、もしくは複数利
用してそれぞれフィードバック制御するように必要に応
じて随時頻繁にモードを切換えながら全運転範囲で連続
的16− に空燃比のフィードバック制御を行わしめるものである
。 4、図面の簡単な説明 第1図は本発明の空燃比検知装置の実施例を示す構成図
、第2′図は第1図の1’−’I線に沿う断面図、第3
図は第2図のF−I線に沿う断面図、第4図は第2図の
側」■線に沿う断面図、第5図は酸素濃淡電池菓子の分
解図、第6図は酸素ポンプ素子の分解図、第7図は空燃
比と金m1lHts物半導体の抵抗値どの氷化を示す特
性図、第8図は酸素濃淡電池素子の起電力eを一定とす
る酸素ポンプ素子の汲み出しポンプ電流1pの空燃比に
対する変化を示す特性図、第9図は空燃比検知部分の他
の実施例を示す断面図、第10図は空燃比と印加電圧の
%との変化を示す特行図、第11図は酸素濃淡電池素子
の起電力0を一定とする酸素ポンプ素子8押し込みポン
プ電流I′pの空燃比に対する変化を示す特性図である
。 図中 1・・・排気管 3・・・固体電解質酸素ボン1
7− プ素子 7.9.14.16・・・高熱伝導性電気絶縁
性素地 10・・・固体電解質酸素iIi!淡電池素電
池素子・・・金属酸化物半導体 f・・・小間隙 代即人 石黒健二 18−
Fig. 1 is a configuration diagram showing an embodiment of the air-fuel ratio detection device of the present invention, Fig. 2 is a cross-sectional view taken along line II in Fig. 1, and Fig. 3 is a cross-sectional view taken along line II-II in Fig. 2. Cross-sectional view, Figure 4 is shown in Figure 2.
5 is an exploded view of the oxygen concentration battery element, 6 is an exploded view of the oxygen pump element, and 7 is the change in the air-fuel ratio and the resistance value of the metal oxide semiconductor. A characteristic diagram, FIG. 8 is a characteristic diagram showing the change in the pump current II) of the oxygen pump element with respect to the air-fuel ratio when the electromotive force e of the oxygen concentration cell element is constant, and FIG. 9 is another implementation of the air-fuel ratio detection part. A cross-sectional view showing an example, Fig. 10 is a characteristic diagram showing the change in air-fuel ratio and applied voltage (%), Fig. 11 is a forced pump current of the oxygen pump element assuming that the electromotive force e of the oxygen concentration battery element is constant. 111 is a characteristic diagram showing changes with respect to the air-fuel ratio. In the figure: 1...Exhaust pipe 3...Solid electrolyte oxygen pump element 10...Solid electrolyte oxygen concentration battery element alb
, c, d... window f... small gap agent Ken Ishiguro = 17- Fig. 7 □ Fig. 8 □ Complete explosion w (A/F) Fig. 9 Fig. 10 Sha) I Todo (Δ/F) ZE > kX: LL1% M/l / May 21, 1980 for procedural amendment Director-General of the Patent Office Air-fuel ratio detection device 3, relation to the case of the person making the amendment Patent applicant address 14-18, Takatsuji-cho, Mizuho-ku, Nagoya Name: Nippon Tokushu Togyo Co., Ltd. (454) Representative: Kozuki □Oshuji 4, Osamu Hito 465 Phone: 052-773-24/
19G, Full text of the specification subject to amendment Fuji Specification 1, Title of the invention Air-fuel ratio detection device 2, Claims 1) Solid electrolyte oxygen concentration battery element in which porous electrodes are provided on both sides of an oxygen ion conductive solid electrolyte and solid electrolyte m
A pump element is provided, and an electrically insulating base is provided on at least one side of the element, excluding the porous electrode part,
A metal oxide semiconductor is provided on the surface of the electrically insulating base of the oxygen concentration battery element or the oxygen pump element, the oxygen concentration battery element and the oxygen pump element are disposed facing each other with a small gap interposed therebetween, and the metal oxide The air-fuel ratio is detected by a change in electrical properties provided by a semiconductor and an output signal provided by either the electromotive force of the oxygen concentration battery element or the pump current of the oxygen pump element. Device. 3. Detailed Description of the Invention [Field] This invention relates to the combustion 4i! of internal combustion engines, gas combustion equipment, etc.
The present invention relates to a detection device for measuring or controlling the oxygen concentration or air-fuel ratio in exhaust gas at a location. [Prior art 1] Conventionally, an oxygen sensor constructed by depositing a porous electrode layer (for example, a porous layer made of platinum) on an ion-conducting solid electrolyte (for example, stabilized zirconia) is used to measure the oxygen partial pressure of exhaust gas. It is generally known that, for example, an automobile engine can be controlled to operate at the stoichiometric air-fuel ratio by detecting the combustion state near the stoichiometric air-fuel ratio based on the change in electromotive force caused by the difference in the oxygen partial pressure of air. . By the way, the above oxygen sensor can obtain a large change in output when the operating air-fuel ratio (A/F), which is the weight ratio of air and fuel, is the stoichiometric air-fuel ratio of 14.7, but changes in other operating air-fuel ratio ranges. The output of the oxygen sensor cannot be used when the engine is operated at an air-fuel ratio other than the stoichiometric air-fuel ratio 2-. In JP-A No. 58-153155, two elements each having an electrode layer provided on both sides of the front side of a plate-shaped oxygen ion conductive solid electrolyte are arranged in parallel with a gap between them, and a gap is formed on the front side. is provided to fix the pixel element, one element is used as an oxygen pump element, and the other element is used as an oxygen pump element between the surrounding atmosphere and the above-mentioned gap.
