JPS60128306A - Lubricant film thickness measuring method of magnetic disk medium - Google Patents

Lubricant film thickness measuring method of magnetic disk medium

Info

Publication number
JPS60128306A
JPS60128306A JP58236059A JP23605983A JPS60128306A JP S60128306 A JPS60128306 A JP S60128306A JP 58236059 A JP58236059 A JP 58236059A JP 23605983 A JP23605983 A JP 23605983A JP S60128306 A JPS60128306 A JP S60128306A
Authority
JP
Japan
Prior art keywords
lubricant
film thickness
lubricant film
magnetic disk
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58236059A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Hoshino
星野 光利
Akira Terada
寺田 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58236059A priority Critical patent/JPS60128306A/en
Publication of JPS60128306A publication Critical patent/JPS60128306A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness

Abstract

PURPOSE:To derive easily and exactly a lubricant film thickness in a short time by irradiating X rays of a specified frequency to the surface, and measuring the lubricant film thickness basing on a signal area ratio regarding an intensity of an emitted photoelectron. CONSTITUTION:Both faces of a bustrate 1 are covered with a magnetic material layer 2, and the magnetic material layer 2 is protected by a lubricant holding layer 3 consisting of an inorganic silicon compound whose main component is SiO2, and a lubricant film 4. When this magnetic disk medium is cut to small pieces and irradiated under a high vacuum, a photoelectron jumps out with a constant kinetic energy at every constituent element. A binding energy of oxygen O1s of polyether fluoride being a material quality of the lubricant film 4 is a signal having a peak in the vicinity of 537.1eV, and a peak of a signal of an inorganic silicon compound being a material quality of the lubricant holding layer 3 is in the vicinity of 534.2eV. A lubricant film thickness is measured basing on an area ratio of these two signals.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、磁気ディスク媒体の表面上に被覆された潤滑
剤の膜厚を測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for measuring the film thickness of a lubricant coated on the surface of a magnetic disk medium.

〔従来技術〕[Prior art]

一般に、磁気ディスク媒体の表面に祉シリコンオイルや
フッ素化オイルなどの潤滑剤が塗布されている。これ社
、磁気ディスク媒体の回転開始時、停止時および定速回
転時の摩擦・摩耗を減少させ、長期間の運転に対しても
十分な耐久性を持たせるためである。
Generally, a lubricant such as silicone oil or fluorinated oil is applied to the surface of a magnetic disk medium. This is to reduce friction and wear when the magnetic disk medium starts rotating, stops rotating, and rotates at a constant speed, and to provide sufficient durability for long-term operation.

潤滑剤塗布の方法としては、潤滑剤溶液槽中にディッピ
ングする方法や潤滑剤溶液のスプレー法。
Methods for applying lubricant include dipping in a lubricant solution tank and spraying of lubricant solution.

スピンコード法などがおる。これらの方法を用いる場合
において、磁気ディスクの長期間の運鼾に対する十分な
高信頼性を確保するためには最適な膜厚とする必要があ
る。そのために、潤滑剤溶液中の潤滑剤濃度の管理が不
可欠であ〕、また、塗布後の磁気ディスク媒体の熱旭理
による潤滑剤の平滑化や適切な潤滑剤層とするための高
温1での脱脂紙付回転パッドなどによる拭き取シを行な
う必要がある。
There are spin code methods, etc. When using these methods, it is necessary to set the film thickness to an optimum value in order to ensure sufficiently high reliability for long-term operation of the magnetic disk. For this reason, it is essential to control the lubricant concentration in the lubricant solution. In addition, it is necessary to smooth the lubricant by heat sag on the magnetic disk medium after coating and to apply high temperature 1 to form an appropriate lubricant layer. It is necessary to wipe it off using a rotating pad with degreased paper.

