JPH02138782A - Metal ion laser - Google Patents
Metal ion laserInfo
- Publication number
- JPH02138782A JPH02138782A JP26819989A JP26819989A JPH02138782A JP H02138782 A JPH02138782 A JP H02138782A JP 26819989 A JP26819989 A JP 26819989A JP 26819989 A JP26819989 A JP 26819989A JP H02138782 A JPH02138782 A JP H02138782A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- hollow cathode
- metal ion
- ion laser
- anodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910021645 metal ion Inorganic materials 0.000 title claims abstract description 16
- 239000002184 metal Substances 0.000 abstract description 11
- 229910052751 metal Inorganic materials 0.000 abstract description 11
- 239000012212 insulator Substances 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 6
- 238000011109 contamination Methods 0.000 abstract description 3
- 238000007664 blowing Methods 0.000 abstract description 2
- 238000001962 electrophoresis Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/031—Metal vapour lasers, e.g. metal vapour generation
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は構造簡易にしてブリュースター窓を金属蒸気に
よる汚染から確実に保護し得るようにした金属イオンレ
ーザ−に関スル。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a metal ion laser which has a simple structure and can reliably protect a Brewster window from contamination by metal vapor.
近年、ホロー陰極放電を用いた金属イオンレーザ−が種
々提案されている。この種のレーザーはその励起の強さ
から多色発振が可能で、現在のところH,−Cdイオン
レーザ−では12本の発撮線が観測されており、その中
には光3原色の赤。In recent years, various metal ion lasers using hollow cathode discharge have been proposed. This type of laser is capable of multicolor oscillation due to its excitation strength, and currently 12 emission lines have been observed for H, -Cd ion lasers, including red of the three primary colors of light. .
青、緑が含まれ、液体レーザーおよび固体レーザーにみ
られない優れた特色を有]〜、例えばプリンタ及び複写
機のような装置への応用が期待されている。It includes blue and green, and has excellent characteristics not found in liquid lasers and solid-state lasers], and is expected to be applied to devices such as printers and copying machines.
しかしながら、このような金属イオンレーザ−において
は、レーザー活性値域内で金属蒸気を扱うため、陰極表
面やブリュースター窓に金属蒸気が付着して絶えず初期
状態を保つことができず、動作特性に経年変化が起シ、
出力の安定性を確保できないという問題があった。特に
、レーザー管としてはブリュースター窓を保護するため
一般にホロー陰極の両端からボア内の金属蒸気が散逸し
ないよう補助陽極による放電の電気泳動効果を利用して
吹き返しを行っているが、陰極ボアと同じ直径をもつ陽
光柱放電通路では充分に吹き返すことができなかった。However, in such metal ion lasers, since metal vapor is handled within the laser activation range, metal vapor adheres to the cathode surface and Brewster window, making it impossible to maintain the initial state constantly, resulting in changes in operating characteristics over time. Changes occur,
There was a problem in that output stability could not be ensured. In particular, in order to protect the Brewster window in laser tubes, blowback is generally performed using the electrophoretic effect of discharge from an auxiliary anode to prevent metal vapor in the bore from escaping from both ends of the hollow cathode. Positive column discharge channels with the same diameter could not blow back sufficiently.
そこで、例えばブリュースター窓の手前に金属蒸気の散
逸を防止する凝縮バッフルとしての金属蒸気凝縮部を設
けたものが提案(特開昭57−32689号公報参照)
されているが、このような#!造においてはレーザー管
自体が複雑になカ組立作業性が悪い上、凝縮部に4リレ
ーザー管の寸法が長く々るという欠点があった。Therefore, it has been proposed to provide a metal vapor condensing section as a condensation baffle to prevent dissipation of metal vapor in front of the Brewster window (see Japanese Patent Laid-Open No. 57-32689).
Been # like this! In terms of construction, the laser tube itself was complicated, the assembly workability was poor, and the four laser tubes in the condensing section were long.
したがって、本発明は上述したような従来の問題点に鑑
みてなされたもので、その目的とするところは、比較的
簡単な構造でブリュースター窓の汚染を確実に防止し得
、安定した崩力を得ることができるように1〜た金属イ
オンレーザ−を提供することにある。Therefore, the present invention has been made in view of the above-mentioned conventional problems, and its purpose is to reliably prevent contamination of Brewster windows with a relatively simple structure, and to provide stable collapse force. An object of the present invention is to provide a metal ion laser which can obtain the following characteristics.