We have proposed an oxygen concentration detection device using an oxygen concentration battery element that operates based on the difference in oxygen concentration. Although such an oxygen concentration detection device has good responsiveness, the stoichiometric air-fuel ratio number corresponding to the output signal is 14.7.
It has been found that operating at lower fuel levels produces more power in the same direction as in the lean fuel range. In other words, since two air-fuel ratios correspond to the output, there is a problem that air-fuel ratio control can only be applied when it is clear whether it is in the fuel excess region or the fuel lean region. there were. [Object of the Invention] 3- The first object of the present invention is to provide an air-fuel ratio system in which the operating air-fuel ratio (Δ/F) of a combustion device such as an internal combustion engine can be correctly detected in the entire region or a part of the range from the fuel-rich region to the fuel-lean region. A second object of the present invention is to provide an air-fuel ratio detection device that has the advantage of being able to perform accurate and easy feedback control when performing air-fuel ratio feedback control. [Configuration of the Invention] The air-fuel ratio detection device of the present invention includes a solid electrolyte oxygen concentration battery element and a solid electrolyte oxygen pump element in which porous electrodes are provided on both sides of an oxygen ion conductive solid electrolyte, and at least one side of the solid electrolyte An electrically insulating base is provided in a portion other than the porous electrode, and a metal oxide semiconductor is provided on the surface of the electrically insulating base of the oxygen concentration battery cable or oxygen pump element. The oxygen concentration battery element and the oxygen pump element are arranged opposite to each other with a small gap interposed therebetween, and the change in electrical properties provided by the metal oxide semiconductor and the electromotive force of the oxygen concentration battery element or the pump of the oxygen pump element are controlled. The configuration is such that the air-fuel ratio is detected based on an output signal given by J: to either of the currents. [Effects of the Invention] The air-fuel ratio detection device of the present invention has the following effects due to the above configuration. Using one lens probe, the air-fuel ratio (A/F) can be correctly detected in the entire region or a partial region from a fuel-rich region to a fuel-lean region. [Example] Next, the present invention will be explained based on an example shown in the drawings. 1 to 6 show embodiments of the present invention. 1 is an exhaust pipe of an internal combustion engine which is a combustion device, 2 is the exhaust pipe 1
This is the detection frame part of the air-fuel ratio detection device installed inside. ,
3 is the solid electrolyte oxygen pump element of the air-fuel ratio detection frame part 2, and porous platinum electrode layers 4 and 5 with a thickness of about 20 μm are provided on both sides using thick film technology (the thickness is about 20 μm). 0.
A 5 mm flat plate-shaped ion conductive solid electrolyte (e.g. stabilized zirconia) 6 and one side of the ion conductive solid electrolyte 6, for example, a porous platinum electrode layer 5, It has a flat plate shape with a thickness of about 0.2511111 mm and is thermally conductive and has a window part a that is an opening adapted to the shape of the porous platinum electrode layer 5 so as not to block the part of the porous platinum electrode layer 5 that has been removed. Highly thermally conductive electrically insulating substrate 1 made of an excellent electrically insulating material (such as alumina or spinel), etc.
At the outer periphery of the window a on the side of the ion conductive solid electrolyte 69 side of the highly thermally conductive electrically insulating substrate 7 and the surface opposite to 4, the outer periphery of the window a and the highly thermally conductive electrically insulating substrate 7 The electric heater 8 is installed inside the high heat conductive electrically insulating base 79 on which the electric heater 8 is installed, and the electric heater 8 is installed on the surface of the high heat conductive electrically insulating base 79, so that there is a gap between the outer peripheral edge of the electric heater 8 and the electric heater 8. It is composed of a highly thermally conductive electrically insulating substrate 1 provided to block the outside ζ and a flat highly thermally conductive electrically insulating substrate 9 having a window portion opening a similar porous platinum electrode layer 5. - It is. 10 is a solid electrolyte oxygen concentration battery element of the air-fuel ratio detection frame portion 2, and porous platinum electrode layers 116 are formed on both sides using the thick film technology similar to the porous platinum electrode layers 4 and 5.
A flat ion-conducting solid electrolyte 1p similar to the ion-conducting solid electrolyte 6 configured with a half-fiber 12;
Similar to the highly thermally conductive electrically insulating base 7, a porous platinum electrode layer 11 is attached to one side of the ion conductive solid electrolyte 13, which is the side 9 on which the porous platinum electrode layer 11 is provided.
