JPS60128891A - Field control circuit of series motor - Google Patents

Field control circuit of series motor

Info

Publication number
JPS60128891A
JPS60128891A JP58237053A JP23705383A JPS60128891A JP S60128891 A JPS60128891 A JP S60128891A JP 58237053 A JP58237053 A JP 58237053A JP 23705383 A JP23705383 A JP 23705383A JP S60128891 A JPS60128891 A JP S60128891A
Authority
JP
Japan
Prior art keywords
field
parallel
series
current
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58237053A
Other languages
Japanese (ja)
Inventor
Shigenori Kinoshita
木下 繁則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58237053A priority Critical patent/JPS60128891A/en
Publication of JPS60128891A publication Critical patent/JPS60128891A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/282Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling field supply only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To reduce the size and to eliminate contacts of a field weakening unit by connecting a semiconductor switch which can control the bidirectional energizations in parallel with part of a branch resistor connected in parallel with a field winding. CONSTITUTION:AC power supplied from trolley wires is collected from a pantograph 1, and supplied through a transformer 2 and a diode rectifier 4 to a motor armature 6 and a field winding 7. A branch resistor 8 formed by connecting in series resistors 81, 82 is connected in parallel with the winding 7 to branch the pulsating component of a pulsating DC current to the resistor 8. Thyristors 21, 22 are connected in parallel with the resistor 82, controlled to fire, thereby performing a field weakening control.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は交流を整流して得られる直流電力により駆動
される直流直巻電動機の界磁を弱める界磁制御回路に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a field control circuit that weakens the field of a DC series motor driven by DC power obtained by rectifying AC.

〔従来技術とその問題点〕[Prior art and its problems]

直流直巻電動機は低速度で大きなトルクを出すことがで
きるところから、電気車を駆動するのに多用されている
が、近頃は新幹線のように架線から供給される交流電力
を車輛に塔載している機器により直流電力に変換して電
動機に与えるようになされたいわゆる交流電気車が使用
されている。
DC series-wound motors are often used to drive electric cars because they can produce large torque at low speeds, but recently, AC power supplied from overhead wires, such as the Shinkansen, is being used to power the cars. A so-called AC electric car is used, which uses a device to convert DC power into DC power and feed it to an electric motor.

この交流電気車を例にして従来からの問題点を以下に説
明する。
Conventional problems will be explained below using this AC electric vehicle as an example.

第1図は従来の交流電気車の主回路接続図であるが、こ
の第1図において、架線からの交流電力は1なるパンタ
グラフにより集電され、変圧器2と車輪3を経てレール
に流れるようになっている。
Figure 1 is a main circuit connection diagram of a conventional AC electric car. In Figure 1, AC power from the overhead wire is collected by a pantograph 1, and flows to the rails via a transformer 2 and wheels 3. It has become.

変圧器2により変圧された交流電力は4なる半導体変換
器としてのダイオード整流器により直流電力に変換され
たのち、直流リアクトル5を介して電動機電機子6と、
この電機子6に直列接続されている電動機界磁巻線7に
流れる。この電機子6と界磁巻線7とが直列接続されて
直巻電動機を形成している。なお界磁巻線7には分路抵
抗8が並列接続されている。実際の電気車にあっては1
組のパンタグラフと変圧器に対して複数の直巻電動機が
接続され、また変圧器2はタップ変更器を備え、さらに
ダイオード整流器4の代りにサイリスタの純ブリッジま
たは混合ブリッジでなる整流器を備えて直巻電動機印加
電圧を調整できるようなされているが、図が複雑になる
のを避けるために省略している。
The AC power transformed by the transformer 2 is converted into DC power by a diode rectifier as a semiconductor converter 4, and then is connected to a motor armature 6 via a DC reactor 5.
The current flows to the motor field winding 7 connected in series to the armature 6. This armature 6 and field winding 7 are connected in series to form a series motor. Note that a shunt resistor 8 is connected in parallel to the field winding 7. In an actual electric car, 1
A plurality of series motors are connected to the set of pantographs and the transformer, and the transformer 2 is equipped with a tap changer, and is further provided with a rectifier consisting of a pure bridge or a mixed bridge of thyristors instead of the diode rectifier 4. Although the voltage applied to the winding motor can be adjusted, it is omitted to avoid complicating the diagram.

