JPS60128685A - Metallic-ion laser - Google Patents

Metallic-ion laser

Info

Publication number
JPS60128685A
JPS60128685A JP23606183A JP23606183A JPS60128685A JP S60128685 A JPS60128685 A JP S60128685A JP 23606183 A JP23606183 A JP 23606183A JP 23606183 A JP23606183 A JP 23606183A JP S60128685 A JPS60128685 A JP S60128685A
Authority
JP
Japan
Prior art keywords
cathode
hollow cathode
anodes
laser
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23606183A
Other languages
Japanese (ja)
Other versions
JPS6366073B2 (en
Inventor
Hiromi Kawase
宏海 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP23606183A priority Critical patent/JPS60128685A/en
Publication of JPS60128685A publication Critical patent/JPS60128685A/en
Publication of JPS6366073B2 publication Critical patent/JPS6366073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/031Metal vapour lasers, e.g. metal vapour generation

Abstract

PURPOSE:To prevent the dissipation of metal evaporation positively, and to obtain a metallic-ion laser obviating the contamination of a Brewster window by making the diameter of a positive column discharge path up to an auxiliary anode from the end section of a hollow cathode, to which a main anode is disposed, thinner than the bore diameter of the cathode and making it approximately the same as that of a glow region generated in a bore. CONSTITUTION:Voltage is applied among main anodes 5a-5c and auxiliary anodes 6a, 6b and a hollow cathode 4, and negative glow discharge is generated among the main anodes and the hollow cathode. Cd vapor is generated by the heat loss of negative glow discharge on a He-Cd laser using Cd as a metallic- ion generating material 9, and Cd vapor is transferred to a high energy level by excited particles of He ions, etc. Since the hollow cathode 4 is formed by a thick pipe at that time, it has large thermal conduction and heat capacity, temperature distribution in a laser pipe 1 is equalized, and transfer to arc discharge from abnormal glow discharge is prevented. Since spaces among the main anodes 5a-5c are set to narrow width, a cathode surface 13 in the hollow cathode 4 is sputtered with He ions at all times, and the state of the cathode surface 13 is cleaned.

Description

【発明の詳細な説明】 〔発明の技術分野J 本発明は構造簡易にしてブリュースター窓を金属蒸気t
こよる汚染から確実に保護し得るようVこした金属イオ
ンレーザ−に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention J] The present invention provides a method for manufacturing a Brewster window using metal vapor t by simplifying the structure.
The present invention relates to a metal ion laser which has been subjected to a V-voltage treatment in order to be reliably protected from such contamination.

し従来技術〕 近年、ホロー陰極放電を用いた金属イオンレーザ−が[
重々提案されている。この種のレーザーはその励起の強
さから多色発振が可能で、現在のところHe−cdイオ
ンンーザ−では12本の発振線が観測されており、その
中には光3原色の赤、青。
[Conventional technology] In recent years, metal ion lasers using hollow cathode discharge [
It is heavily suggested. This type of laser is capable of multicolor oscillation due to its excitation intensity, and currently 12 oscillation lines have been observed in the He-CD ionizer, including the three primary colors of light, red and blue.

緑が含まれ、液体レーザーおよび固体レーザーにみられ
ないすぐれた特色を有し、例えばプリンタ及び複写機の
ような装置への応用が期待されているが、今だ実用の城
に達していないのが実情である。その原因としては種々
考えられるが、主要なものとしてはV−ザー活性領域内
で金属蒸気を扱うため、陰極表面やブリュースター窓に
金・:用蒸気が付着して絶えず初期状態を保つことがで
きず、動作特性に経年変化が起り、出力の安定性を確保
できないためと思われる。特に、V−ザー管としてはブ
リュースター窓を保護するため二股にホロー陰極の両端
からボア内の金属蒸気が散逸しないよう補助陽極による
放電の電気泳動効果を利用して吹き返しを行っているが
、[婁僕ボアと同じ直径をもつ陽光柱放電通路では充分
に吹き返すことができなかった。
It contains green color and has excellent characteristics not found in liquid lasers and solid-state lasers, and is expected to be applied to devices such as printers and copiers, but it has not yet reached the point of practical use. is the reality. There are various possible causes for this, but the main one is that metal vapor is handled in the V-zer active region, so gold vapor adheres to the cathode surface and Brewster window, constantly maintaining the initial state. This seems to be because the operating characteristics change over time, making it impossible to ensure output stability. In particular, in order to protect the Brewster window, the V-ser tube uses the electrophoretic effect of the discharge from the auxiliary anode to blow back the metal vapor in the bore from both ends of the bifurcated hollow cathode to prevent it from dissipating. [The positive column discharge channel, which has the same diameter as the Boa Boa, was not able to blow back sufficiently.