しかし、潤滑剤の膜厚は0〜数10の程度のきわめて薄
いものであるととから、従来適当な測定方法がなく、選
択した潤滑剤濃度や処理方法が最適な潤滑剤膜厚を提供
しているか否か、あるいは安定した膜厚を提蒜している
のか否か等の判断を行うことができなかった。そのため
、経験的に潤滑剤濃度や潤滑剤塗布後の磁気ディスクの
処理方法を決めていたにすぎず、磁気ディスク媒体?生
産の歩留9が低く、マた、磁気ディスク媒体運転時の摩
耗やヘッドク2ツ、9 TI−f5らには磁気ディスク
と磁気ヘッド間の吸着を十分防止し得なかった。
However, since the lubricant film thickness is extremely thin, ranging from 0 to several 10,000 ml, there is no suitable measuring method, and the selected lubricant concentration and treatment method cannot provide the optimal lubricant film thickness. It was not possible to judge whether or not the film was coated with a stable film thickness. Therefore, the lubricant concentration and the method of processing the magnetic disk after applying the lubricant were determined empirically, and the magnetic disk medium? The production yield 9 was low, and the adhesion between the magnetic disk and the magnetic head could not be sufficiently prevented due to wear and tear during operation of the magnetic disk medium, 9TI-f5, etc.

〔発明の概要〕[Summary of the invention]

本発明は上記問題点に鑑みてなされたものであムその目
的とするところは、磁気ディスク媒体の表面に塗布し九
潤滑剤の膜厚を高精度かつ容易に測定することのできる
新規ガ測定方法を提供することにある。 □ かかる目的を達成するために、禾発i祉、物質の構成の
分析を行なう方法として既に知られているX線光電子分
光法を応用したものでアシ、所定の潤滑剤が塗布された
磁気ディスク媒体の表面に特定周波数のX線を照射して
光電子を放出せしめ、この放出された光電子の強度につ
いてのシグナル面積比に基づいて潤滑剤膜厚を測定する
ものである0 〔実施例〕 ′ 以下実施例とと、もに本発明の詳細な説明する。
The present invention has been made in view of the above-mentioned problems.The purpose of the present invention is to provide a new method for measuring the film thickness of a lubricant applied to the surface of a magnetic disk medium with high accuracy and ease. The purpose is to provide a method. □ In order to achieve this purpose, we developed a method that applies X-ray photoelectron spectroscopy, which is already known as a method for analyzing the composition of materials. This method involves emitting photoelectrons by irradiating the surface of the medium with X-rays of a specific frequency, and measuring the lubricant film thickness based on the signal area ratio of the intensity of the emitted photoelectrons. The present invention will be described in detail together with examples.

$1図は、本発明の一実施例における磁気ディスク媒体
の断面図である。1は基板であυ、磁性体層2が両面に
被覆されている。3は5102を主成分とする無機シリ
コン化合物から成る潤滑剤保持層であシ、後述すゐ潤滑
剤[114を保持するとともに、磁性体層2を保護する
役割を有する。4はフッ素化ポリエーテルから成る潤滑
剤膜であり、潤滑剤保持層3をスピンコード法、スプレ
ー法、浸漬法などにより被覆したものである。また、こ
の潤滑剤膜4は数10山以下のきわめて薄い膜厚とかか
る構造の磁気ディスク媒体を、まず611〜LogiL
角の小片に切断し、図示しないX線光電子分光装置のX
線照射試料室に設置する。そして、特定波長のX線を該
磁気ディスク小片に高真空下で照射すると、各構成元索
毎に光電子が一定の運動エネルギを持って飛び出す。X
線光電子分光法ではこの光電子の強度を測定するもので
ある。こζで、照射X線と電子の運動エネルギの革を結
合エネルギと呼び、この値←試料の構成元素の結合様式
を反映した値となる。なお、磁気ディスク媒体を小片に
切断するのは、X線光電子分光装置の試、料室の大きさ
に合わせるためにすぎず、該室が十分大きければ切断は
不要である。
Figure $1 is a sectional view of a magnetic disk medium in an embodiment of the present invention. 1 is a substrate υ, both sides of which are coated with magnetic layers 2; Reference numeral 3 denotes a lubricant holding layer made of an inorganic silicon compound containing 5102 as a main component, and has the role of holding a lubricant [114, which will be described later], and protecting the magnetic layer 2. 4 is a lubricant film made of fluorinated polyether, which is coated with the lubricant holding layer 3 by a spin cord method, a spray method, a dipping method, or the like. In addition, this lubricant film 4 has an extremely thin film thickness of several tens of peaks or less, and a magnetic disk medium with such a structure is first coated with 611 to LogiL.
Cut into small pieces of corners, and
Installed in the beam irradiation sample room. Then, when X-rays of a specific wavelength are irradiated onto the magnetic disk piece under high vacuum, photoelectrons are ejected from each constituent fiber with a certain kinetic energy. X
Line photoelectron spectroscopy measures the intensity of these photoelectrons. In this ζ, the ratio of the kinetic energy of the irradiated X-rays and electrons is called the bond energy, and this value ← is a value that reflects the bonding mode of the constituent elements of the sample. Note that the purpose of cutting the magnetic disk medium into small pieces is simply to match the size of the sample chamber of the X-ray photoelectron spectrometer, and if the chamber is sufficiently large, cutting is not necessary.