ダイオード整流器4が出力する直流電圧は交流を整流し
ているため脈動電圧である。そこで電機子6に流れる電
流の脈動を抑制するために、このダイオード整流器4と
直巻電動機との間に直流リアクトル5を設けている。こ
の直流リアクトル5により脈動率を低減された脈動電流
が直巻電動機の電機子6と界磁巻線7を流れるのである
が、脈動電流が界磁巻線7に流れるのは電動機の整流に
悪影響があるので、当該界磁巻線7に並列に分路抵抗8
を接続して、この分路抵抗8に上記脈動電流中の脈動分
を分流させ、界磁巻線7に流れる電流を平滑なものにし
ている。このとき分路抵抗8に流れる脈動電流は約10
%またはそれ以下の直流分を含んでいる。すなわち第1
図において電機子6に流れる電機子電流Imは、界磁巻
線7を流れる平滑な界磁電流Ifと、分路抵抗8を流れ
る僅かな直流分を含む脈動した分路電流1rとに分かれ
る。
The DC voltage output by the diode rectifier 4 is a pulsating voltage because it rectifies AC. Therefore, in order to suppress the pulsation of the current flowing through the armature 6, a DC reactor 5 is provided between the diode rectifier 4 and the series-wound motor. The pulsating current whose pulsation rate has been reduced by this DC reactor 5 flows through the armature 6 and field winding 7 of the series-wound motor, but the pulsating current flowing through the field winding 7 has a negative effect on the rectification of the motor. Therefore, a shunt resistor 8 is connected in parallel to the field winding 7.
is connected to shunt resistor 8 to shunt the pulsating portion of the pulsating current, thereby smoothing the current flowing through field winding 7. At this time, the pulsating current flowing through the shunt resistor 8 is approximately 10
% or less. That is, the first
In the figure, the armature current Im flowing through the armature 6 is divided into a smooth field current If flowing through the field winding 7 and a pulsating shunt current 1r containing a slight DC component flowing through the shunt resistor 8.

第2図は第1図に示す主回路接続における各部の動作波
形図であって、第2図げ)は電動機電機子6を流れる電
機子電流Imであって、脈流外を含む直流電流であるこ
とを示している。第2図(c4は界磁巻線7を流れる界
磁電流Ifであって、分路抵抗日により脈動分が取除か
れた平滑な直流電流である。第2図(ハ)は分路抵抗8
に流れる分路電流Irであって、直流分を含み正負に変
化する脈動電流である。この第2図(切に示す界磁電流
Ifと第2図(ハ)に示す分路電流1rの和が第2図(
イ)に示す電機子電流Imである。第2図に)は分路抵
抗8の両端にあられれる分路電圧Vrであり、分路電流
Irと同様に直流分を含み正負に変化する脈動電圧であ
る。
FIG. 2 is an operating waveform diagram of each part in the main circuit connection shown in FIG. 1, and FIG. It shows that there is. Fig. 2 (c4 is the field current If flowing through the field winding 7, which is a smooth DC current with pulsation removed by the shunt resistance. Fig. 2 (c) shows the field current If flowing through the field winding 7. 8
The shunt current Ir flowing through the circuit is a pulsating current that includes a direct current component and changes in positive and negative directions. The sum of the field current If shown in Fig. 2 (C) and the shunt current 1r shown in Fig. 2 (C) is
This is the armature current Im shown in a). 2) is a shunt voltage Vr that is applied across the shunt resistor 8, and is a pulsating voltage that includes a direct current component and changes from positive to negative, similar to the shunt current Ir.

直流電動機の界磁を弱めれば回転速度が高くなるのは周
知であり、交流電気車においても、直巻電動機を弱め界
磁にして高速足付できるようにしている。
It is well known that weakening the field of a DC motor increases the rotational speed, and even in AC electric cars, the field of the series-wound motor is weakened to enable high-speed operation.