そこで、例えばブリュースター窓の手前に金属蒸気の散
逸を防止する凝縮パンフルとしての金属蒸気凝縮部を設
けたものが提案(特開昭57−32689号公報参照)
されているが、このような構造においてはレーザー管自
体が複雑になり組立作業性が悪い上、凝縮部によりレー
ザー管の寸法が長くなるという欠点があった。
Therefore, it has been proposed to provide a metal vapor condensing section in front of the Brewster window as a condensing panfuru to prevent metal vapor from dissipating (see Japanese Patent Laid-Open No. 57-32689).
However, in such a structure, the laser tube itself is complicated and assembly workability is poor, and the condensation section increases the size of the laser tube.

〔発明の慨要〕[Summary of the invention]

本発明は上述したような点に鑑みてなされたもので、補
助陽極部の陽光柱放電通路の径をレーザー増幅作用に寄
与する陰極ボア内のグロー領域の直径とはソ等しくなる
ように陰極ボア径より細くして放電直流密度を増し、吹
き返し効果を増すとハう極めて簡単な構成により、金属
蒸気の散逸をより確実に防止し、ブリュースター窓の汚
染を防止するようにした金属イオンレーザ−を提供する
ものである。
The present invention has been made in view of the above-mentioned points, and the cathode bore is designed so that the diameter of the positive column discharge path in the auxiliary anode section is equal to the diameter of the glow region in the cathode bore that contributes to the laser amplification effect. A metal ion laser with an extremely simple configuration that more reliably prevents dissipation of metal vapor and prevents contamination of the Brewster window. It provides:

〔実施し11〕 以下、本発明を図面にポラ−実施例に基づいて詳i++
+に1況明する。
[Embodiment 11] Hereinafter, the present invention will be explained in detail based on the drawings and practical examples.
I will clarify the situation on +.

第1図は本発明に係る金属イオンレーザ−の−実施例を
示す断面図、第2図は同レーザーの要部拡大断面図であ
る。これらの図において、1は塩ガスを封入したレーザ
ー管、2,3はブリュースター窓、4はホロー陰極、5
a、5b、5cは主陽極、6a、6bは補助陽極、Iは
絶縁体、8A、8B は金属イオン発生材料9の溜部、
10は陽光柱放電通路、11はグロー領域、1−2は陰
極暗部、13′は陰極ボア、4′はホロー陰極4の外管
である。
FIG. 1 is a sectional view showing an embodiment of a metal ion laser according to the present invention, and FIG. 2 is an enlarged sectional view of a main part of the laser. In these figures, 1 is a laser tube filled with salt gas, 2 and 3 are Brewster windows, 4 is a hollow cathode, and 5 is a laser tube filled with salt gas.
a, 5b, 5c are main anodes, 6a, 6b are auxiliary anodes, I is an insulator, 8A, 8B is a reservoir for metal ion generating material 9,
10 is a positive column discharge path, 11 is a glow region, 1-2 is a cathode dark area, 13' is a cathode bore, and 4' is an outer tube of the hollow cathode 4.

前記ホロー陰極4は、例えばステンレス等からなる導電
性の肉厚パイプで形成されて、その中心孔が前記グロー
領域110発生する陰極ボア13′を構成し、周面に前
記3本の主陽極5a、5b、5cが該陰極4の軸線方向
に等間隔をおいて配役されている。これら主陽極5a、
5b、5cの間隔は比較的狭く、例えば活性長30cm
、ボア径(D) 3.5 Canの場合、2cm程度に
設定される。前記溜部8A、8Bは前記ホロー陰極4の
外周面に中央部の主陽極5bの両側に位置して形成され
た環状溝からなり、これら溜部8A、 8Bに前記金属
イオン発生材料9がそれぞれ収容されている。また、前
記各溜部8A。
The hollow cathode 4 is formed of a thick-walled conductive pipe made of stainless steel, for example, and its center hole constitutes a cathode bore 13' in which the glow region 110 is generated, and the three main anodes 5a are formed on the circumferential surface of the hollow cathode 4. , 5b, and 5c are arranged at equal intervals in the axial direction of the cathode 4. These main anodes 5a,
The interval between 5b and 5c is relatively narrow, for example, the active length is 30 cm.
, the bore diameter (D) is set to about 2 cm in the case of 3.5 Can. The reservoirs 8A and 8B are annular grooves formed on the outer peripheral surface of the hollow cathode 4 on both sides of the central main anode 5b, and the metal ion generating material 9 is placed in these reservoirs 8A and 8B, respectively. It is accommodated. Further, each of the reservoir portions 8A.