Similar to the electric heater 8, the surfaces of the highly thermally conductive electrically insulating material 14 having the window portion C that opens the ion conductive solid electrolyte 13 are on the opposite side. The electric heater 15 is placed on the outer periphery of the window C on the surface thereof, and the electric heater 15 is folded inwards on the surface of the highly thermally conductive electrically insulating substrate 14 on which the electric heater 15 is provided, so as to isolate the heat from the outside. Provided highly thermally conductive electrically insulating substrate 1
Similar to 4, a flat plate-shaped highly thermally conductive electrically insulating substrate 16 having a window d opening the porous platinum electrode layer 11 and a highly thermally conductive electrically insulating substrate 1697 - the side surface in which the electric heater 15 is installed inside. On the opposite side of the window d, a metal oxide semiconductor (for example titania element) 17 is formed to a thickness of approximately 50μ using thick film technology. Note that each electric element (4, 5, 8, 11, 12, 15, 17) provided in the oxygen pump element 3 and the oxygen concentration battery element 10 is provided with a lead wire 18 using a thick film technology so as to be electrically conductive to the outside. This is provided by the following. The surface of the oxygen pump element 3 on the porous platinum electrode layer 4 side and the surface of the oxygen concentration battery element 10 on the porous platinum electrode layer 12 side are O, 1 mm Pi! In order to form a small gap f with a spacing dimension of 100 degrees, and to dispose them facing each other inside the exhaust pipe 1, the foot portions are fixed to each other via a heat-resistant and insulating spacer 19 (filling adhesive may be used). A support base 21 having a threaded portion 20 is attached to the outer edge of the foot of the oxygen pump element 3 and the oxygen concentration battery element 1O, which are fixed to each other by a spacer 19, using a heat-resistant and insulating adhesive member 22. ing. The air-fuel ratio detection frame portion 2 is attached to the exhaust pipe 1 by inserting the threaded portion 20 of the support base 21 into the mounting screw portion 23 of the air-fuel ratio detection frame portion 2 provided on the exhaust pipe 1. Here, in order to manufacture the air-fuel ratio detection frame part 2, as shown in FIG. Each of the lead wires is printed in a predetermined pattern using thick film technology, and one side of each is covered with two green sheets of highly thermally conductive and electrically insulating material, such as spinel green sheets that are flat and have windows. In between, a platinum resistor used as an electric heater and its lead wire' are sandwiched between the two, and an oxygen pump element 3 made of a ceramic laminated structure 1i obtained by laminated pressure bonding and integral sintering, as shown in FIG. Next, lead wires for metal oxide semiconductors such as titania are formed in a predetermined pattern using thick film technology on the surface of the highly thermally conductive electrically insulating base of the element, which is formed by the same process as the oxygen pump element 3. Printed and sintered oxygen concentration battery element 10 (a thick film of metal oxide is formed after sintering the above element)
It is advantageous to bond and fix the foot portions of the two (formed by firing in an atmosphere) with a spacer (heat-resistant ceramic adhesive) 19 in a state where they are overlapped with a seekness gauge in between. 24 is an example of an attached electronic control device part, and the above-mentioned oxygen 'm pale Nlt! ! Porous platinum electrode layer 11 of element 1O.
Apply the electromotive force e generated in the 12th question to the inverting input terminal of the equal width amplifier (A) through the resistor (R1).
A) quasi-voltage (Vr) applied to the non-inverting input terminal of
') and the electromotive force e, the transistor <Tr) is driven by the output of the operational amplifier (A), and a pump current is caused to flow between the porous platinum electrode layers 4.5 of the oxygen pump element '3. It has a function to control r6. That is, it functions to maintain the electromotive force e at a constant value of the reference voltage (Vr), and to supply the exhausting pump current (2) of 0. The above pump current 1 supplied from the DC power supply (B)
A resistor (Ro) is provided for obtaining an output signal corresponding to the output terminal 25 at the output terminal 25. (C) is a capacitor. In addition, the oxygen concentration battery element 1O is equipped with an output terminal 26 for detecting a change in the resistance value of the metal oxide semiconductor 17 that occurs in the exhaust pipe 1 according to a difference in oxygen concentration. physical semiconductor 17 and porous platinum electrode layer 4.
Heating power supplies 27 and 28 are connected to electric heaters 8.15 and 11.12, respectively. FIGS. 7 and 8 are characteristic diagrams of the air-fuel ratio detection device shown in FIGS. 1 to 6 above. Figure 7 shows the change in the resistance value of the metal oxide semiconductor 17 at the output terminal 26, and shows a small resistance value in the air-fuel ratio range (fuel rich range) smaller than the stoichiometric air-fuel ratio 14.7. and increases rapidly around the stoichiometric air-fuel ratio of 14.7,
In an air-fuel ratio range (fuel lean range) greater than the stoichiometric air-fuel ratio of 14.7, a large resistance value is exhibited. Figure 8 shows the reference voltage (
■For example, 2' (1111V constant),
In order to make the electromotive force e 20111■, the theoretical air-fuel ratio is 14.7.
In a smaller air-fuel ratio range (fuel ratio 11-), the pump current in the pumping direction decreases as the air-fuel ratio increases, and in a range larger than the stoichiometric air-fuel ratio 14.7, the pump current in the pumping direction decreases as the air-fuel ratio increases. (fuel lean region), the above pump current 1
p increases with increasing air-fuel ratio. This embodiment utilizes the characteristics shown in FIGS. 7 and 8. For the output terminal 26 that detects a change in resistance value, a point P, which is an arbitrary M single point, is set between the maximum resistance value and the minimum resistance value, and when the resistance value is smaller than the P point (fuel rich area ) is larger than point P (fuel lean region). Therefore, if the above engine is operated in a rich fuel region,
The resistance value of the metal oxide semiconductor 17 is smaller than point P,
This information and the pump current I of the oxygen pump element 3 at this time
By detecting the output signal corresponding to t1, detailed control or measurement in the fuel rich region can be performed. Further, when the engine is operated in a fuel lean region, the resistance value of the metal oxide semiconductor 17 is greater than point P, and this information and the output signal corresponding to the pump current Ip of the oxygen pump element 3 at this time are used. By detecting this, it is possible to perform detailed control or measurement in the fuel lean region. Further, when controlling the above engine at a stoichiometric air-fuel ratio of 14.7, the output terminal 26 for detecting the resistance value has a stoichiometric air-fuel ratio of 14.7.