第3図は従来の交流電気車の弱め界磁接続図であって、
2段の弱め界磁ができるものである。この第3図におい
て、架線からの交流電力はパンクグラフ1で集電され変
圧器2と車輪3を経てレールに流れる。変圧器2により
変圧され、ダイオード整流器4により整流された直流電
力は直流リアクトル5を経てta機電機子6に流れ、さ
らに直列接続されている電動機界磁巻線7ならびにこの
界磁巻線7に並列接続されている分路抵抗8に流れる。
Figure 3 is a field weakening connection diagram of a conventional AC electric car,
It is capable of two-stage field weakening. In FIG. 3, AC power from the overhead wire is collected by a pangraph 1 and flows to the rails via a transformer 2 and wheels 3. The DC power transformed by the transformer 2 and rectified by the diode rectifier 4 flows through the DC reactor 5 to the TA machine armature 6, and then to the motor field winding 7 connected in series and this field winding 7. The current flows through the shunt resistor 8 which is connected in parallel.

ここで直流リアクトル5と分路抵抗8の役割りは、第1
図で説明したとおりである。
Here, the role of the DC reactor 5 and the shunt resistor 8 is the first
As explained in the figure.

第3図に示す弱め界磁の従来例では、界磁巻線7、J4
路抵抗8との並列接続回路にさらに接触器と弱め界磁抵
抗との直列接続回路を2組並列接続している。通常は接
触器11と13はともに開状態で運転しているが、界磁
を弱めたいときすなわち高速走行したいとき、接触器1
1を閉にすると界磁巻1llIj17には分路抵抗8と
、更に弱め界磁抵抗12とが並列に接続されるために、
界磁巻線7に流れるべき電流のうちの1部がこの弱め界
磁抵抗12に分流してしまうために、この直巻電amは
界磁弱めの状態になり速度が増大する。さらに接触器1
3も閉にすれば界磁電流の1部は弱め界磁抵抗14にも
分(5) 流して界磁は更に弱まって増速する。
In the conventional example of field weakening shown in Fig. 3, field winding 7, J4
In addition to the parallel connection circuit with the field resistance 8, two series connection circuits of a contactor and a field weakening resistance are connected in parallel. Normally, both contactors 11 and 13 are operated in an open state, but when you want to weaken the field, that is, when you want to run at high speed, the contactor 11 and 13 operate in an open state.
1 is closed, the shunt resistor 8 and the field weakening resistor 12 are connected in parallel to the field winding 1llIj17.
Since part of the current that should flow through the field winding 7 is shunted to the field weakening resistor 12, the series current am enters a field weakening state and its speed increases. Furthermore, contactor 1
If 3 is also closed, part of the field current will also flow through the field weakening resistor 14 (5), further weakening the field and increasing the speed.

第4図は速度・トルク特性図であって、横軸は直巻電動
機の回転速度をあられし、縦軸は電動機のトルクをあら
れしている。この第4図において曲線A1は界磁弱めを
しないときすなわち第3図における接触器11と13が
ともに開状態のときの直巻電動機の速度・トルク特性曲
線であり、曲線A2は第1段弱め界磁状態すなわち接触
器11が閉で接触器13が開のとき、また曲線A3は第
2段弱め界磁状態すなわち接触器11と13がともに閉
のときの当該直巻電動機の速度・トルク特性曲線である
。才た曲線Bは負荷の速度骨トルク特性曲線であって当
該電気車の走行抵抗に相当する。それ故直巻電動機が界
磁を弱めていないときは、この電動機は曲線A1と曲線
Bの交点でバランスしているから、そのときの回転速度
はN1であるが、第1段弱め界磁状態にすれば、バラン
スする点は曲線A2と曲線Bの交点に移動するから、そ
のときの回転速度はN2に上昇する。さらに第2段弱め
界磁状態のときは曲線A3と曲線Bの交点での速度N3
に上昇する。
FIG. 4 is a speed/torque characteristic diagram, in which the horizontal axis represents the rotational speed of the series-wound motor, and the vertical axis represents the torque of the motor. In FIG. 4, curve A1 is the speed/torque characteristic curve of the series motor when field weakening is not performed, that is, when contactors 11 and 13 in FIG. 3 are both open, and curve A2 is the first stage weakening. Curve A3 shows the speed/torque characteristics of the series motor in the field state, that is, when the contactor 11 is closed and the contactor 13 is open, and the curve A3 shows the speed and torque characteristics of the series motor in the second stage weakening field state, that is, when both the contactors 11 and 13 are closed. It is a curve. Curve B is a load speed-bone torque characteristic curve and corresponds to the running resistance of the electric vehicle. Therefore, when the series motor is not weakening the field, this motor is balanced at the intersection of curve A1 and curve B, so the rotation speed at that time is N1, but in the first stage field weakening state. , the balancing point moves to the intersection of curve A2 and curve B, and the rotational speed at that time increases to N2. Furthermore, in the second stage field weakening state, the speed N3 at the intersection of curve A3 and curve B
rise to