8Bは前記ホロー陰極4の陰極ボア13′の表面13に
形成された周方向のスリン) 14A、MBにより前記
グロー領域11と連通されている。このようにすると各
溜部8A、 8Bを前記グロー領域11か−ら実質的に
離すことができ、プラズマの侵入を防止することができ
る。
8B is a circumferential line formed on the surface 13 of the cathode bore 13' of the hollow cathode 4. It is communicated with the glow region 11 through 14A and MB. In this way, each of the reservoirs 8A and 8B can be substantially separated from the glow region 11, and plasma can be prevented from entering.

前記補助陽極6a、6bは前記ブリュースター窓2.3
を保護するだめのもので、前記ホロー陰極40両端にこ
れと同軸接合された絶縁キャンプ15a、15bに前記
絶縁体7を介してそれぞれ配役さ力1、各陽極6a、6
bは両側の前記主陽極5a、5cと離して設けられてい
る。そして、前記各絶縁キャンプ15a、15bの中心
孔16の径d工は前記ボア径りから陰極暗部12の厚み
分を引いた値とはゾ等しい寸法に設定されている。
The auxiliary anodes 6a, 6b are connected to the Brewster window 2.3.
A force of 1 is applied to the insulating camps 15a and 15b coaxially connected to both ends of the hollow cathode 40 through the insulator 7, and a force of 1 is applied to each of the anodes 6a and 6.
b is provided apart from the main anodes 5a and 5c on both sides. The diameter d of the center hole 16 of each insulation camp 15a, 15b is set to be equal to the value obtained by subtracting the thickness of the cathode dark part 12 from the bore diameter.

前記主陽極5a、5b、5cの絶縁体7は、セラミック
等で形成されてその内端が前記ホロー陰極4の陰極面と
はg而−になるように該陰極4の陽極取付用孔(図示せ
ず)に外部から嵌合されてアルゴン溶接等により固着さ
れており、内端面中央には前記各主陽極5a、5b、5
cの挿入端部を収容する凹部1Tが形成されている。前
記各主陽極5a 、 5b 。
The insulators 7 of the main anodes 5a, 5b, and 5c are made of ceramic or the like, and the insulators 7 are formed in the anode mounting hole of the hollow cathode 4 (Fig. (not shown) is fitted from the outside and fixed by argon welding, etc., and each of the main anodes 5a, 5b, 5 is located at the center of the inner end surface.
A recess 1T is formed to accommodate the insertion end of c. Each of the main anodes 5a, 5b.

5cの内端は、前記絶縁体7の内端縁、換言すればホロ
ー陰極4の陰極面13より前記凹部17内に所定寸法t
だけ引込んでいる。なお、”補助陽画6a、6bの絶縁
体γも同様に形成されている。
The inner end of 5c is located within the recess 17 by a predetermined distance t from the inner edge of the insulator 7, in other words, from the cathode surface 13 of the hollow cathode 4.
It's just retracting. Incidentally, the insulators γ of the auxiliary positive images 6a and 6b are also formed in the same manner.

前記生湯(iffi 5a 、 5b 、 5cおよび
補助陽!’M6a、6bの上端部は、下端が前記絶縁体
7の上面に形成された凹部に嵌合されたガラス管30に
よってそれぞれ囲繞されている。このガラス管30は前
記各陽極とホロー陰極4の表面との間での放電を防止す
るだめのもので、該ガラス管30と対応する陽極との距
離は陽極の熱膨張による屈曲に対して両者が接触しない
範囲で適宜な寸法に設定保持されている。
The upper ends of the raw hot water (iffi 5a, 5b, 5c and auxiliary heat!'M6a, 6b) are each surrounded by a glass tube 30 whose lower end is fitted into a recess formed in the upper surface of the insulator 7. This glass tube 30 is used to prevent discharge between each of the anodes and the surface of the hollow cathode 4, and the distance between the glass tube 30 and the corresponding anode is set to prevent bending due to thermal expansion of the anode. Appropriate dimensions are maintained within a range where the two do not come into contact with each other.