第2図ニ朧気ディスク謀体辰面にX線を照射することに
より放出される光電子の様子を示す図である。産気ディ
スク媒体表面匹特性X@ 1.を照射すると、潤滑剤膜
4及び潤滑剤保持層3から光電チェ1及び1.が放出−
されることがわかる。
FIG. 2 is a diagram showing the state of photoelectrons emitted by irradiating X-rays onto the surface of the hazy disk. Production disk medium surface characteristics X@1. When irradiated with photoelectronic chips 1 and 1. from the lubricant film 4 and lubricant holding layer 3, is emitted-
I know it will happen.

ぺ□1 ここで、潤滑剤膜4はフッ素化ポリ・エーテルから成り
、潤滑剤保持s3はS10□を主成分とする無機シリコ
ン化合物から成っているので、両者に共通する元素とし
て酸素がある。
□1 Here, since the lubricant film 4 is made of fluorinated polyether and the lubricant holding s3 is made of an inorganic silicon compound whose main component is S10□, oxygen is an element common to both.

第3図は酸素原子の0..0潤滑剤膜4と潤滑剤保持層
3からのX@光電子分光、のシグナルを示すグラフであ
る。図において縦方向は光電子の強度である。潤滑剤膜
4の材質である7、ツ素化ポリエーテルの酸素0111
 の結合エネルギは537.1sV付近にピークを持つ
シグナルであシ、潤滑剤保持層3の材質である無機シリ
コン化合物のジグオルのピーク#15342eV付近に
ある。この二つのピークの差は約2.9ev、ある。第
3.図h)Fiフッ素化ポリエーテルの潤滑剤膜4が薄
く、従って、537.1・Vの7ツ索、イ些ポリニーデ
ルのシグナルに比べ、5342・Vの無機ピリコン化合
物のシグナルの方が大きい場合であル、りは潤滑剤膜4
が厚いため、537、↓・Vのフッ素化ポリエーテルの
シグナルの方が5342*Vの無機シリコン化合物のシ
グナルより大きい場合をデしてiる。このようにフッ素
化ポリエーテルの011のシグナルのピークと無機シリ
コン化合物の011のシグナルのピーク間の結合エネル
ギに差があるため、以下に説明するように、各成分への
高精度の波形解析が可能となるものである。 ′ 第4図は、該磁気ディスク媒体の酸素原子のolm の
シグナルを各成分毎にガウス波形で近似し波形解析した
図アある。こζでSlはフッ素化ポリエーテルのoll
I のガウス波形で近似したシグナル面積、S寞は無機
シリコン化合物のOi−のガウス波形で近似したシグナ
ル面積である。なお、波形の近似にはローレンツ波形中
ガウス波形とローレンツ波形の混合波形も適宜用埴るこ
とができる。実線が原波形9点線が近似したフッ素化ポ
リエーテルと無機シリコン化合物のガウス波形、一点鎖
線はその合成波形である。とのよ゛うな波形解析により
、01sシグナル面積比(即ち8 v’ Smの値)と
フッ素化ポリエーテルから成る潤滑剤膜4の膜厚との関
係拡次のような対数の関係にあることがわかる。すなわ
ち、フッ素化ポリエーテル層の膜厚a(iとすると、次
のような式(1)の関係にあることが解析によシ得られ
る。
Figure 3 shows 0.0% of the oxygen atom. .. 2 is a graph showing X@photoelectron spectroscopy signals from the lubricant film 4 and the lubricant holding layer 3. In the figure, the vertical direction is the intensity of photoelectrons. 7, which is the material of the lubricant film 4, oxygen 0111 of tsunated polyether
The binding energy of the signal is a signal having a peak around 537.1 sV, which is around the peak #15342 eV of the digol of the inorganic silicon compound which is the material of the lubricant holding layer 3. The difference between these two peaks is about 2.9 ev. Third. Figure h) When the lubricant film 4 of Fi fluorinated polyether is thin, and therefore the signal of the inorganic pyricone compound of 5342 V is larger than the signal of the 7-wire polyneedle of 537.1 V. Deru, lubricant film 4
Because of the thickness of 537,↓·V, the signal of the fluorinated polyether is larger than the signal of the inorganic silicon compound of 5342*V. Since there is a difference in binding energy between the 011 signal peak of the fluorinated polyether and the 011 signal peak of the inorganic silicon compound, as explained below, highly accurate waveform analysis of each component is required. It is possible. 4 is a waveform analysis diagram of the olm signal of oxygen atoms in the magnetic disk medium, which is approximated by a Gaussian waveform for each component. In this ζ, Sl is oll of fluorinated polyether