(6) すなわち第3図に示す従来の弱め界磁回路により第4図
に示すように回転速度を上昇させることができるが、弱
め界磁の段数を増やそうとすると、その段数と同数の接
触器と弱め界磁抵抗が入用であるから、回路が複雑にな
り装置が大形になるので、取付はスペースに限度がある
電気車にとっては大きな欠点となる。また接触器を使用
するので保守点検の手間が必要であり、さらに界磁弱め
を連続的に制御できないなど、種々の欠点がある。
(6) In other words, the rotation speed can be increased as shown in Figure 4 using the conventional field weakening circuit shown in Figure 3, but if you try to increase the number of stages of field weakening, you will need to use the same number of contactors as the number of stages. Since field weakening resistance is required, the circuit becomes complicated and the device becomes large, which is a major drawback for electric vehicles where installation space is limited. Furthermore, since a contactor is used, maintenance and inspection work is required, and there are various drawbacks, such as the inability to continuously control field weakening.

〔発明の目的〕[Purpose of the invention]

この発明は、交流を整流して得られる直流電力により駆
動される直流直巻電動機の界磁を小形で保守点検が不要
な装置で連続的に弱めることができる直巻電動機の界磁
制御回路を提供することを目的とする。
The present invention provides a field control circuit for a series-wound motor that can continuously weaken the field of a DC series-wound motor driven by DC power obtained by rectifying alternating current using a small device that does not require maintenance or inspection. The purpose is to

〔発明の要点〕[Key points of the invention]

この発明は、交流を整流して得られる直流電力により駆
動される直流直巻電動機の界磁巻線に並列に分路抵抗を
接続すると、当該電動機の電機子を流れる脈動電流のう
らの脈動分は、はとんど分路抵抗を流れ、しかもこの分
路抵抗を流れる電流は交流電源の周波数よりも高い周波
数で(たとえば単相全波整流の場合は電源の2倍の周波
数)正負に脈動することに着目したものであって、両方
向に通電制御ができる半導体スイッチを前記の分路抵抗
の一部分に並列をこ接続し、この半導体スイッチを制御
することにより電機子電流の一部をこの半導体スイッチ
に分流させ、当該直流直巻電動機の界磁弱め制御をなそ
うとするものである。
This invention provides that when a shunt resistor is connected in parallel to the field winding of a DC series motor driven by DC power obtained by rectifying AC, the back pulsating current flowing through the armature of the motor is mostly flows through the shunt resistor, and the current flowing through this shunt resistor pulsates in positive and negative directions at a frequency higher than the frequency of the AC power supply (for example, twice the frequency of the power supply in the case of single-phase full-wave rectification). A semiconductor switch that can control current flow in both directions is connected in parallel to a portion of the shunt resistor, and by controlling this semiconductor switch, a portion of the armature current is transferred to this semiconductor. This is intended to perform field weakening control of the DC series motor by shunting the current to the switch.

〔発明の実施例〕[Embodiments of the invention]

第5図は本発明の実施例を示す主回路接続図であり、こ
の第5図により本発明の内容を詳述する。
FIG. 5 is a main circuit connection diagram showing an embodiment of the present invention, and the content of the present invention will be explained in detail with reference to FIG.