次にこのような構成においてレーザー動作について説明
する。
Next, the laser operation in such a configuration will be explained.

生湯In5a、5b、5c1補助陽極6a、6bおよび
ホロー陰極4との間に所要の電圧を印加し、前記主陽極
5a 、 5b 、 5cと前記ホロー陰極4間に負グ
ロー放電を発生させる。ここで、金属イオン発生材料9
としてcdを用いたHe−Cd レーザーの場合につい
て説明すると、上記負グロー放電の焦損によりcd蒸気
が発生し、これがHe イオンなどの励起粒子によって
高いエネルギー準位へ遷移される。
A required voltage is applied between the raw water In5a, 5b, 5c1, the auxiliary anodes 6a, 6b, and the hollow cathode 4, and a negative glow discharge is generated between the main anodes 5a, 5b, 5c and the hollow cathode 4. Here, metal ion generating material 9
To explain the case of a He-Cd laser using CD as an example, CD vapor is generated by the scorching of the negative glow discharge, and this is transferred to a higher energy level by excited particles such as He ions.

この場合、前記ホロー陰極4は肉厚パイプで形成されて
いるため、熱伝導および熱容量が大きく、レーザー管1
内の温度分布を均一にするので、異常グロー放′「(L
からアーク放電への移行は防止される。
In this case, since the hollow cathode 4 is formed of a thick-walled pipe, heat conduction and heat capacity are large, and the laser tube 1
Since the temperature distribution within the area is made uniform, abnormal glow emission '(L
The transition from to arc discharge is prevented.

また、前記主陽極5a、5b、5cはその間隔が狭く設
定されているので、ホロー陰極4の陰極面13をIIe
イオンが絶えずスパッタリングし、該陰極面13の状態
をきれいにする。また、スリット14A、14Bを介し
て陽光柱放電通路12と各溜部8A、8Bを連通し、前
記溜部8A、 8Bをグロー領域11から実質的に離し
ているので、プラズマが各溜部8A、 8Bに入り込む
のを防止することができる。したがって、■I8 イオ
ンのスパッタリングによってcd蒸気が過多になること
がなく、陰極温度のみによってcd蒸気圧を制御できる
利点を有している。
Moreover, since the intervals between the main anodes 5a, 5b, and 5c are set narrowly, the cathode surface 13 of the hollow cathode 4 is
Ions constantly sputter and clean the cathode surface 13. Further, since the positive column discharge path 12 and the respective reservoirs 8A, 8B are communicated with each other through the slits 14A, 14B, and the reservoirs 8A, 8B are substantially separated from the glow region 11, the plasma can flow through the respective reservoirs 8A. , can be prevented from entering 8B. Therefore, there is no possibility that an excessive amount of CD vapor is generated due to sputtering of I8 ions, and the CD vapor pressure can be controlled only by the cathode temperature.

また、絶縁体7の内端面に凹部17を設け、この凹部7
内に生湯(i5a、5b、5cの内端を位置させ、ホロ
ー陰極4より引込めているので、陰極物質の絶縁体の凹
部1Tへの付着凝固を防止する。
Further, a recess 17 is provided on the inner end surface of the insulator 7, and this recess 7
The inner ends of the raw hot water (i5a, 5b, 5c) are located inside and retracted from the hollow cathode 4, thereby preventing the cathode material from adhering to and coagulating in the recess 1T of the insulator.

すなわち、主陽極5a 、 5b 、 5cを引込める
と、陰極面13と面一にした場合もしくは陰極面13よ
り陽光柱放電通路10内に突出させた場合に比べて、放
電熱で凹部17の内面全体を周囲の陰極温度より高くな
るように焼くと同時にHe イオンでスパッタリングす
るため、cd蒸気および陰極物質の付着が殆んど起らず
、また放電の背後(凹部17の奥側)に入り込もうとす
るcd蒸気は、主陽極5a 、 5b 、 5cの真下
にある陽光柱放電の電気泳動効果によって吹き返し、凹
部奥壁への付着を防止する。したがって、主陽極5a 
、 5b 、 5cとホロー陰極4とが短絡して同屯位
になることがなく、初期状態を良好に維持し、安定な放
電を得ることができる。なお補助陽極6a 、 6bに
ついても同様の作用効果を有する。
That is, when the main anodes 5a, 5b, and 5c are retracted, the inner surface of the recess 17 is damaged by discharge heat, compared to when the main anodes 5a, 5b, and 5c are flush with the cathode surface 13, or when they are made to protrude from the cathode surface 13 into the positive column discharge passage 10. Since the entire cathode is baked to a temperature higher than the surrounding cathode temperature and sputtered with He ions at the same time, there is almost no adhesion of CD vapor and cathode material, and there is no possibility that the CD vapor and cathode material will get into the back of the discharge (to the back of the recess 17). The CD vapor generated is blown back by the electrophoretic effect of the positive column discharge directly below the main anodes 5a, 5b, and 5c, and is prevented from adhering to the inner wall of the recess. Therefore, the main anode 5a
, 5b, 5c and the hollow cathode 4 are not short-circuited and become at the same level, so that the initial state can be maintained well and stable discharge can be obtained. Note that the auxiliary anodes 6a and 6b also have similar effects.