〔課題を解決するための手段コ
本発明は上記目的を達成するために、主陽極が配設され
るホロー陰極の両端に補助陽極を設けると共に、少なく
ともブリュースター窓と前記補助陽極との間には絶縁キ
ャップを設け、この絶縁キャップには陰極ボア径より細
い陽光柱放電通路が形成されているものである。[Means for Solving the Problems] In order to achieve the above object, the present invention provides auxiliary anodes at both ends of the hollow cathode where the main anode is disposed, and at least between the Brewster window and the auxiliary anode. An insulating cap is provided, and a positive column discharge passageway smaller than the cathode bore diameter is formed in the insulating cap.
本発明において、絶縁キャップの陽光柱放電通路は陰極
ボア径よυ小径で、ホロー陰極の気密性を良好に保持し
、金属蒸気の通過を阻止する。In the present invention, the positive column discharge passage of the insulating cap has a diameter υ smaller than the cathode bore diameter to maintain good airtightness of the hollow cathode and prevent passage of metal vapor.
以下、本発明を図面に示す実施例に基づいて詳細に説明
する。Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
第1図は本発明に係る金属イオンレーザ−の一実施例を
示す断面図、第2図は同レーザーの要部拡大断面図であ
る。これらの図において、1はHeガスを封入したレー
ザー管、2,3はブリュースター窓、4はホロー陰極、
5a、5b、5cは主陽極、6a、6bは補助(:θ極
、γは絶縁体、8A、8Bは金属イオン発生材料9の溜
部、10は陽光柱放電通路、11はグロー領域、12は
陰極暗部、13′は陰極ボア、4′はホロー陰極4の外
管である。FIG. 1 is a cross-sectional view showing an embodiment of a metal ion laser according to the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part of the laser. In these figures, 1 is a laser tube filled with He gas, 2 and 3 are Brewster windows, 4 is a hollow cathode,
5a, 5b, 5c are main anodes, 6a, 6b are auxiliary (: θ poles, γ is an insulator, 8A, 8B are reservoirs for metal ion generating material 9, 10 is a positive column discharge path, 11 is a glow region, 12 13' is the cathode bore, and 4' is the outer tube of the hollow cathode 4.
前記ホロー陰極4は、例えばステンレス等からなる導電
性の肉厚パイプで形成されて、その中心孔が前記グロー
領域110発生する陰極ボア13′を構成し、周面に前
記3本の主陽極5a、5b、5cが該陰極4の軸線方向
に等間隔をおいて配設されている。これら主陽極5a、
5b、5cの間隔は比較的狭く、例えば活性長30−、
ボア径(D) 3.5 cmの場合、2百程度に設定さ
れる。前記溜部8A。The hollow cathode 4 is formed of a thick-walled conductive pipe made of stainless steel, for example, and its center hole constitutes a cathode bore 13' in which the glow region 110 is generated, and the three main anodes 5a are formed on the circumferential surface of the hollow cathode 4. , 5b, and 5c are arranged at equal intervals in the axial direction of the cathode 4. These main anodes 5a,
The interval between 5b and 5c is relatively narrow, for example, active length 30-,
When the bore diameter (D) is 3.5 cm, it is set to about 200. Said reservoir 8A.
8Bは前記ホロー陰極4の外周面に中央部の主陽極5b
の両側に位置して形成された環状溝からなり、これら溜
部8A、8Bに前記金属イオン発生材料9がそれぞれ収
容されている。ま之、前記各溜部8A、8Bは前記ホロ
ー陰極4の陰極ボア13′の表面13に形成された周方
向のスリット14A。8B is a central main anode 5b on the outer peripheral surface of the hollow cathode 4.
The metal ion generating material 9 is accommodated in these reservoirs 8A and 8B, respectively. However, each of the reservoirs 8A and 8B is a circumferential slit 14A formed in the surface 13 of the cathode bore 13' of the hollow cathode 4.
14Bによシ前記グロー頓域11に連通されている。こ
のようにすると各溜部8A、8Bを前記グロー領域11
から実質的に離すことができ、プラズマの侵入を防止す
ることができる。14B communicates with the glow storage area 11. In this way, each reservoir 8A, 8B is connected to the glow area 11.