この第5図は前述せる従来例と同様に交流電気車の場合
であり、当該直流直巻電動機に印加される直流電圧を制
御する手段(たとえば変圧器のタップ変更装置や整流器
をサイリスタで構成することなど)や、複数の電動機を
直列・並列に接続することなどは、図示を簡略にするた
めに省略してい )るのも従来例と同様である。
This Figure 5 shows the case of an AC electric car as in the conventional example described above, and means for controlling the DC voltage applied to the DC series motor (for example, a tap changing device of a transformer or a rectifier configured with a thyristor). As in the conventional example, the illustrations (e.g.) and the connection of multiple electric motors in series or parallel are omitted to simplify the illustration.

第5図において、架線から給電される交流電力は、パン
タグラフ1から集電され、変圧器2と車輪3を経てレー
ルに流れる。変圧器2により変圧された交流電力はダイ
オード整流器4により整流され、直流リアクトル5を経
て電動機電機子6と、これに直列接続されている電動機
界磁巻線7を流れる。この界磁巻@7には並列に抵抗8
1と82を直列接続してなる分路抵抗8が接続されてい
て、脈動直流電流の脈動分をこの分路抵抗8に分流させ
るのは既に説明済みの従来例と同じである。
In FIG. 5, AC power supplied from the overhead wire is collected from a pantograph 1 and flows to the rails via a transformer 2 and wheels 3. The AC power transformed by the transformer 2 is rectified by the diode rectifier 4, and flows through the DC reactor 5 to the motor armature 6 and the motor field winding 7 connected in series thereto. A resistor 8 is connected in parallel to this field winding @7.
A shunt resistor 8 formed by connecting transistors 1 and 82 in series is connected, and the pulsating portion of the pulsating direct current is shunted to this shunt resistor 8, as in the conventional example already described.

本発明の実施例においては、たがいに逆並列接続されて
いる並列サイリスタ21とnが上述の分路抵抗8の一部
分である抵抗82に並列に接続される。
In the embodiment of the invention, parallel thyristors 21 and n, which are connected in antiparallel to each other, are connected in parallel to a resistor 82, which is part of the shunt resistor 8 mentioned above.

この並列サイリスタ21とρのいずれか一方あるいは双
方を点弧制御することにより、当該直流直巻電動機の界
磁弱め制御が連成される。
By controlling the firing of either or both of the parallel thyristor 21 and ρ, field weakening control of the DC series motor is coupled.

第6図は第5図に示す実施例の動作波形図である。第6
図(ホ)は上述の並列サイリスタ21とρがともに非導
通の場合の界磁巻@7の電圧波形であって、これは分路
抵抗8の両端電圧と等しい。すなわちこの第6図(ホ)
に示される電圧Vrは第2図に)に(9) 示される電圧Vrと同じである。この分路電圧Vrの波
形の正の部分と負の部分の差が界磁電圧の平均値Vfで
ある。界磁巻1i!7には、この平均界磁電圧Vfを界
磁巻線7の抵抗で除した界磁電流Ifが流れる。
FIG. 6 is an operational waveform diagram of the embodiment shown in FIG. 6th
Figure (e) shows the voltage waveform of the field winding @7 when both the above-mentioned parallel thyristor 21 and ρ are non-conducting, and this is equal to the voltage across the shunt resistor 8. In other words, this Figure 6 (E)
The voltage Vr shown in (9) in FIG. 2 is the same as the voltage Vr shown in (9) in FIG. The difference between the positive part and the negative part of the waveform of this shunt voltage Vr is the average value Vf of the field voltage. Field winding 1i! 7, a field current If, which is the average field voltage Vf divided by the resistance of the field winding 7, flows.

第6図(へ)は並列サイリスタ21とρを点弧制御した
場合の電圧波形Vrxを示しており、並列サイリスタ2
1はその順方向電圧のときのα1なる期間戸は導通させ
、他方の並列サイリスタ四もその順方向電圧のときに期
間節だけ導通させたときのものであって、第6図(ト)
は上述の点弧制御をするとき並列サイリスタ21を流れ
る電流■1の波形であり、第6図(7)は同じく並列サ
イリスタ22ヲ流れる電流■2の波形であって、それぞ
れの並列サイリスタ21とnが導通している期間には、
当該並列サイリスタ21とnにはそれぞれ電流■1と■
iが分流する。
FIG. 6(f) shows the voltage waveform Vrx when the parallel thyristor 21 and ρ are controlled to fire, and the parallel thyristor 2
1 is when the period α1 is conductive at the forward voltage, and the other parallel thyristor 4 is also conductive for the period α1 at the forward voltage, as shown in FIG. 6(G).
is the waveform of the current ■1 flowing through the parallel thyristor 21 when performing the above-mentioned ignition control, and FIG. 6 (7) is the waveform of the current ■2 flowing through the parallel thyristor 22. During the period when n is conducting,
The parallel thyristors 21 and n have currents ■1 and ■, respectively.
i is divided.