Utilizing the characteristic that the resistance value rapidly decreases around 7, the air-fuel ratio is controlled as a direct feedback control signal. With the above configuration, the fuel excess lI range and the fuel excess lI range and the fuel excess lI range and the fuel excess lI range and ! This makes it possible to obtain an air-fuel ratio detection device that can accurately measure the air-fuel ratio of the engine even in a wide lean range. By utilizing this fact, once the desired air-fuel ratio is set, the current air-fuel ratio is detected by the air-fuel ratio detection frame portion 2 attached to the exhaust pipe 1, and the desired air-fuel ratio can be continuously controlled based on the feedback. I can do it. The fact that the pump current Ip changes in proportion to the air-fuel ratio in the fuel lean region as described above is described in, for example, Japanese Patent Laid-Open No. 153155/1983. That is, by changing the oxygen partial pressure of the exhaust gas introduced into the small gap f by the action of the oxygen pump element 3, it is made different from the oxygen partial pressure of the exhaust gas flowing inside the exhaust pipe 1, and this oxygen content is changed. When controlling the pumping pump current Ip supplied to the oxygen pump element 3 so that the electromotive force e of the oxygen concentration battery cable 10 generated in response to the difference in pressure is constant, this pump current It1 is Oxygen I in gas
It was found that it changes in proportion to Nmaro. The reason for the above-mentioned operation in the oxygen pumping mode in the fuel-rich region is considered to be an attempt to respond to CO gas. FIG. 9 shows another embodiment of the air-fuel ratio detection frame portion 2. In this embodiment, the outer peripheries of the φ high thermal conductive electrically insulating substrates 7.9 and (4, 16) in which the electric heaters 8 and 15 are installed are located outward from the portions forming the ion conductive solid electrolytes 6 and 13, respectively. As a result, the highly thermally conductive electrically insulating substrates 7.9 and 14.
16, the installation of the electric heater 8.15, the metal oxide semiconductor 17, and each lead wire 18 provided on the highly thermally conductive electrically insulating substrates 7.9 and 14, 14-16 is facilitated. Become. In the above embodiment, the heater is disposed on the surface of either the m-element pump element or the oxygen concentration battery element, and is embedded inside a highly thermally conductive electrically insulating base for maintaining the metal oxide semiconductor on the surface. However, if the temperature of the gas to be measured is always sufficiently high, each element can be heated without special heating.
In cases where the metal oxide semiconductor and metal oxide semiconductor are activated, the heater may be omitted. In the above embodiment, the resistance value of the metal oxide semiconductor 17 was used as a criterion for determining the fuel rich region and the fuel portion Mbli, but as shown in FIG. The characteristic of change in the ratio of voltage passing through (% of applied voltage) may be used. The direction of the pump current II) of the oxygen pump element 3 is determined by the small gap f.
The flow was carried out in the direction of pumping out oxygen from the exhaust pipe 1 (Ip>0), but on the other hand, it was flowed in the direction of drawing oxygen from the exhaust gas in the exhaust pipe 1 (It
l<0), the oxygen concentration voltage is 15-? l! ! Since the pump current 1p that keeps the output of the element 10 constant changes in accordance with the air-fuel ratio as shown in FIG. 11, the characteristics when doing so may be utilized. Also, the electromotive force e generated in the oxygen concentration battery element 10 when the pump current Ip of the oxygen pump element 3 (including both the case of pumping the M cable from the small gap f and the case of pumping it in) is controlled to be constant. Since it changes depending on the air-fuel ratio, the characteristics when doing so can also be utilized. The present invention uses one or more of the characteristics obtained from the air-fuel ratio detection frame 2 to perform feedback control, so that the air-fuel ratio is continuously controlled over the entire operating range while frequently switching modes as necessary. This is to perform feedback control. 4. Brief description of the drawings Fig. 1 is a configuration diagram showing an embodiment of the air-fuel ratio detection device of the present invention, Fig. 2 is a cross-sectional view taken along line I-I in Fig. 1, and Fig. 3 is A cross-sectional view along the X-V line of FIG. 4 is l1r in FIG.
- A cross-sectional view along line II, Figure 5 is an exploded view of the oxygen concentration battery element, Figure 6 is an exploded view of the oxygen pump element, and Figure 7 shows changes in the air-fuel ratio and the resistance value of the metal oxide semiconductor. Characteristic diagram,
FIG. 8 is a characteristic diagram showing the change in the pumping current Ip of the oxygen pump element with respect to the air-fuel ratio when the electromotive force e of the oxygen concentration battery element is constant, and FIG. 9 is a cross-section showing another embodiment of the air-fuel ratio detection part. Figure 10 is a characteristic diagram showing changes in the air-fuel ratio and applied voltage as a percentage, and Figure 11 is a characteristic diagram showing the change in the air-fuel ratio and the % of the applied voltage. FIG. 3 is a characteristic diagram showing changes. In the figure 1...Exhaust pipe 3...Solid electrolyte oxygen pump element 7.9.14.16...High thermal conductivity electrically insulating base material 10...Solid electrolyte oxygen concentration battery cord 17.