The plasma can be kept substantially away from the plasma, thereby preventing plasma from entering.
前記補助陽極6a、6bは前記ブリュースター窓2.3
を金属蒸気から保護するためのもので、前記ホロー陰極
4の両端にこれと同軸接合され念絶縁キャップ15a、
15bに前記絶縁体7を介してそれぞれ配設されている
。そして、前記各絶縁キャップ15a、15b の中心
孔16の径d1は前記ボア径りよシ小さく、ボア径りか
ら陰極暗部12の厚み分を引いた値とはソ等しい寸法に
設定されている。The auxiliary anodes 6a, 6b are connected to the Brewster window 2.3.
Insulating caps 15a are coaxially connected to both ends of the hollow cathode 4 to protect the hollow cathode 4 from metal vapor,
15b via the insulator 7. The diameter d1 of the center hole 16 of each insulating cap 15a, 15b is set to be smaller than the bore diameter and equal to the value obtained by subtracting the thickness of the cathode dark part 12 from the bore diameter.
前記主陽極5a、5b、5cの絶縁体7は、セラミック
等で形成されてその内端が前記ホロー陰極4の陰極面と
はソ面一になるように該陰極4の陽極増付用孔(図示せ
ず)に外部から嵌合されてアルゴン溶接等によシ固着さ
れておシ、内端面中央には前記各主陽極5a、5b、5
cの挿入端部を収容する凹部17が形成されている。前
記各主陽極5 a r 5 b r 5 cの内端は、
前記絶縁体7の内端縁、換言すればホロー陰極4の陰極
面13より前記凹部17内に所定寸法tだけ引込んでい
る。なお、補助陽極6a、6bの絶縁体7も同様に形成
されている。The insulators 7 of the main anodes 5a, 5b, and 5c are made of ceramic or the like, and are inserted into the anode addition holes ( (not shown) from the outside and fixed by argon welding etc., and each of the main anodes 5a, 5b, 5 is provided at the center of the inner end surface.
A recess 17 is formed to accommodate the insertion end of c. The inner end of each of the main anodes 5 a r 5 b r 5 c is
The inner edge of the insulator 7, in other words, the cathode surface 13 of the hollow cathode 4 is recessed into the recess 17 by a predetermined distance t. Note that the insulators 7 of the auxiliary anodes 6a and 6b are also formed in the same manner.
前記主陽極5a+5b+5cおよび補助陽極5a。The main anode 5a+5b+5c and the auxiliary anode 5a.
6bの上端部は、下端が前記絶縁体7の上面に形成され
た凹部に嵌合されたガラス管30によってそれぞれ囲繞
されている。このガラス管30は前記各主陽極5a、5
b、5cとホロー陰極4の表面との間での放電を防止す
るためのもので、該ガラス管30と対応する陽極との距
離は陽極の熱膨張による屈曲に対して両者が接触しない
範囲で適宜な寸法に設定保持されている。The upper end portions of the glass tubes 6b are each surrounded by a glass tube 30 whose lower end is fitted into a recess formed in the upper surface of the insulator 7. This glass tube 30 is connected to each of the main anodes 5a, 5.
This is to prevent discharge between the glass tube 30 and the surface of the hollow cathode 4, and the distance between the glass tube 30 and the corresponding anode is such that the anode does not come into contact with bending due to thermal expansion. It is set and maintained at an appropriate size.
次にこのような構成においてレーザー動作について説明
する。Next, the laser operation in such a configuration will be explained.
主陽極5a、5b、5c、補助陽極6a、6bおよびホ
ロー陰極4との間に所要の電圧を印加し、前記主陽極5
a、5b、5cと前記ホロー陰極4間に負グロー放電を
発生させる。ここで、金属イオン発生材料9としてcd
を用いたHe−cdレーザーの場合について説明すると
、上記負グロー放電の黒損によ#)Cd蒸気が発生し、
これがHeイオンなどの励起粒子によって高いエネルギ
ー準位へ遷移される。この場合、前記ホロー陰極4は肉
厚パイプで形成されているため、熱伝導および熱容量が
大キく、レーザー管1内の温度分布を均一にするので、
異常グロー放電からアーク放電への移行は防止される。A required voltage is applied between the main anodes 5a, 5b, 5c, the auxiliary anodes 6a, 6b, and the hollow cathode 4, and the main anode 5
A negative glow discharge is generated between a, 5b, 5c and the hollow cathode 4. Here, as the metal ion generating material 9, cd
To explain the case of a He-CD laser using Cd, Cd vapor is generated due to the black loss of the negative glow discharge,
This is transferred to a higher energy level by excited particles such as He ions. In this case, since the hollow cathode 4 is formed of a thick-walled pipe, the heat conduction and heat capacity are large, and the temperature distribution inside the laser tube 1 is made uniform.