第6図(へ)に示すように電圧波形Vrxの正部分と負
部分の差が平均界磁電圧Vf1であり、この平均界磁電
圧Vfxは並列サイリスタ21の導通期間α1と、同じ
く並列サイリスタnの導通期間のを変えると(10) と屹より変化できるので、界?E’j′wL流を所望の
値に制御できる。
As shown in FIG. 6(f), the difference between the positive part and the negative part of the voltage waveform Vrx is the average field voltage Vf1, and this average field voltage Vfx is equal to the conduction period α1 of the parallel thyristor 21 and the parallel thyristor n If you change the conduction period of (10), you can change it from 屹, so the field? The E'j'wL flow can be controlled to a desired value.

分路抵抗8を榴成している抵抗81と82のうち、並列
サイリスク21.22が並列接続されていない抵抗81
の抵抗値を非常に小さな値にすれば、この並列サイリス
タ21.22を完全に導通させることにより界磁巻*h
7を短絡に迎い状態にできるので、電気車の車輪が空転
や滑走したときに、これを消滅させる有効な手段となる
。また上述の抵抗81の抵抗値を当該直巻電動機の最弱
め界磁率に見合った値に選定すれば、並列サイリスタ2
1とnの導通角制御範囲が拡大できる。
Among the resistors 81 and 82 forming the shunt resistor 8, the resistor 81 is not connected in parallel with the parallel resistance 21 and 22.
If the resistance value of is set to a very small value, the field winding *h
7 can be brought into a short-circuited state, so it is an effective means to eliminate when the wheels of an electric vehicle spin or slide. Furthermore, if the resistance value of the above-mentioned resistor 81 is selected to correspond to the maximum field weakening rate of the series motor, the parallel thyristor 2
The conduction angle control range of 1 and n can be expanded.

第7図は界磁電圧と界磁比率の相関図であって、横軸は
界磁電圧、縦軸は界磁比率すなわちVL43&子電流I
mに対する界磁電流Ifの比率をあられしている。並列
サイリスタ21とnが非導通のとき界磁電圧がVfであ
って界磁比率は最大値−であるが、並列サイリスタ21
と22の点弧制御により界磁電圧が小さくなるに゛つれ
て界磁比率も小となり、弱め界磁となることを示してい
る。
FIG. 7 is a correlation diagram between field voltage and field ratio, where the horizontal axis is the field voltage and the vertical axis is the field ratio, that is, VL43 & child current I.
The ratio of field current If to m is expressed. When the parallel thyristor 21 and n are non-conducting, the field voltage is Vf and the field ratio is the maximum value -, but the parallel thyristor 21
As the field voltage decreases due to the ignition control of and 22, the field ratio also decreases, indicating that the field becomes weaker.

第8図は本発明の別の実施例を示す部分回路図であって
、直流直巻電動機とその界磁巻線に並列接続される回路
部分のみを示しており、その他の部分は第5図に示す実
施例と同一であるから図示を省略している。
FIG. 8 is a partial circuit diagram showing another embodiment of the present invention, showing only the circuit portion connected in parallel to the DC series motor and its field winding; the other portions are shown in FIG. 5. Since it is the same as the embodiment shown in , illustration is omitted.

第8図において、整流された直流電力は、直流リアクト
ル5を介して電動機電機子6と、これに直列接続されて
いる電動機界磁巻線7を流れるのであるが、この界磁巻
線7には抵抗81と82を直列接続してなる分路抵抗8
が並列接続されている。
In FIG. 8, rectified DC power flows through a DC reactor 5 to a motor armature 6 and a motor field winding 7 connected in series with the motor armature 6. is a shunt resistor 8 formed by connecting resistors 81 and 82 in series.
are connected in parallel.