...Metal oxide semiconductor f...Small gap agent Kenji Ishiguro Procedural Amendment November 5, 1982 2, Name of the invention Air-fuel ratio detection vi 3, Relationship with @Correct Person Case Patent Applicant Address: No. 18, 141 Takatsuji-cho, Mizuho-ku, Nagoya
NGK Spark Plug Co., Ltd. (454') Representative: Shuho Ogawa 4, Agent: 465 Phone: 052"773-24'49
1-511 Miscellaneous & Specification 1, Name of the invention Air-fuel ratio detection device 2, Claims 1) Solid electrolyte oxygen concentration battery element and solid electrolyte oxygen pump in which porous electrodes are provided on both sides of an oxygen ion conductive solid electrolyte comprising an element, and providing an electrically insulating base on at least one side of the element excluding the porous electrode,
A metal oxide semiconductor is provided on the surface of the electrically insulating base of the oxygen concentration battery element or the oxygen pump element, and the oxygen concentration battery element and the oxygen pump element are arranged facing each other with a small gap therebetween, and the metal- Air-fuel ratio detection B that detects an air-fuel ratio based on a change in electrical properties given by a compound semiconductor and an output signal given by either an electromotive force of the oxygen concentration cell element or a pump current of the oxygen pump element. It! . 3. Detailed Description of the Invention [Field] The present invention relates to a detection device for measuring or controlling the oxygen concentration or air-fuel ratio in exhaust gas of a combustion device such as an internal combustion engine or gas combustion equipment. [Prior art] Conventionally, an oxygen sensor composed of an ion-conductive solid electrolyte (e.g., stabilized zirconia) coated with a porous electrode layer (e.g., a porous layer made of platinum) has been used to determine the oxygen partial pressure of exhaust gas and By detecting the combustion state near the stoichiometric air-fuel ratio based on the change in electromotive force caused by the difference between the oxygen partial pressure of the air and the oxygen partial pressure of the air, it is possible to
It is generally known that lilJ m-J. By the way, the above-mentioned oxygen sensor can obtain a large change in output when the operating air-fuel ratio (A/F), which is the weight ratio of air and fuel, is the stoichiometric air-fuel ratio of 14.7, but when there is a change in other operating air-fuel ratio ranges, When the engine is operated at an air-fuel ratio other than the stoichiometric air-fuel ratio, the output of the oxygen sensor cannot be used. Two elements having electrode layers on both sides of the front side are arranged parallel to each other with an interval between them, and a gap is provided on the front side to fix the pixel element, and one element is attached to an oxygen pump element. , the other element is connected to the surrounding atmosphere and oxygen m between the gap.
We have proposed an oxygen concentration detection device using an oxygen concentration battery element that operates based on temperature differences. Although such an oxygen concentration detection device has good responsiveness, the stoichiometric air-fuel ratio corresponding to the output signal is 14.
It has been found that when operated in a fuel-rich region lower than 7, it has the characteristic of generating output in the same direction as in a fuel-lean region. In other words, the problem was found that since two air-fuel ratios correspond to the output, air-fuel ratio control can only be applied in cases where it is determined whether the fuel rich region or the fuel lean region is in the fuel rich region. It was done. It has also been found that with this detection device, it is difficult to detect or control the stoichiometric air-fuel ratio or the air-fuel ratio in the vicinity thereof with accuracy or responsiveness. [Object of the Invention] The first object of the present invention is to ensure that the operating air-fuel ratio (A/F, And respond≦
The second object is to provide an air-fuel ratio detection device capable of detecting the air-fuel ratio, which has the advantage of allowing accurate and easy feedback control when performing air-fuel ratio feedback control within the above-mentioned air-fuel ratio range. An object of the present invention is to provide an air-fuel ratio detection device. ,. [Structure of the Invention] The air-fuel ratio detection device of the present invention includes a solid electrolyte oxygen concentration battery element and a solid electrolyte quasi-cumulative pump element, each of which has porous electrodes on both sides of an oxygen ion-conducting solid electrolyte, at least one of which An electrically insulating base is provided on a portion of one side of the electrode other than the porous electrode, a metal oxide semiconductor is provided on the surface of the electrically insulating base of the oxygen concentration battery element or the oxygen pump element-4, and a metal oxide semiconductor is provided on the surface of the electrically insulating base of the The oxygen concentration battery element and the oxygen pump element are arranged in pairs with a small gap interposed therebetween, and changes in electrical properties given by the metal oxide conductor and electromotive force of the oxygen concentration battery element or pump current of the oxygen pump element are controlled. The configuration is such that the air-fuel ratio is detected based on an output signal given by one of the following. [Effects of the Invention] The air-fuel ratio detection device of the present invention has the following effects due to the above configuration. Using one sensor probe, the air-fuel ratio (A/F) can be correctly detected in the entire region or a partial region from the fuel-rich region to the fuel #J lean region. [Example] Next, the present invention will be explained based on an example shown in the drawings. 1 to 6 show embodiments of the present invention. Reference numeral 1 indicates an exhaust pipe of an internal combustion engine, which is a combustion device, and reference numeral 2 indicates a detection frame portion of an air-fuel ratio detection device disposed within the exhaust pipe 1. 3 is the solid electrolyte oxygen pump element of the air-fuel ratio detection frame part 2, and porous platinum electrode layers 4 and 5 with a thickness of about 20μ are provided on both sides using thick film technology, respectively, and the thickness is about o. , a 5 mm flat plate-shaped ion conductive solid electrolyte (e.g. stabilized zirconia) 6 and a porous electrolyte attached to one side of the ion conductive solid electrolyte 6, for example the side on which the porous platinum electrode layer 5 is provided. It has a flat plate shape with a thickness of about 0.25n+m and has a window a that is an opening adapted to the shape of the porous platinum electrode M5 so as not to block the part of the platinum electrode layer 5, and has excellent thermal conductivity and electrical insulation. A highly thermally conductive electrically insulating substrate 1 (the substrate may be a molded board or a printed film) made of a material (such as alumina or spinel) 1, and a highly thermally conductive electrically insulating substrate 1 A gap is formed between the outer periphery of the window a and the outer periphery of the highly thermally conductive electrically insulating substrate 7 at the outer periphery of the window a on the side opposite to the surface on the side of the ion conductive solid electrolyte 6. The electric heater 8 is installed inside the high heat conductive electrically insulating base 70 on which the electric heater 8 is provided, and the high heat conductive electrical It is composed of an insulating base 7 and a flat plate-shaped highly thermally conductive electrically insulating base 9 having a window portion opening the same porous platinum electrode layer 5. 10 is a solid of the air-fuel ratio detection frame portion 2. In the electrolyte oxygen concentration battery element, porous platinum electrode layers 11 and 12 are formed on both sides using the same thick film technology as the porous platinum electrode layers 4 and 5.