The signal area approximated by a Gaussian waveform of I is the signal area approximated by a Gaussian waveform of Oi- of the inorganic silicon compound, and S is the signal area approximated by a Gaussian waveform of Oi- of the inorganic silicon compound. Note that a mixed waveform of a Gaussian waveform and a Lorentzian waveform among the Lorentzian waveforms can be used as appropriate for waveform approximation. The solid line is the original waveform, the nine-dot line is the approximated Gaussian waveform of the fluorinated polyether and the inorganic silicon compound, and the one-dot chain line is the combined waveform. Through a waveform analysis such as this, it was found that the relationship between the 01s signal area ratio (that is, the value of 8 v' Sm) and the film thickness of the lubricant film 4 made of fluorinated polyether is a logarithmic relationship such as an expansion order. I understand. That is, assuming that the thickness a (i) of the fluorinated polyether layer is the thickness a (i), it can be obtained from the analysis that the following equation (1) holds true.

ここ士、m 1 e m *は定数である。Here, m1em* is a constant.

なお、(1)式社次のようにしてめることができる=フ
ッ素化ポリエーテルの光電子ピークの強度!1は であられされ、 厚さdl のフッ素化ポリエーテル膜を通して測定され
る下地物質である無機シリコン化合物層のI。
In addition, (1) formula can be determined as follows = intensity of photoelectron peak of fluorinated polyether! 1 is the I of the underlying inorganic silicon compound layer measured through a fluorinated polyether film of thickness dl.

は ・・・・・・・・・・・・・・・・・・ (3)であら
れされる。
(3).

ここで、 C:比例定数 IO=OiX線強度 ・@二運動エネルギEの光電子に対する測定系の感度(
検出効率) σl:第1層の着目する原子の光イオン化断面積 nl:第1層の着目する原子の原子数密度λ1@:運動
エネルギEの光電子の第1層に)ける脱出深さ dl:第、1層の厚さの β :アナライザに入射する光電子の脱出角(ここで絋
β#o) である。 1 ・・・・・・・・・・・・・・・(4)着目する光電子
ピークのエネルギ値がほぼ等しい場合に蝶検出効率は等
しいと近似できる。
Here, C: Sensitivity of the measurement system to photoelectrons with proportionality constant IO = Oi X-ray intensity @2 kinetic energy E (
Detection efficiency) σl: Photoionization cross section of the atom of interest in the first layer nl: Atomic number density of the atom of interest in the first layer λ1 @: Escape depth dl of photoelectrons with kinetic energy E into the first layer: The thickness β of the first layer is the escape angle of photoelectrons incident on the analyzer (here, β#o). 1 (4) When the energy values of the photoelectron peaks of interest are approximately equal, the butterfly detection efficiency can be approximated to be equal.