さらにこの分路抵抗8の一部分である抵抗82には両方
向に通電制御ができるトライアック6が並列接続されて
いるので、このトライアック5に電機子電流を分流させ
て界磁比率を低下させ界磁弱めを実現できる。
Furthermore, since a triac 6 that can control energization in both directions is connected in parallel to the resistor 82, which is a part of the shunt resistor 8, the armature current is shunted to the triac 5 to lower the field ratio and weaken the field. can be realized.

複数の直巻電動機を直列接続するときは、電機子同士を
直列接続し、界磁巻線同士も直列接続し、これら直列接
続されている電機子と界磁巻線とを直列に接続するのが
普通であるから、複数の直列接続界磁巻線を1組の界磁
巻線として扱えば、第5図あるいは第8図に示す本発明
の実施例はそのまま適用することができる。
When connecting multiple series-wound motors in series, the armatures are connected in series, the field windings are also connected in series, and the armatures and field windings connected in series are connected in series. Since this is common, the embodiment of the present invention shown in FIG. 5 or 8 can be applied as is by treating a plurality of series-connected field windings as one set of field windings.

〔発明の効果〕〔Effect of the invention〕

この発明は交流を整流して得られる直流直巻電動機の界
磁巻線に並列接続せる分路抵抗の一部分にさらに並列に
両方向の通電制御ができる半導体スイッチを接続し、こ
の半導体スイッチにより界磁電流を分流させるようにし
ているので界磁弱め装置が小形化無接点化され、保守点
検の手間が不要になるとともに、取付はスペースも縮小
される。
In this invention, a semiconductor switch capable of controlling current flow in both directions is further connected in parallel to a part of the shunt resistor connected in parallel to the field winding of a DC series motor obtained by rectifying alternating current, and this semiconductor switch is used to control the field winding. Since the current is shunted, the field weakening device is made smaller and non-contact, eliminating the need for maintenance and inspection and requiring less space for installation.

また半導体スイッチにより界磁弱め制御を無段階にでき
る効果がある。さらに電気車の車輪が力行中に空転ある
いは制動中に滑走するような場合でも、当該半導体スイ
ッチを制御して電動機のトルクを減少させて、この空転
あるいは滑走を素早く消滅させることができるという効
果も有する。
Furthermore, the semiconductor switch has the effect of making field weakening control stepless. Furthermore, even if the wheels of an electric vehicle spin during power running or skid during braking, the semiconductor switch can be controlled to reduce the torque of the electric motor, quickly eliminating the slip or skidding. have

さらに分路抵抗のうち半導体スイッチが並列接続されて
いない部分の抵抗値をこの直巻電動機の最弱め界磁率に
見合った値に選定しておけば、半導体スイッチの導通角
制御範囲を拡大できるので、(13) より安定した制御をすることができる効果もあわ 。
Furthermore, if the resistance value of the portion of the shunt resistance where the semiconductor switch is not connected in parallel is selected to a value commensurate with the maximum field weakening rate of the series-wound motor, the conduction angle control range of the semiconductor switch can be expanded. , (13) It also has the effect of allowing more stable control.