A plate-shaped ion conductive solid electrolyte 13 similar to the ion conductive solid electrolyte 6 is provided, and one side of the ion conductive solid electrolyte 13 is similar to the high thermal conductive electrically insulating base 7. A highly thermally conductive electrically insulating substrate 14 having a window portion C that opens a portion of the porous platinum electrode layer 11 attached to the side surface on which the porous platinum electrode layer 11 is provided.
And, like the electric heater 8, it has a high heat transfer rate of 13f! An electric heater 15 is provided on the outer periphery of the window C on the surface of the electrically insulating rope 14 opposite to the ion conductive solid electrolyte 13 side. A highly thermally conductive electrically insulating material 14 is provided with an electric heater 15 therein and is isolated from the outside.
A flat plate-shaped highly thermally conductive electrically insulating material 16 having a window d that opens the porous platinum electrode layer 11 and the surface of the highly thermally conductive electrically insulating material 1G on the side facing the electric heater 15 are as follows. At the top of the window d on the opposite side, use thick film technology to
0μ is composed of a metal oxide semiconductor (for example, a ditania element) 17 provided at any thickness. It should be noted that each electric element (4, 5, 8, 11, 12, 15) provided in the oxygen pump element 3 and the oxygen concentration battery element 10
, 17) are each connected with a lead wire 18 for continuity to the outside.
is provided using thick film technology. The surface of the oxygen pump resistor 3 on the porous platinum electrode layer 4 side and the surface of the oxygen concentration battery element 10 on the porous platinum electrode layer 12 side are separated by a small distance of about 0.1 to 0.05 mm. Gap f
In order to form a heat-resistant and insulating spacer (filling adhesive may be used) 19 at the foot of the exhaust pipe 1,
They are fixed to each other via 8-. At the outer edge of the feet of the oxygen pump water element 3 and the oxygen concentration battery element 10, which are fixed by the spacer 19, there is a support base 21 with a threaded part 20 on the right. Installed by 22. The air-fuel ratio detection frame portion 2 is attached to the exhaust pipe 1 by screwing the threaded portion 20 of the support base 21 into the mounting screw portion 23 of the air-fuel ratio detection frame portion 2 provided on the exhaust pipe 1. Here, in order to manufacture the air-fuel ratio detection frame part 2, as shown in FIG. The lead wires are each printed in a predetermined pattern using thick film technology, and one side of the lead wires is coated with a highly thermally conductive and electrically insulating base, for example, two flat spinel green sheets with windows. In Fig. 9-5, there is an oxygen pump element 3 with a ceramic @layer structure obtained by laminating a platinum resistor such as an electric heater and a lead wire of the metal and then integrally sintering it. As shown, lead wires for metal oxide semiconductors such as ditania are formed using thick film technology on the surface of the highly thermally conductive electrically insulating base of the element, which is formed in the same process as oxygen pump element 3. An oxygen concentration battery element 10 printed in a predetermined pattern and sintered (the thick film of metal oxide is formed by sintering the above element and then firing in an atmosphere) was stacked with a seekness gauge in between. In this state, it is advantageous to adhesively fix the foot part with a spacer (if thermal ceramic adhesive) 19. Reference numeral 24 is an example of an attached electronic control unit part, in which the electromotive force e generated in the porous platinum electrode layer 11 and 12 of the oxygen concentration battery element 10 is transferred to an operational amplifier (
The reference voltage (Vr) applied to the inverting input terminal of A) and the non-inverting input terminal of the operational amplifier CA>
The operational amplifier (A
It has a function of controlling the pump current ip flowing through the porous platinum electrode layer 4.5 of the S pump cable 3 by driving a transistor (Tr) by the output of . That is,
It functions to supply the pump current Ip necessary to maintain the electromotive force e at a constant reference voltage (Vr). A resistor (Ro) is used to obtain an output signal corresponding to the pump current Ill supplied from the DC power supply (B) to the output terminal 25.
It is equipped with (C) is a capacitor. Further, the oxygen concentration battery element 10 is provided with an output terminal 26 for detecting a change in the resistance value of the metal oxide semiconductor 17 that occurs in the exhaust pipe 1 according to a difference in oxygen concentration. Metal oxide semiconductor 17 and porous platinum electrode layer 4.5 and 11.