Transition from abnormal glow discharge to arc discharge is prevented.
また、前記主陽極5a、5b、5cはその間隔が狭く設
定されているので、ホロー陰極4の陰極面13をH。イ
オンが絶えずスパッタリングし、該陰極面13の状態を
きれいにする。tた、スリット14A、14Bを介して
グロー領域11と各溜部8A、8Bを連通し、前記溜部
8A、8Bをグロー領域11から実質的に離しているの
で、プラズマが各溜部8A、8Bに入シ込むのを防止す
ることができる。したがって、Heイオンのスパッタリ
ングによつ、てCd蒸気が過多になることがなく、陰極
温度のみによってCd蒸気圧を制御できる利点を有して
いる。Further, since the intervals between the main anodes 5a, 5b, and 5c are set narrowly, the cathode surface 13 of the hollow cathode 4 is placed at an H level. Ions constantly sputter and clean the cathode surface 13. In addition, the glow region 11 and the respective reservoirs 8A, 8B are communicated through the slits 14A, 14B, and the reservoirs 8A, 8B are substantially separated from the glow region 11, so that the plasma flows into the respective reservoirs 8A, 8B. 8B can be prevented from entering. Therefore, sputtering of He ions does not cause an excessive amount of Cd vapor, and there is an advantage that the Cd vapor pressure can be controlled only by the cathode temperature.
また、絶縁体1の内端面に凹部17を設け、この凹部1
T内に主陽極5a15b15Cの内端を位置させ、ホロ
ー陰極4より引込めているので、陰極物質の絶縁体の凹
部17への付着凝固を防止する。Further, a recess 17 is provided on the inner end surface of the insulator 1, and the recess 1
Since the inner end of the main anode 5a15b15C is located within the T and recessed from the hollow cathode 4, adhesion and solidification of the cathode material to the recess 17 of the insulator is prevented.
すなわち、主陽極5a、5b、5cを引込めると1陰極
面13と面一にした場合もしくは陰極面13より陽光柱
放電通路10内に突出させた場合に比べて、放電熱で凹
部1Tの内面全体を周囲の陰極温度より高く々るように
焼くと同時にHeイオンでスパッタリングするため、C
d蒸気および陰極物質の付着が殆んど起らず、また放電
の背後(凹部1Tの奥側)に入り込もうとするCd蒸気
は、主陽極5a、 5b 、5cの真下にある陽光柱放
電の電気泳動効果によって吹き返し、凹部奥壁への付着
を防止する。したがって、主Fhz & 5 a *
5 b r 5 cとホロー陰極4とが短絡して同電位
になることがなく、初期状態を良好に維持し、安定な放
電を得ることができる。なお補助陽極6a、6bについ
ても同1様の作用効果を有する。That is, when the main anodes 5a, 5b, and 5c are retracted, the inner surface of the recess 1T is damaged by the discharge heat, compared to when the main anodes 5a, 5b, and 5c are made flush with the cathode surface 13, or when they are made to protrude from the cathode surface 13 into the positive column discharge passage 10. C
Cd vapor and cathode material hardly adhere to each other, and the Cd vapor that tries to enter behind the discharge (the back side of the recess 1T) is absorbed by the electricity of the positive column discharge directly below the main anodes 5a, 5b, and 5c. It blows back due to the electrophoretic effect and prevents it from adhering to the inner wall of the recess. Therefore, the main Fhz & 5 a*
5 br 5 c and the hollow cathode 4 are not short-circuited and become the same potential, so that the initial state can be maintained well and stable discharge can be obtained. Note that the auxiliary anodes 6a and 6b also have the same effect.