また、前記陽極5a、5b、5c、 (ia、5bの引
込み寸法tをあまり大きくすると、陽光柱放電の領域内
に移動縞が発生し、陰極ボア内のグロー放電に、そのゆ
らぎを伝え、レーザー領域が雑音性の多いものとなる。
Moreover, if the retraction dimension t of the anodes 5a, 5b, 5c, (ia, 5b) is too large, moving stripes will occur in the area of positive column discharge, transmitting the fluctuation to the glow discharge in the cathode bore, and causing the laser The area becomes noisy.

一方、tを小さくし過ぎると、cd蒸気の吹き返しが悲
くなる。したがって、引込み寸法tとしては2rrrm
程度が最適とされる。
On the other hand, if t is made too small, the CD vapor will not blow back. Therefore, the retraction dimension t is 2rrrm
degree is considered optimal.

前記各補助陽極5a、jibは絶縁キャップ15a。Each of the auxiliary anodes 5a and jib is provided with an insulating cap 15a.

15b内における陽光柱放電の電気泳動効果とホロー陰
極4の負グロー放電による吹き返しにより、Cd’72
気の散逸およびこの散逸によるブリュースター窓2,3
への付着を防止するが、この場合本発明においては前述
した通り絶縁キャンプ15a。
Cd'72
Dissipation of Qi and Brewster Window 2, 3 due to this dissipation
However, in this case, in the present invention, as described above, the insulation camp 15a.

1’5bの内径を負グロー領域の径とはソ同じにし、ホ
ロー陰極4中の陰極暗部12に対応するリング人断面積
分をなくしているので、cd蒸気に対する気密性を良好
に保持し得、ブリュースター窓2゜3をより一層保護す
る。また、cd蒸気の散逸が少ないので、ホロー陰極4
の内部全体に亘ってほぼ一様な蒸気密度を確保し得、一
様な放電を得ることができる。
Since the inner diameter of 1'5b is made the same as the diameter of the negative glow region, and the ring cross section corresponding to the cathode dark part 12 in the hollow cathode 4 is eliminated, good airtightness against CD vapor can be maintained. Further protects the Brewster window 2°3. In addition, since the dissipation of CD vapor is small, the hollow cathode 4
A substantially uniform vapor density can be ensured throughout the interior of the chamber, and a uniform discharge can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る金属イオンレーザ−は
、補助陽極部の陽光柱放電通路の断面積をホロー陰極部
のボア径より細くして陰極暗部に対応する面積分をなく
したので、金属蒸気の気密性がより一層向上し、金属蒸
気の拡散およびブリュースター窓への付着を防止するこ
とができ、金属蒸気の制御を容易にする。−また、構造
簡易にして製作が容易で、安価に提供し得る。
As explained above, in the metal ion laser according to the present invention, the cross-sectional area of the positive column discharge path in the auxiliary anode part is made smaller than the bore diameter of the hollow cathode part, eliminating the area corresponding to the cathode dark part. Steam airtightness is further improved, metal vapor can be prevented from diffusing and adhering to the Brewster window, and metal vapor can be easily controlled. - Also, the structure is simple, easy to manufacture, and can be provided at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る金属イオンレーザ−の−5実施例
を示す断面図、第2図は同レーザーの要部拡大1lff
r面図である。 1・・・・レーザー管、2,3・・・・ブリュースター
窓、4・・・・ホロー陰極、5.5a、5b・・・・主
1場極、6a、6b ・・・・補助陽極、7・・・・絶
縁体、8A、8B ・・・・溜部、9・・・・金属イオ
ン発生材料、10・・・・陽光柱放電通路、11・・・
・グロー領域、12・・・・陰極暗部、13′・・・・
陰極ボア。
Fig. 1 is a sectional view showing a -5 embodiment of the metal ion laser according to the present invention, and Fig. 2 is an enlarged view of the main part of the laser.
It is an r-plane view. 1...Laser tube, 2,3...Brewster window, 4...Hollow cathode, 5.5a, 5b...Main 1 field pole, 6a, 6b...Auxiliary anode , 7... Insulator, 8A, 8B... Reservoir, 9... Metal ion generating material, 10... Positive column discharge path, 11...
・Glow area, 12... Cathode dark area, 13'...
Cathode bore.