せて有する。I also have it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の交流電気車の主回路接続図であり、第2
図は第1図に示す従来例の動作波形図を示す。第3図は
従来の交流電気車の弱め界磁接続図、第4図は第3図に
示す従来例の速度・トルク特性図である。 第5図は本発明の実施例を示す主回路接続図であり、第
6図は第5図に示す実施例の動作波形図である。第7図
は界磁電圧と界磁比率の相関図であり、第8図は本発明
の別の実施例を示す部分回路図である。 1・・・パンタグラフ、2・・・変圧器、3・・・車輪
、4・・・ダイオード整流器、5・・・直流リアクトル
、6・−・・電動機電機子、7・・・電動機界磁巻線、
8・・・分路抵抗、11.13・・・接触器、12.1
4・・・弱め界磁抵抗、21.22・・・並列サイリス
タ、5・・・トライアック、81.82・・・抵抗。 (14) 第1図 第2図 一← 7、 第4図 妊 (L + N) 〜ノ ++J −ノ 第8図 −!vlG−
Figure 1 is a main circuit connection diagram of a conventional AC electric vehicle;
The figure shows an operating waveform diagram of the conventional example shown in FIG. FIG. 3 is a field weakening connection diagram of a conventional AC electric vehicle, and FIG. 4 is a speed/torque characteristic diagram of the conventional example shown in FIG. FIG. 5 is a main circuit connection diagram showing an embodiment of the present invention, and FIG. 6 is an operation waveform diagram of the embodiment shown in FIG. FIG. 7 is a correlation diagram between field voltage and field ratio, and FIG. 8 is a partial circuit diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Pantograph, 2...Transformer, 3...Wheel, 4...Diode rectifier, 5...DC reactor, 6...Motor armature, 7...Motor field winding line,
8...Shunt resistance, 11.13...Contactor, 12.1
4... Field weakening resistance, 21.22... Parallel thyristor, 5... Triac, 81.82... Resistance. (14) Figure 1 Figure 2 ← 7, Figure 4 Pregnancy (L + N) ~ノ ++J -ノ Figure 8-! vlG-

Claims (1)

【特許請求の範囲】[Claims] 直巻電動機の界磁巻線に分路抵抗を並列接続し、交流電
源に接続せる半導体変換器で得られる直流電力を直流リ
アクトルを介して前記直巻電動機iこ与えるようなされ
ている直巻電動機駆動回路において、前記分路抵抗の部
分に並列に両方向に通電制御ができる半導体スイッチを
接続してなることを特徴とする直巻電動機の界磁制御回
路。
A series-wound motor in which a shunt resistor is connected in parallel to the field winding of the series-wound motor, and DC power obtained from a semiconductor converter connected to an AC power source is applied to the series-wound motor via a DC reactor. 1. A field control circuit for a series-wound motor, characterized in that, in the drive circuit, a semiconductor switch capable of controlling energization in both directions is connected in parallel to the shunt resistor.
JP58237053A 1983-12-15 1983-12-15 Field control circuit of series motor Pending JPS60128891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237053A JPS60128891A (en) 1983-12-15 1983-12-15 Field control circuit of series motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237053A JPS60128891A (en) 1983-12-15 1983-12-15 Field control circuit of series motor

Publications (1)

Publication Number Publication Date
JPS60128891A true JPS60128891A (en) 1985-07-09

Family

ID=17009711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237053A Pending JPS60128891A (en) 1983-12-15 1983-12-15 Field control circuit of series motor

Country Status (1)

Country Link
JP (1) JPS60128891A (en)

Similar Documents

Publication Publication Date Title
US3737745A (en) Wheel slip control system
US3930191A (en) Braking circuit for the mixed regenerative and resistance braking of a d-c series machine operated as a generator
US3325714A (en) Control system for electric cars using controlled rectifier elements
JPS58198193A (en) Dc motor controller
RU2309057C2 (en) Vehcile traction electric drive
JPS60128891A (en) Field control circuit of series motor
JPS6082093A (en) Field control circuit of series motor
JPH03261307A (en) Control method of inverter for driving electric car and inverter drive electric car system
GB2137035A (en) Apparatus for controlling electric vehicles
US3564342A (en) Motor control system
US2189353A (en) Power-transmission system for electrically driven trains
US2498236A (en) Control system for alternating current motors
US2632873A (en) Rectifier-powered motor with dynamic braking
JP2001339990A (en) Star-delta control device
US2970250A (en) High-speed electric-car control
JPH0556661A (en) Ac electric rolling stock controller
US873703A (en) Electrically-propelled car or locomotive.
SU403590A1 (en) DEVICE FOR REGULATING THE ELECTRIC TRAIN RATE
JPH04271204A (en) Main circuit of electric vehicle
JPS6115642B2 (en)
JP2637945B2 (en) Electric vehicle regenerative brake control device
US2274645A (en) Motor control system
SU1165602A1 (en) Diesel locomotive electric drive
JPS637101A (en) Controller for electric rolling stock
JPH0332303A (en) Controller for dc series motor