また、前記1%%極5a、5b、5c、6a、6bの引
込み寸法tをあまり大きくすると、陽光柱放電の領域内
に移動縞が発生し、陰極ボア13″内のグロー放電に、
そのゆらぎを伝え、レーザー領域が雑音性の多いものと
なる。一方、tを小さくし過ぎると、Cd蒸気の吹き返
しが悪くなる。したがって、引込み寸法tとしては2m
m程度が最適とされる。Moreover, if the retraction dimension t of the 1%% electrodes 5a, 5b, 5c, 6a, and 6b is too large, moving stripes will occur in the area of positive column discharge, causing glow discharge in the cathode bore 13''.
This fluctuation is transmitted and the laser region becomes noisy. On the other hand, if t is made too small, blowing back of Cd vapor becomes worse. Therefore, the retraction dimension t is 2 m.
A value of approximately m is considered optimal.
前記各補助陽極6a 、 6bは絶縁キャップ15a。Each of the auxiliary anodes 6a and 6b is an insulating cap 15a.
15b内における陽光柱放電の電気泳動効果とホロー陰
極4の負グロー放電による吹き返しにより、Cd蒸気の
散逸およびこの散逸によるブリュースター窓2.3への
付着を防止するが、この場合本発明においては前述した
通υ絶縁キャップ15a。The electrophoretic effect of the positive column discharge in the hollow cathode 15b and the blowback caused by the negative glow discharge of the hollow cathode 4 prevent the dissipation of Cd vapor and its adhesion to the Brewster window 2.3. The aforementioned insulating cap 15a.
15bの一端部を補助陽極6a 、 6bよシブリュー
スター窓2.3側に位置させると共に絶縁キャップ15
a、15bの陽光柱放電通路10の径dlを負グロー頭
載11の径とはソ同じにし、ホロー陰極4中の陰極暗部
12に対応するリング状断面積分をなくしているので、
Cd蒸気に対する気密性を良好に保持し得、ブリュース
ター窓2.3をCd蒸気からより一層保護する。また、
Cd蒸気の散逸が少ないので、ホロー陰極4の内部全体
に亘ってほぼ−様な蒸気密度を確保し得、−様な放電を
得ることができる。さらに、陽光柱放電通路10の径d
1は任意に簡単に設定し得るので、構造的にも従来装置
に比べて簡単かつ安価に製作し得る。One end of the auxiliary anodes 6a and 6b is positioned on the side of the sibling star window 2.3, and the insulating cap 15 is
The diameter dl of the positive column discharge path 10 of a and 15b is made the same as the diameter of the negative glow head 11, and the ring-shaped cross-sectional area corresponding to the cathode dark part 12 in the hollow cathode 4 is eliminated.
Good airtightness against Cd vapor can be maintained, and the Brewster window 2.3 is further protected from Cd vapor. Also,
Since there is little dissipation of Cd vapor, it is possible to ensure a substantially -like vapor density throughout the interior of the hollow cathode 4, and to obtain a -like discharge. Furthermore, the diameter d of the positive column discharge path 10
1 can be arbitrarily and easily set, so that it can be manufactured structurally more simply and at a lower cost than conventional devices.
以上説明したように本発明に係る金属イオンレーザ−は
、絶縁キャップを少なくとも補助陽極とプリューメタ−
窓との間に設け、その陽光柱放電通路の断面積をホロー
陰極部のボア径より細くして陰極暗部に対応する面積分
をなくしたので、金属蒸気の気密性を良好に保持し、金
属蒸気の拡散およびブリュースター窓への付着を防止す
ることができ、金属蒸気の制御を容易にする。また、絶
縁キャップの構造も簡単で容易に製作でき、安価に提供
し得る。As explained above, in the metal ion laser according to the present invention, the insulating cap is connected to at least the auxiliary anode and the plumetal.
The cross-sectional area of the positive column discharge path is made smaller than the bore diameter of the hollow cathode section, eliminating the area corresponding to the dark section of the cathode. It can prevent vapor diffusion and adhesion to the Brewster window, making it easier to control metal vapor. Further, the structure of the insulating cap is simple and can be easily manufactured, and can be provided at low cost.