Claims (1)

【特許請求の範囲】[Claims] 負グロー放電を用いてレーザー光を発生させる金属イオ
ンレーザ−において、主陽極が配設されるホロー陰極の
端部から補助陽極までの間の陽光柱放電通路の径を、陰
極ボア径より細くしてボア内に発生するグロー領域の直
径とはソ等しくしたことを特σにとする金属イオンレー
ザ−0
In a metal ion laser that generates laser light using negative glow discharge, the diameter of the positive column discharge path between the end of the hollow cathode where the main anode is disposed and the auxiliary anode is made smaller than the cathode bore diameter. A metal ion laser-0 whose special feature is that σ is equal to the diameter of the glow region generated in the bore.
JP23606183A 1983-12-16 1983-12-16 Metallic-ion laser Granted JPS60128685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23606183A JPS60128685A (en) 1983-12-16 1983-12-16 Metallic-ion laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23606183A JPS60128685A (en) 1983-12-16 1983-12-16 Metallic-ion laser

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1268199A Division JPH06103762B2 (en) 1989-10-17 1989-10-17 Metal ion laser

Publications (2)

Publication Number Publication Date
JPS60128685A true JPS60128685A (en) 1985-07-09
JPS6366073B2 JPS6366073B2 (en) 1988-12-19

Family

ID=16995149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23606183A Granted JPS60128685A (en) 1983-12-16 1983-12-16 Metallic-ion laser

Country Status (1)

Country Link
JP (1) JPS60128685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794612A (en) * 1985-04-23 1988-12-27 Koito Seisakusho Co. Ltd. Metal ion laser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535592A (en) * 1976-07-01 1978-01-19 Xerox Corp Laser
JPS5413903U (en) * 1977-06-29 1979-01-29
JPS5869970U (en) * 1981-11-04 1983-05-12 日本電気株式会社 Glass tube for argon laser tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535592A (en) * 1976-07-01 1978-01-19 Xerox Corp Laser
JPS5413903U (en) * 1977-06-29 1979-01-29
JPS5869970U (en) * 1981-11-04 1983-05-12 日本電気株式会社 Glass tube for argon laser tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794612A (en) * 1985-04-23 1988-12-27 Koito Seisakusho Co. Ltd. Metal ion laser

Also Published As

Publication number Publication date
JPS6366073B2 (en) 1988-12-19

Similar Documents

Publication Publication Date Title
US3705999A (en) Gas discharge tube for a laser
JP2802683B2 (en) Metal halide discharge lamp
JPS6221284A (en) Metal ion laser
JPS6238873B2 (en)
US3528028A (en) Gaseous laser of improved construction
JPS60128685A (en) Metallic-ion laser
JPS61244081A (en) Metal ion laser
US4912719A (en) Ion laser tube
US3611183A (en) Double-ended ion laser tube
US5319664A (en) Ion laser tubes
JPS61281565A (en) Metallic ion laser
JPH02138782A (en) Metal ion laser
JPS61281566A (en) Metallic ion laser
JP3064588B2 (en) Laser tube
JPH0779174B2 (en) Gas laser device
JP3275891B2 (en) Metal vapor discharge lamp
JPH01108785A (en) Gas laser apparatus
JPS60128684A (en) Metallic-ion laser
US5325389A (en) Ion-laser including a silicon carbide discharge tube having a small arithmetic roughness
US4774713A (en) Segmented laser tube structure
RU2102825C1 (en) Sectionalized cermet discharge tube
JPS62252979A (en) Metallic ion laser
JP2971595B2 (en) Metal vapor laser oscillation tube
JPH0266979A (en) Ion laser tube
JP2584949Y2 (en) CO2 laser oscillator