従って、e(It)=e(Is) またElとE3ははは等しいから、 λ104 ) =λt(Es)→λ。Therefore, e(It) = e(Is) Also, since El and E3 are equal, λ104) = λt(Es) → λ.

2m(Ex)=λ*(Iiis)→λ茸とおく。Let 2m (Ex) = λ * (Iiis) → λ mushroom.

従って式(4)は 展開して となる。Therefore, equation (4) is expand it becomes.

ここで01=σ8であシ、また、既知の文献(0M、 
P、 Be&h And W A、DencN、5ur
f、InterfaceAnlLA、 、 Vo41.
 P、 2(1979)及び■R,Ftltsehan
d 8.1. R&ld*r、 J、 Vac、 Sc
i、 Tachno4 、Vo412風L P、 30
5(1975) )によシ、λ1 #16 A +λ2
#18±5Aである。m2を定数とすると、n!//n
1=m、となる。
Here, 01=σ8, and known literature (0M,
P, Be&h And W A, DencN, 5ur
f, InterfaceAnlLA, Vo41.
P, 2 (1979) and ■R, Ftltsehan
d8.1. R&ld*r, J, Vac, Sc
i, Tachno4, Vo412 style LP, 30
5 (1975)), λ1 #16 A + λ2
#18±5A. If m2 is a constant, n! //n
1=m.

となる。becomes.

となる。becomes.

となる。becomes.

dlはdと同じものであるので(8)式は(1)式と同
値となる。
Since dl is the same as d, equation (8) is equivalent to equation (1).

第5図は、(1)式からめられたフッ素化ポリエーテル
膜厚とX線光電子分光法によるフッ素化ポリエーテルと
無機シリコン化合物からの018のシグナル面積比の関
係を示す図である。この図かられかるように、無機シリ
コン化合物上にフッ素化ポリエーテル膜を形成した磁気
ディスク媒体の表面の一部分をX線光電子分光すること
によシ、酸素の0111のフッ素化ポリエーテルと無機
シリコン化合物のシグナルの面積比を測定し、さらに式
(1)ないし第5図から容易かつ正確に短時間でフッ素
化ポリエーテル膜厚をめることができる。
FIG. 5 is a diagram showing the relationship between the fluorinated polyether film thickness determined from equation (1) and the signal area ratio of 018 from the fluorinated polyether and the inorganic silicon compound by X-ray photoelectron spectroscopy. As can be seen from this figure, X-ray photoelectron spectroscopy of a part of the surface of a magnetic disk medium in which a fluorinated polyether film was formed on an inorganic silicon compound revealed that fluorinated polyether of oxygen 0111 and inorganic silicon By measuring the area ratio of the signal of the compound, the thickness of the fluorinated polyether film can be easily and accurately determined in a short time from the formula (1) to FIG.

なお、本実施例では、潤滑剤としてフッ素化ポリエーテ
ルを用い、潤滑剤保持層としてStO,を主成分とする
無機シリコン化合物を用いているので、共通の構成元素
として酸素をと9あげたが、これらに用いる材質によっ
てケイ素や炭素をとシあげて、その光電子の強度から同
様に潤滑剤の膜厚を測定できることはいうまでもない。
In this example, fluorinated polyether is used as the lubricant, and an inorganic silicon compound containing StO as the main component is used as the lubricant holding layer, so oxygen is listed as a common constituent element. It goes without saying that the film thickness of the lubricant can be similarly measured from the intensity of the photoelectrons, depending on the material used for these materials, such as silicon or carbon.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、所定の潤滑剤が塗布さ
れた磁気ディスク媒体の表面に特定周波数のX線を照射
して光電子を放出せしめ、この放出された光電子の強度
についてのシグナル面積比に基づ−て潤滑剤膜厚を測定
するので、容易かつ正確に潤滑剤膜厚を短時間にめるこ
とができる。
As explained above, the present invention irradiates the surface of a magnetic disk medium coated with a predetermined lubricant with X-rays of a specific frequency to emit photoelectrons, and the signal area ratio of the intensity of the emitted photoelectrons. Since the lubricant film thickness is measured based on , the lubricant film thickness can be determined easily and accurately in a short time.