第1図は本発明に係る金属イオンレーザ−の一実施例を
示す断面図、第2図は同レーザーの要部拡大断面図であ
る。
1・・・・レーザー管、2.3・・・・ブリュースター
窓、4・・・拳ホロー陰極、5 、5a 。
5b ・・・・主陽極、6a、5b 拳・・・補助陽
極、7・・・・絶縁体、8A、8B ・・・・溜部、9
・・・・金属イオン発生材料、10・・・・陽光柱放電
通路、11・・・・グロー傾城、12・・・・陰極暗部
、13′ ・・・・陰極ボア。
特許出願人 株式会社小糸製作所FIG. 1 is a cross-sectional view showing an embodiment of a metal ion laser according to the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part of the laser. 1...Laser tube, 2.3...Brewster window, 4...Fist hollow cathode, 5, 5a. 5b...Main anode, 6a, 5b Fist...Auxiliary anode, 7...Insulator, 8A, 8B...Reservoir, 9
... Metal ion generating material, 10... Positive column discharge passage, 11... Glow tilted wall, 12... Cathode dark part, 13'... Cathode bore. Patent applicant: Koito Manufacturing Co., Ltd.
Claims (1)
ンレーザーにおいて、主陽極が配設されるホロー陰極の
両端に補助陽極を設けると共に、少なくともブリュース
ター窓と前記補助陽極との間には絶縁キャップを設け、
この絶縁キャップには陰極ボア径より細い陽光柱放電通
路が形成されていることを特徴とする金属イオンレーザ
ー。In a metal ion laser that generates laser light using negative glow discharge, an auxiliary anode is provided at both ends of a hollow cathode in which a main anode is disposed, and an insulating cap is provided at least between the Brewster window and the auxiliary anode. established,
This metal ion laser is characterized by a positive column discharge path that is narrower than the cathode bore diameter formed in this insulating cap.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1268199A JPH06103762B2 (en) | 1989-10-17 | 1989-10-17 | Metal ion laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1268199A JPH06103762B2 (en) | 1989-10-17 | 1989-10-17 | Metal ion laser |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23606183A Division JPS60128685A (en) | 1983-12-16 | 1983-12-16 | Metallic-ion laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02138782A true JPH02138782A (en) | 1990-05-28 |
JPH06103762B2 JPH06103762B2 (en) | 1994-12-14 |
Family
ID=17455300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1268199A Expired - Lifetime JPH06103762B2 (en) | 1989-10-17 | 1989-10-17 | Metal ion laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06103762B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS535592A (en) * | 1976-07-01 | 1978-01-19 | Xerox Corp | Laser |
JPS5413903U (en) * | 1977-06-29 | 1979-01-29 | ||
JPS5869970U (en) * | 1981-11-04 | 1983-05-12 | 日本電気株式会社 | Glass tube for argon laser tube |
-
1989
- 1989-10-17 JP JP1268199A patent/JPH06103762B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS535592A (en) * | 1976-07-01 | 1978-01-19 | Xerox Corp | Laser |
JPS5413903U (en) * | 1977-06-29 | 1979-01-29 | ||
JPS5869970U (en) * | 1981-11-04 | 1983-05-12 | 日本電気株式会社 | Glass tube for argon laser tube |
Also Published As
Publication number | Publication date |
---|---|
JPH06103762B2 (en) | 1994-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3868593A (en) | Hollow-cathode laser tube | |
JPH01274399A (en) | Transition type plasma torch | |
US4470144A (en) | Coaxial-type carbon dioxide gas laser oscillator | |
US4710938A (en) | Metal ion laser protected against the deposition of metal vapor on brewster windows | |
JPS6238873B2 (en) | ||
JPS6221284A (en) | Metal ion laser | |
JPH02138782A (en) | Metal ion laser | |
JPS61244081A (en) | Metal ion laser | |
US4912719A (en) | Ion laser tube | |
KR0181325B1 (en) | Method for aging a field emission cold cathode | |
JPS6366073B2 (en) | ||
RU2178598C2 (en) | Field-emission device for image reproduction | |
JPH06101598B2 (en) | Metal ion laser | |
JPS61281565A (en) | Metallic ion laser | |
JPS60128684A (en) | Metallic-ion laser | |
EP0236547B1 (en) | Gas laser device | |
JP2001110592A (en) | Electrode for plasma torch | |
JPS62252979A (en) | Metallic ion laser | |
US4856016A (en) | Gas laser tube having a slotted anode | |
KR200271013Y1 (en) | Electron gun for cathode ray tube | |
JPS62106682A (en) | Metal ion laser | |
KR100370734B1 (en) | Color cathode ray tube | |
JP3206182B2 (en) | Metal vapor discharge lamp | |
JP2000161202A (en) | Hollow cathode | |
JPS5889768A (en) | Gas laser discharge tube |