The electric heaters 8 and 11) for heating 12 are electrically connected to heating power sources 27 and 28, respectively. 7 and 8 are characteristic diagrams of the air-fuel ratio detection device shown in FIGS. 1 to 6 above. FIG. 7 shows the change in the resistance value of the metal oxide semiconductor 17 at the output terminal 26. In the air-fuel ratio range smaller than the stoichiometric air-fuel ratio 14.7 (fuel stone excess m range), the resistance value is small. and increases rapidly around the stoichiometric air-fuel ratio of 14.7,
In an air-fuel ratio range (fuel lean range) greater than the stoichiometric air-fuel ratio of 14.7, a large resistance value is exhibited. Figure 8 shows the reference voltage (
Vr) is kept constant at, for example, 20 mV, and in order to make the electromotive force e 20 mV, the pump current I11 in the pumping direction is set at an air-fuel ratio range smaller than the stoichiometric air-fuel ratio 14.7 (fuel rich range). The above pump current I11. increases with increasing air-fuel ratio. This embodiment utilizes the heather characteristics shown in FIGS. 7 and 8. Regarding the output terminal 26 that detects a change in resistance value, PQ is located at an arbitrary reference point between the maximum resistance value and the minimum resistance value.
The resistance value is set to detect when the resistance value is smaller than point P (fuel rich area) and when it is larger than point P (fuel lean area). Therefore, if the above engine is operated in a rich fuel region,
The resistance value of the metal oxide semiconductor 17 is smaller than point P,
This information and the pump current 1 of the oxygen pump element 3 at this time
By detecting the output signal corresponding to p, detailed control or measurement can be performed in the fuel rich region. In addition, when the above engine is operated in a fuel lean region, the metal oxide semiconductor 1
The resistance value of point 7 is larger than point [), and by detecting this information and the output signal corresponding to oxygen, pump current of pump element 3, and flow at this time, detailed control in the fuel lean region is possible. Or you can measure it.・In addition, when controlling the engine described in 1-1 at a theoretical air-fuel ratio of 14.7, the resistance value is detected at the stoichiometric air-fuel ratio of 14.7 (near -1, the low value decreases rapidly). The air-fuel ratio fi control is performed by using the characteristics of It is difficult to obtain an air-fuel ratio detection device that can accurately and responsively measure the air-fuel ratio of the engine mentioned above.You can also use this to set the desired air-fuel ratio and adjust the exhaust pipe. Air-fuel ratio detection frame part 2 attached to 1
The current air-fuel ratio can be detected quickly, and the desired air-fuel ratio can be continuously controlled based on the feedback. The fact that the pump current lp changes in proportion to the air-fuel ratio in the fuel lean region as described above is described in, for example, Japanese Patent Laid-Open No. 153155/1983. That is, by changing the oxygen partial pressure of the exhaust gas introduced into the small gap f by the action of the oxygen pump element 3, a difference is created between the oxygen partial pressure of the exhaust gas flowing in the 1-1 trachea 1, When controlling the pump current Ip supplied to the oxygen pump cord 3 so that the electromotive force C of the oxygen concentration battery element 10 is constant, the pump It was found that the current Ip changes in proportion to 8M of oxygen in the v1 gas. The reason for the above-described operation in the oxygen pumping mode in the fuel-rich region is thought to be that it is sensitive to CO gas. FIG. 9 shows another embodiment of the air-fuel ratio detection frame portion 2. In this embodiment, the outer peripheries of the highly thermally conductive electrically insulating substrates 7.9 and 14.16, which hold the electric heaters 8 and 15, are exposed to external forces from the portions connecting the ion conductive solid electrolytes 6, 13, and 13, respectively. It is formed by overhanging the. This increases the area of each of the highly thermally conductive electrically insulating substrates 7.9a3 and 14.16, so the electric heater 8.15 installed on the highly thermally conductive electrically insulating substrates 7.9 and 14.16 increases. In the above embodiment, the metal oxide semiconductor 17 and each lead wire 18 are easily installed. In this case, the temperature of the gas to be measured is always sufficiently high and the temperature of each element and metal oxide 4 is maintained even without special heating. If the conductor is activated, the heater can be omitted. In the above embodiment, the resistance value of the metal oxide semiconductor 17 is used as the criterion for determining the fuel-rich region and the fuel-lean N region, but as shown in FIG. The characteristic of a change in the ratio of voltage (% of applied voltage) passing through the oxide semiconductor 17 may be used. The direction of the Bonle current I11 of the oxygen pump element 3 is determined by the small gap f.
Although the flow was carried out in the direction of pumping out oxygen from the exhaust pipe 1 ('I p >' O), even if it was flowed in the direction of pumping oxygen from the ``i1 gas'' in the exhaust pipe 1 up < 0), the oxygen 81 light cell Element 1
Since the pump current It), which maintains a constant output of 0, changes in accordance with the air-fuel ratio as shown in FIG. 6, the characteristic number when doing so may be used. In addition, the oxygen concentration battery element 10 is constructed by controlling the pump current 1p of the oxygen pump element 3 (including both the case of pumping out oxygen from the small gap f and the case of pumping it in) to a constant value.