このため、潤滑剤膜厚の管理が正確かつ精密になシ、磁
気ディスクと磁気ヘッド間の摩擦を低下させて摩耗量を
最小にすることができ、ヘッドクラッシュや吸着現象な
ど磁気ディスク媒体および磁気ヘッドにとって好ましく
ない現象を防止することを可能ならしめるものである。
Therefore, the lubricant film thickness can be controlled accurately and precisely, and the friction between the magnetic disk and the magnetic head can be reduced to minimize the amount of wear. This makes it possible to prevent undesirable phenomena for the head.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における磁気ディスク媒体の
断面図、第2図は4訊ディスク媒体表面にX線を照射し
たときの様子を示す図、第3図社X線光電子分光のシグ
ナルを示すグラフ、第4図はX線光電子分光のシグナル
のガウス波形による波形解析を示す図、第5図はフッ素
化ポリエーテル膜厚とX線光電子分光によるシグナル面
積比の関係を示す図である。 1−・・・基板、2・・・ψ磁性体層、3・・・・潤滑
剤保持層、4・・・・潤滑剤膜。 特許出願人 日本電信電話公社 代理人 山 川 政 樹 第1図 第2図
Fig. 1 is a cross-sectional view of a magnetic disk medium in an embodiment of the present invention, Fig. 2 is a diagram showing the state when the surface of the 4-inch disk medium is irradiated with X-rays, and Fig. 3 is a signal of the company's X-ray photoelectron spectroscopy. FIG. 4 is a diagram showing a waveform analysis using a Gaussian waveform of the signal of X-ray photoelectron spectroscopy, and FIG. 5 is a diagram showing the relationship between the fluorinated polyether film thickness and the signal area ratio by X-ray photoelectron spectroscopy. . DESCRIPTION OF SYMBOLS 1-... Substrate, 2... ψ magnetic layer, 3... Lubricant holding layer, 4... Lubricant film. Patent Applicant: Nippon Telegraph and Telephone Public Corporation Agent Masaki Yamakawa Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 磁性体層上に潤滑剤保持層を形成し、その上にこの潤滑
剤保持層と共通の構成原子を含む潤滑剤を塗布してなる
磁気ディスク媒体の表面に特定周波数のX線を照射し、
前記潤滑−保持層及び前記潤滑剤からi記共通の構成原
子についての光電子を放出させ、この放出された光電子
の強度についてのシグナル面積比に基づいて前記潤滑剤
の膜厚゛を測定することを特徴とする磁気ディスク媒体
の潤滑剤膜厚測定方法。
A lubricant retaining layer is formed on a magnetic layer, and a lubricant containing the same constituent atoms as the lubricant retaining layer is coated on the surface of the magnetic disk medium.
emitting photoelectrons from the lubricant-retaining layer and the lubricant, and measuring the film thickness of the lubricant based on the signal area ratio of the intensity of the emitted photoelectrons; Features: A method for measuring lubricant film thickness on magnetic disk media.
JP58236059A 1983-12-16 1983-12-16 Lubricant film thickness measuring method of magnetic disk medium Pending JPS60128306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58236059A JPS60128306A (en) 1983-12-16 1983-12-16 Lubricant film thickness measuring method of magnetic disk medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236059A JPS60128306A (en) 1983-12-16 1983-12-16 Lubricant film thickness measuring method of magnetic disk medium

Publications (1)

Publication Number Publication Date
JPS60128306A true JPS60128306A (en) 1985-07-09

Family

ID=16995125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236059A Pending JPS60128306A (en) 1983-12-16 1983-12-16 Lubricant film thickness measuring method of magnetic disk medium

Country Status (1)

Country Link
JP (1) JPS60128306A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3921825A1 (en) * 1988-07-01 1990-01-11 Fuji Photo Film Co Ltd METHOD FOR MEASURING THE THICKNESS OF A MAGNETIC RECORDING MEDIA
JPH0518979U (en) * 1991-03-01 1993-03-09 宮島 泰重 Drink holder
JPH0558470U (en) * 1991-03-05 1993-08-03 エムエイシイサンコー株式会社 Car holder
JP2016090332A (en) * 2014-10-31 2016-05-23 富士通株式会社 X-ray analysis method for surface-coated microparticle and x-ray analyzer for surface-coated microparticle
JP2017020868A (en) * 2015-07-09 2017-01-26 富士通株式会社 Method, device, and measurement device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266455A (en) * 1975-11-28 1977-06-01 Hitachi Ltd Radiation thickness gauge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266455A (en) * 1975-11-28 1977-06-01 Hitachi Ltd Radiation thickness gauge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3921825A1 (en) * 1988-07-01 1990-01-11 Fuji Photo Film Co Ltd METHOD FOR MEASURING THE THICKNESS OF A MAGNETIC RECORDING MEDIA
DE3921825C2 (en) * 1988-07-01 1999-02-25 Fuji Photo Film Co Ltd Method of measuring the thickness of a magnetic recording medium
JPH0518979U (en) * 1991-03-01 1993-03-09 宮島 泰重 Drink holder
JPH0558470U (en) * 1991-03-05 1993-08-03 エムエイシイサンコー株式会社 Car holder
JP2016090332A (en) * 2014-10-31 2016-05-23 富士通株式会社 X-ray analysis method for surface-coated microparticle and x-ray analyzer for surface-coated microparticle
JP2017020868A (en) * 2015-07-09 2017-01-26 富士通株式会社 Method, device, and measurement device

Similar Documents

Publication Publication Date Title
Fadley et al. Surface analysis and angular distributions in x-ray photoelectron spectroscopy
JPS60128306A (en) Lubricant film thickness measuring method of magnetic disk medium
Ebel et al. Quantitative analysis by X-ray photoelectron spectroscopy without reference samples
Shefer et al. Photoelectron transport in CsI and CsBr coating films of alkali antimonide and CsI photocathodes
Shanley et al. Differential reflectometry—a new optical technique to study corrosion phenomena
JP2005140767A (en) Three-dimensional surface analysis method
Zemek et al. Escape probability of s‐photoelectrons leaving aluminium and copper oxides
JP2638914B2 (en) X-ray intensity measurement method for exposure
Campbell et al. Auger spectra of ammonia on aluminum and oxidised aluminum
Aiginger et al. Principles and development of total reflection X-ray fluorescence analysis
JPS61212705A (en) Film thickness measuring method for magnetic disc medium
Herman et al. Surface analysis during plasma etching by laser-induced thermal desorption
JPH05288696A (en) Monitoring method for mirror for synchrotron radiation beam
JP3159106B2 (en) Etching end point detection apparatus and detection method
Hasegawa et al. Nondestructive depth profile analysis by changing escape depth of photoelectrons
JP2003281712A (en) Method and device for evaluating coatability of lubricant coat on protection film of recording medium
JPS6396545A (en) Method and device for on-line measuring metallic surface film in atmospheric air
Blau et al. Interferometric investigation of the Si SiO2 interregion at wavelengths of 110–130 Å
Fujimori et al. STATE ANALYSIS OF STEEL SURFACES UTILIZING THE 9TH-ORDER FeKα1 LINE BY AN ELECTRON PROBE MICROANALYZER
JP3730636B2 (en) Analysis method and display element manufacturing method
SU1569686A1 (en) Method of determining fraction of graphite phase in carbon film adsorbed in metal
JPH0545147A (en) Method for measuring film thickness of multilayer film and tool for monitoring film thickness
SU1055965A1 (en) Method of checking coating thickness
Klinkenberg et al. Reflectivity measurements of thin SiO2 layers in the soft‐X‐ray region
JPH11160258A (en) Method for inspecting thin film layer body