The generated electromotive force. Since the air-fuel ratio also changes depending on the air-fuel ratio, the characteristics obtained when the air-fuel ratio is changed are used.The present invention performs feedback control by using one or more of the characteristics obtained from the air-fuel ratio detection frame 2. Thus, feedback control of the air-fuel ratio is continuously performed over the entire operating range while frequently switching modes as needed. 4. Brief description of the drawings Fig. 1 is a configuration diagram showing an embodiment of the air-fuel ratio detection device of the present invention, Fig. 2' is a sectional view taken along line 1'-'I in Fig. 1, and Fig. 3
The figure is a cross-sectional view taken along the F-I line in Figure 2, Figure 4 is a cross-sectional view taken along the side line in Figure 2, Figure 5 is an exploded view of the oxygen concentration battery confectionery, and Figure 6 is the oxygen pump. An exploded diagram of the device, Figure 7 is a characteristic diagram showing the ice formation of the air-fuel ratio and the resistance value of the gold m1lHts semiconductor, and Figure 8 is the pump current of the oxygen pump element when the electromotive force e of the oxygen concentration battery element is constant. 9 is a cross-sectional view showing another embodiment of the air-fuel ratio detection portion; FIG. 10 is a special diagram showing changes in air-fuel ratio and applied voltage %; FIG. 11 is a characteristic diagram showing the change in the push-pump current I'p of the oxygen pump element 8 with respect to the air-fuel ratio, with the electromotive force of the oxygen concentration cell element constant at zero. In the diagram: 1...Exhaust pipe 3...Solid electrolyte oxygen cylinder 1
7- Element 7.9.14.16...High thermal conductivity electrically insulating base material 10...Solid electrolyte oxygen ii! Light cell battery element...Metal oxide semiconductor f...Kenji Ishiguro 18-

Claims (1)

【特許請求の範囲】 1)、酸素イオン伝導性固体電解質の両端面に多孔性電
極−一けた固体電解質−素晴淡電池素子およq固体電解
質l索ポンY素子を備え、その、少なくとも方の片側面
ト該多孔性電極の部分を開口する窓を有し、1つ内部に
電熱ヒータを内蔵した高熱隼導性素坤を設け、前記準素
淵淡電池素子または酸素ポンス轡子の前昼己高熱伝導性
素貌側面に金属酸化物半導体を設け、前記酸素濃淡電池
家子午前記酸素ボン/素子とを小間隙を介駿て対向、配
置) 、・ 、前記金属酸化物半導体により与えられる電気性震の変
化と、前記酸素濃埼電池幕子9起電力または前記酸素ポ
ンプ素子のポンプ電流のいずれかによって与えられるj
す信号とににり空燃比を検知するようにした空燃比検知
装置。
[Scope of Claims] 1) A porous electrode, a single-digit solid electrolyte, a fine dielectric cell element, and a solid electrolyte Pon Y element are provided on both end faces of an oxygen ion conductive solid electrolyte, at least one of which A high heat conductive material having a window opening the porous electrode portion and having a built-in electric heater inside is provided on one side of the material, and in front of the quasi-elementary cell element or oxygen pump material. A metal oxide semiconductor is provided on the side surface of the high thermal conductivity element, and the oxygen concentration battery and the oxygen bomb/element are placed facing each other with a small gap between them. j given by either the electromotive force of the oxygen-concentrated battery or the pump current of the oxygen pump element.
An air-fuel ratio detection device that detects the air-fuel ratio at the same time as the signal.
JP58238262A 1983-12-17 1983-12-17 Air-fuel ratio detecting apparatus Granted JPS60129659A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58238262A JPS60129659A (en) 1983-12-17 1983-12-17 Air-fuel ratio detecting apparatus
EP84308782A EP0147989A3 (en) 1983-12-17 1984-12-14 Air/fuel ratio detector
US06/682,220 USH427H (en) 1983-12-17 1984-12-17 Air/fuel ratio detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58238262A JPS60129659A (en) 1983-12-17 1983-12-17 Air-fuel ratio detecting apparatus

Publications (2)

Publication Number Publication Date
JPS60129659A true JPS60129659A (en) 1985-07-10
JPH0452895B2 JPH0452895B2 (en) 1992-08-25

Family

ID=17027563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58238262A Granted JPS60129659A (en) 1983-12-17 1983-12-17 Air-fuel ratio detecting apparatus

Country Status (1)

Country Link
JP (1) JPS60129659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306414A (en) * 1991-01-24 1992-10-29 Toshiba Home Techno Kk Burner controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306414A (en) * 1991-01-24 1992-10-29 Toshiba Home Techno Kk Burner controller

Also Published As

Publication number Publication date
JPH0452895B2 (en) 1992-08-25

Similar Documents

Publication Publication Date Title
US4578172A (en) Air/fuel ratio detector
US5108577A (en) Electrochemical device
US5236569A (en) Air/fuel ratio sensor having resistor for limiting leak current from pumping cell to sensing cell
US4594139A (en) Air/fuel ratio detector
US4629549A (en) Oxygen sensor
US5787866A (en) Air-fuel ratio sensor
JPH021539A (en) Heating type oxygen sensor
US20090242402A1 (en) NOx SENSOR
US4839019A (en) Oxygen sensor
JP2989961B2 (en) Oxygen concentration detector for intake pipe
US5389218A (en) Process for operating a solid-state oxygen microsensor
US5389225A (en) Solid-state oxygen microsensor and thin structure therefor
JPH0260142B2 (en)
JPS60128352A (en) Air fuel ratio detector
JPH11166911A (en) Air-fuel ratio sensor
JPS60129659A (en) Air-fuel ratio detecting apparatus
USH427H (en) Air/fuel ratio detector
JPS60243558A (en) Analyzing device of oxygen gas concentration
JPS6150058A (en) Air/fuel ratio detector
JP3565520B2 (en) Oxygen concentration sensor
JPH0534316A (en) Air-fuel ratio detection device
JPS60128355A (en) Air fuel ratio detector
JP3529567B2 (en) Gas sensor
JPS60129660A (en) Air-fuel ratio detecting apparatus
JPS5942695Y2 (en) Oxygen concentration detection element with heating element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees