JPS60128251A - Manufacture of heat-resistant aluminum alloy member - Google Patents

Manufacture of heat-resistant aluminum alloy member

Info

Publication number
JPS60128251A
JPS60128251A JP23529383A JP23529383A JPS60128251A JP S60128251 A JPS60128251 A JP S60128251A JP 23529383 A JP23529383 A JP 23529383A JP 23529383 A JP23529383 A JP 23529383A JP S60128251 A JPS60128251 A JP S60128251A
Authority
JP
Japan
Prior art keywords
temperature
aluminum alloy
piston
forging
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23529383A
Other languages
Japanese (ja)
Other versions
JPH0699787B2 (en
Inventor
Haruo Shiina
治男 椎名
Riyouichi Muragashi
村樫 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP58235293A priority Critical patent/JPH0699787B2/en
Publication of JPS60128251A publication Critical patent/JPS60128251A/en
Publication of JPH0699787B2 publication Critical patent/JPH0699787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a heat-resistant Al alloy member having superior dimensional stability at high temp. by subjecting Al alloy powder contg. an added element in a supersatd. state to hot extrusion, hot forging, rapid cooling and heat treatment at a specified temp. CONSTITUTION:An Al alloy such as Al-Si, Al-Si-Fe or Al-Fe is melted, and the molten alloy is rapidly cooled at >=10<3> deg.C/sec cooling rate to prepare Al alloy powder contg. said added element solubilized in a supersatd. state. The Al alloy powder is heated to 300-520 deg.C and hot extruded to form a blank for forging. This blank is hot forged at >=300 deg.C, and the forged article is rapidly cooled at >=100 deg.C/sec cooling rate. It is then held at <=550 deg.C for >=30min to improve the dimensional stability at high temp.

Description

【発明の詳細な説明】 本発明は、熱間寸法安定性に優れた耐熱アルミニウム合
金製部材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a heat-resistant aluminum alloy member having excellent hot dimensional stability.

従来、前記部材を得る場合、展伸利用耐熱アルミニウム
合金体または連続鋳造により得られた鋳造体に熱間鍛造
を施して部材を成形し、その後部材の熱間寸法安定性お
よび強度を向上させるために溶体化時効処理を施すこと
が行われている。
Conventionally, when obtaining the above-mentioned member, hot forging is performed on a heat-resistant aluminum alloy body using drawing or a cast body obtained by continuous casting to form the member, and then in order to improve the hot dimensional stability and strength of the member. A solution aging treatment is performed on the steel.

この場合、時効処理を部材の使用温度以上の高温下で行
わなければ、部材の使用時にそれが加熱されることによ
って組織が変化し、それに伴い寸法成長が発生すること
になる。
In this case, unless the aging treatment is performed at a high temperature higher than the working temperature of the member, the structure will change due to the heating of the member during use, resulting in dimensional growth.

例えば、内燃機関用ピストンの場合、それは機関運転巾
約280Cに加熱されるが、一般に時効処理は合金組織
からくる制約により前記温度以下(T7処理においては
約230tZ’)で行われているため前記寸法成長の問
題がある。これはJISAC8A、AC8B、AC8C
等の鋳物用アルミニウム合金を用いて金型鋳造により得
られたピストンについても同様である。この問題を回避
するためには高温安定化処理に耐え得る耐熱アルミニウ
ム合金が必要となる。
For example, in the case of a piston for an internal combustion engine, it is heated to about 280 C over the engine operating range, but aging treatment is generally performed below this temperature (approximately 230 tZ' in T7 treatment) due to constraints imposed by the alloy structure. There is a problem of dimensional growth. This is JISAC8A, AC8B, AC8C
The same applies to pistons obtained by die casting using casting aluminum alloys such as . To avoid this problem, a heat-resistant aluminum alloy that can withstand high-temperature stabilization treatment is required.

本発明は上記に鑑み、高温安定化処理に耐え得る耐熱ア
ルミニウム合金を用い、熱間寸法安定性に優れた高強度
な前記部材を“得ることのできる前記製造方法を提供す
ることを目的とし、アルミニウム合金溶湯に、その溶湯
な冷却速度103C/sec。
In view of the above, an object of the present invention is to provide a manufacturing method capable of obtaining a high-strength member with excellent hot dimensional stability using a heat-resistant aluminum alloy that can withstand high-temperature stabilization treatment, The cooling rate of the molten aluminum alloy is 103C/sec.

以上にて急冷凝固させる粉末化処理を施して添加元素を
過飽和に固溶しているアルミニウム合金粉末を得る粉末
製造工程と;アルミニウム合金粉末に温度300C以上
520C以下にて押出加工を施して鍛造用素材を製造し
、次いでその鍛造用素材に温度300C以上にて熱間鍛
造を施してアルミニウム合金製部材を成形し、その後部
材を冷却速度100C/sec以上で急冷する成形工程
と;部材を温度550C以下に30分間以上保持する安
定化処理工程と;よりなることを特徴とする。
A powder manufacturing process for obtaining an aluminum alloy powder in which additive elements are supersaturated as a solid solution by performing a powdering process by rapid solidification; A forming step of manufacturing a material, then hot forging the forging material at a temperature of 300C or higher to form an aluminum alloy member, and then rapidly cooling the member at a cooling rate of 100C/sec or higher; forming the member at a temperature of 550C. It is characterized by comprising: a stabilization treatment step of holding for 30 minutes or more;

アルミニウム合金としては、Al−5t、Al−5i−
Fe、Al−Fe系合金等が該当する。
As aluminum alloys, Al-5t, Al-5i-
This includes Fe, Al-Fe alloys, and the like.

粉末製造工程において、冷却速度を1−03c/sec
以上10’C/s′cc未満に設定することにより組織
中に添加元素を過飽和に固溶させると共に品質の安定し
た粉末を得ることができる。また冷却速度を10’ C
/s e c以上’ 07C/s e c以下に設定す
ると、添加元素の過飽和固溶度が向上し、またFc。
In the powder manufacturing process, the cooling rate is 1-03c/sec.
By setting the above value to less than 10'C/s'cc, it is possible to dissolve the additive element in the structure in a supersaturated manner and to obtain a powder with stable quality. Also, the cooling rate was set to 10'C.
/sec or more and '07C/sec or less, the supersaturated solid solubility of the added element improves, and Fc.

wi、cγ等の高温強度を改善する元素を大幅に添加し
てそれら添加元素をより多く金属間化合物として析出さ
せることが可能となり、これにより部材の高温強度をよ
り一層向上させることができる。
It becomes possible to significantly add elements that improve high-temperature strength, such as wi and cγ, and precipitate more of these added elements as intermetallic compounds, thereby further improving the high-temperature strength of the member.

冷却速度が10” C/s g cを下回ると添加元素
が粗大な金属間化合物として析出するため、組織上の欠
陥となり易く強度劣化を招く。一方、冷却速度が107
tl:’/ Secを上回ると、製造工程が複雑化して
量産性が損われ、その上均一特性の粉末を得ることが困
難となる。
When the cooling rate is less than 10" C/s g c, the additive elements precipitate as coarse intermetallic compounds, which tend to cause structural defects and cause strength deterioration. On the other hand, when the cooling rate is less than 10" C/s g c
If the value exceeds tl:'/Sec, the manufacturing process becomes complicated and mass productivity is impaired, and furthermore, it becomes difficult to obtain powder with uniform characteristics.

成形工程における熱間押出加工時、アルミニウム合金粉
末よりなる保形性を有する素材の温度を300C以上5
20C以下に設定することにより、過′飽和に固溶した
添加元素を高温で安定な金属間化合物として組織中に均
−且つ微細に析出させて部拐の高温強度を向上させるこ
とができ、また加工性も極めて良好となる。粉末製造工
程において、11e、Ni、Cγ等の元素の大量添加を
可能にすべく、溶湯の冷却速度を105C/sec以上
に設定した場合には、得られた粉末の硬度が高くなるの
で押出加工時の素材温度も高くする必要がある。素材温
度が300Cを下回ると、変形抵抗が大きすぎるため加
工性が悪くなり、一方素材温度が520Cを上回ると結
晶粒が粗大化し高温強度が低Tする。種々検討を加えた
結果、好ましくは素材温度が330C以上、特に400
C以上450C以下の範囲にあれば成形性を良好にし、
また高温強度を向上させることができる。
During hot extrusion in the forming process, the temperature of the shape-retaining material made of aluminum alloy powder is set to 300C or higher5.
By setting the temperature to 20C or less, the supersaturated solid solution additive elements can be uniformly and finely precipitated in the structure as intermetallic compounds that are stable at high temperatures, and the high-temperature strength of the particles can be improved. Workability is also extremely good. In the powder manufacturing process, if the cooling rate of the molten metal is set to 105C/sec or more to enable the addition of large amounts of elements such as 11e, Ni, and Cγ, the hardness of the resulting powder will be high, so extrusion processing is not possible. It is also necessary to raise the temperature of the material during the process. When the material temperature is less than 300C, the deformation resistance is too high, resulting in poor workability.On the other hand, when the material temperature is more than 520C, the crystal grains become coarse and the high temperature strength becomes low T. As a result of various studies, it is preferable that the material temperature is 330C or higher, especially 400C.
If it is in the range of C or more and 450C or less, the moldability will be good,
Moreover, high temperature strength can be improved.

ただし、押出速度および押出比を小さく、また押出圧を
大きくすることにより、より低温下において押出加工を
行うことが可能である。この場合、と定義され、一般に
押出比5以上20以下程度が実用域とされている。押出
比が20を上回ると、巨大な押出設備が必要となり、工
業性が悪化する。
However, by decreasing the extrusion speed and extrusion ratio and increasing the extrusion pressure, it is possible to perform extrusion processing at a lower temperature. In this case, it is defined as, and generally an extrusion ratio of about 5 or more and 20 or less is considered to be a practical range. When the extrusion ratio exceeds 20, huge extrusion equipment is required and industrial efficiency deteriorates.

一方、押出比が5を下回ると、押出加工後の製品の6部
と外周部における硬度2強度等の性能のばらつきが大き
くなるが、押出加工後に鍛造等の二次塑性加工を行なう
場合には鍛錬により結晶粒の均一、且つ微細化が図られ
るので、押出比は2程度でも実用上問題はない。
On the other hand, if the extrusion ratio is less than 5, there will be large variations in performance such as hardness 2 strength between the 6 parts and the outer periphery of the product after extrusion, but when performing secondary plastic working such as forging after extrusion, Since the forging makes the crystal grains uniform and fine, there is no practical problem even if the extrusion ratio is about 2.

また鍛造加工時、鍛造用素材温度を300C以上に設定
することにより素材の鍛造成形性が良好となり、得られ
た部材に亀裂や鍛造割れを生じることはないが、素材温
度が3000を下回ると鍛造成形性が悪化し、部材に亀
裂や鍛造割れを生じる。
Also, during forging, by setting the forging material temperature to 300C or higher, the forging formability of the material will be good, and the resulting parts will not suffer from cracks or forging cracks, but if the material temperature is below 3000C, the forging process will not occur. Formability deteriorates, causing cracks and forging cracks in the component.

粉末製造工程において、冷却速度10”C/sec以上
で得られた前記粉末よりなる鍛造用素材の場合には、そ
の硬度が高くなることに伴い素材温度も高くするのが望
、ましい。
In the powder manufacturing process, in the case of a forging material made of the powder obtained at a cooling rate of 10''C/sec or more, it is desirable to increase the material temperature as the hardness increases.

さらに鍛造後の冷却速度を10 oC,、’s Cc以
上に設定することにより、結晶粒の粗大化を抑制して高
温強度および硬度を向上させることができるが、冷却温
度が100C/s e cを下回ると組織が回復して再
結晶が起こり、これにより結晶粒の粗大化を招き、高温
強度が低下する。この冷却操作は一般に水冷で行われる
が粉末製造工程において、冷却速度10’ 7:J:I
s e c以上で得られた前記粉末よりなる素材の場合
、添加元素の大量添加に伴い高温安定性に優れた金属間
化合物が大量に析出し、それら金属間化合物により鍛造
後の組織の回復、再結晶が阻止されるので、上記冷却操
作を必ずしも水冷で行う必要はない。
Furthermore, by setting the cooling rate after forging to 10 oC,,'s Cc or more, coarsening of crystal grains can be suppressed and high-temperature strength and hardness can be improved. When the temperature is lower than 100%, the structure recovers and recrystallization occurs, which leads to coarsening of crystal grains and a decrease in high-temperature strength. This cooling operation is generally performed by water cooling, but in the powder manufacturing process, the cooling rate is 10'7:J:I
In the case of a material made of the powder obtained above, a large amount of intermetallic compounds with excellent high temperature stability are precipitated due to the addition of a large amount of additive elements, and these intermetallic compounds cause recovery of the structure after forging. Since recrystallization is prevented, the above cooling operation does not necessarily have to be carried out by water cooling.

安定化処理工程において、部材を温度550C以下に3
0分間以上保持することにより、その熱間寸法安定性を
向上させることができる。要するに、安定化処理温度は
部月の使用温度以上であることが必要で、安定化処理温
度が使用温度を下回ると部材が寸法成長を発生し熱間寸
法安定性が悪化する。温度が550Cを上回ると前記ア
ルミニウム合金の高温強度が劣化し、また処理時間が:
30分間を下回ると組織の均質化が図られず、安定した
品質のものが得られない。
In the stabilization process, the member is heated to a temperature of 550C or less for 3
By holding it for 0 minutes or more, its hot dimensional stability can be improved. In short, the stabilization treatment temperature must be higher than the working temperature of the part; if the stabilization treatment temperature is lower than the working temperature, the member will undergo dimensional growth and the hot dimensional stability will deteriorate. When the temperature exceeds 550C, the high temperature strength of the aluminum alloy deteriorates, and the processing time:
If the heating time is less than 30 minutes, homogenization of the tissue cannot be achieved and a product of stable quality cannot be obtained.

次に、本発明を内燃機関用ピストンの製造に適、用した
実施例について説明する。
Next, an embodiment in which the present invention is applied to the manufacture of a piston for an internal combustion engine will be described.

〈実施例I〉 表(1,)は本発明において用いられる耐熱アルミニウ
ム合金A−Dおよび比較例としてのJ Is ACsC
月Eの組成を示す。
<Example I> Table (1,) shows heat-resistant aluminum alloys A-D used in the present invention and J Is ACsC as a comparative example.
The composition of the moon E is shown.

表 (I) 前記合金A−Dを用いる場合は、冷却速度103C/s
ec以上105C/”’未満の条件下でアトマイゼーシ
ョンを適用して4種類の合金粉末を製造し、各合金粉末
より直径225咽の保形性を有する押出加工用素材を成
形する。各押出加工用素材を炉内温度370Cの均熱炉
内に設置して10時間保持し、次いでその押出加工用素
材に押出加工を施して直径70陣の丸棒状鍛造用素材を
製造する。
Table (I) When using the above alloys A-D, the cooling rate is 103C/s
Atomization is applied under conditions of ec or more and less than 105 C/''' to produce four types of alloy powder, and each alloy powder is molded into an extrusion material having a shape retention property of 225 mm in diameter.Each extrusion process The material for extrusion is placed in a soaking furnace with an internal temperature of 370C and held for 10 hours, and then the extrusion material is subjected to extrusion processing to produce a round bar-shaped forging material with a diameter of 70 squares.

その後、各鍛造用素材に熱間鍛造を施してピストン素材
を成形する。この場合、合金Aよりなる素材は450C
に、合金B、Cよりなる素材は550Cに、合金りより
なる素材は470Cにそれぞれ加熱される。鍛造後各ピ
ストン素利を冷却速度660C/secにて水冷する。
Thereafter, each forging material is hot forged to form a piston material. In this case, the material made of alloy A is 450C
Then, the materials made of alloys B and C are heated to 550C, and the material made of alloys is heated to 470C. After forging, each piston element is water-cooled at a cooling rate of 660 C/sec.

比較例としての合金Eを用いた場合には、金型を使用し
てピストン素材を鋳造する。
When Alloy E is used as a comparative example, a piston material is cast using a mold.

第1図は各ピストン素材に安定化処理を施した場合の硬
度(HRB)変化を示すもので、各硬度は各ピストン素
材を各温度に48時間保持した後室温で測定されたもの
である。a、−e、は合金A〜Eよりなるピストン素材
をそれぞれ示す。
Figure 1 shows the change in hardness (HRB) when each piston material was subjected to stabilization treatment, and each hardness was measured at room temperature after holding each piston material at each temperature for 48 hours. a and -e indicate piston materials made of alloys A to E, respectively.

ピストンはその使用温度が約280Cであるから、安定
化処理はそれ以上の高温、例えば300C以上で行うの
が良い。第1図から明らかなように合金A、Dよりなる
ピストン素材a、〜d、の場合は、安定化処理温度が3
00C以上でもそれ程硬度の低下は認められず、リング
溝の耐久性を保持させるためにHRB 60以上とする
ことが十分に可能である。これに対しピストン素材e、
の場合は、安定化処理温度が300C以上であると硬度
が大幅に低下してピストンとしての機能を果たさなくな
るおそれがある。
Since the operating temperature of the piston is approximately 280C, the stabilization treatment is preferably performed at a higher temperature, for example, 300C or higher. As is clear from Fig. 1, in the case of piston materials a, to d made of alloys A and D, the stabilization treatment temperature is 3.
Even at 00C or higher, no significant decrease in hardness is observed, and it is fully possible to set the HRB to 60 or higher in order to maintain the durability of the ring groove. On the other hand, the piston material e,
In this case, if the stabilization treatment temperature is 300C or higher, the hardness may decrease significantly and the piston may no longer function as a piston.

第2図は、各ピストン素材a1〜d、に410tZ’。In Fig. 2, each piston material a1 to d is 410tZ'.

3時間の安定化処理を施し、その後機械加工によりヘッ
ド部外径が73.55711711のピストンa2〜d
2を削成し、それを300Cに所定時間保持した場合の
寸法成長変化を示す。
After 3 hours of stabilization treatment, the pistons a2 to d with a head outer diameter of 73.55711711 were machined.
2 is removed and the dimensional growth change is shown when it is held at 300C for a predetermined period of time.

この場合の寸法成長変化はヘッド部の外径変化として示
されており、 である。また基準値ゼロを境としてプラス側が膨張によ
る永久変形、マイナス側が収縮による永久変形の場合で
ある。
The dimensional growth change in this case is shown as the change in the outer diameter of the head portion, and is expressed as follows. Furthermore, with the reference value zero as the boundary, the positive side is the case of permanent deformation due to expansion, and the negative side is the case of permanent deformation due to contraction.

合金EよりなるピストンC2は、T7処理を施した素材
C1に機械加工を施して前記と同一のヘッド部外径を持
つように削成されたものである。
The piston C2 made of alloy E is machined from a material C1 that has been subjected to T7 treatment so as to have the same outer diameter of the head portion as described above.

第2図から明らかなように、合金A〜Dよりなるピスト
ンa2〜d2の場合は寸法成長変化率が極めて少ないが
、合金EよりなるピストンC2の場合は寸法成長変化率
が経時的に増加する。
As is clear from Fig. 2, the rate of change in dimensional growth is extremely small in the case of pistons a2 to d2 made of alloys A to D, but the rate of change in dimensional growth increases over time in the case of piston C2 made of alloy E. .

前記合金A−Dよりなるピストン素材α、〜d1の場合
安定化処理温度が300〜500Cの範囲にあれば前記
第2図と同様の寸法成長変化率が得られる。
In the case of the piston materials α, -d1 made of the alloys A-D, if the stabilization temperature is in the range of 300 to 500C, the same dimensional growth change rate as shown in FIG. 2 can be obtained.

機関運転中に発生するピストンの寸法成長は不可逆変化
であるため、ピストンが膨張による永久変形を起こした
場合にはシリンダスリーブに対するピストンの摩擦力が
増大して出力の損失をもたらし、また前記変形の程度が
大きいとピストンとシリンダスリーブ間に焼付きを発生
するおそれがある。一方、ピストンが収縮による永久変
形を起こした場合にはピストンによる打音の増大、オイ
ル消費量およびブローバイガスの増加等の不具合を発生
する。
The dimensional growth of the piston that occurs during engine operation is an irreversible change, so if the piston undergoes permanent deformation due to expansion, the frictional force of the piston against the cylinder sleeve will increase, resulting in a loss of power, and the deformation will increase. If the degree is too large, there is a risk of seizure occurring between the piston and the cylinder sleeve. On the other hand, if the piston undergoes permanent deformation due to contraction, problems such as an increase in the hitting noise caused by the piston, an increase in oil consumption, and an increase in blow-by gas occur.

前記合金Δ〜Dよりなるピストンa2〜d2においては
、それらが機関運転中に起こす永久変形量が極めて少な
く、シたがってピストンとシリンダスリーブ間のクリア
ランスの変化に伴う前記不具合を全て解消し得るもので
ある。
In the pistons a2 to d2 made of the alloys Δ to D, the amount of permanent deformation caused by them during engine operation is extremely small, and therefore all of the above-mentioned problems caused by changes in the clearance between the piston and the cylinder sleeve can be eliminated. It is.

〈実施例■〉 表(II)は本発明において用いられる耐熱アルミニウ
ム合金F、−Hの組成を示し、これら合金F 、 Il
は前記衣(■)における合金りと同種であるが、主とし
て高温強度の改善元素であるF Cの含有量が多くなっ
ている。
<Example ■> Table (II) shows the compositions of heat-resistant aluminum alloys F and -H used in the present invention, and these alloys F and Il
This is the same type of alloy as the coating (■), but the content of FC, which is an element that mainly improves high-temperature strength, is increased.

表 (n) 前記合金F、Hを用いる場合は、冷却速度10′’7:
:/sec以上の条件下でアトマイゼーションを適用し
て3種類の合金粉末を製造し、各合金粉末より直径22
5ya+nの保形性を有する押出加工用素材を成形する
。各押出加工用素材を炉内温度420Cの均熱炉内に設
置して10時間保持し、次いでその押出加工用素材に押
出加工を施して直径70fiの丸棒状鍛造用素材を製造
する。
Table (n) When using the above alloys F and H, the cooling rate is 10''7:
Three types of alloy powders were produced by applying atomization under conditions of more than 22 mm in diameter.
A material for extrusion processing having a shape retention property of 5ya+n is molded. Each extrusion material is placed in a soaking furnace with an internal temperature of 420C and held for 10 hours, and then the extrusion material is extruded to produce a round bar-shaped forging material with a diameter of 70fi.

その後、各鍛造用素材に熱間鍛造を施してピストン素材
を成形する。この場合、合金F −IIからなる素材は
470Cにそれぞれ加熱される。熱間鍛造後、各ピスト
ン素材を冷却速度6607:/secにて水冷する。
Thereafter, each forging material is hot forged to form a piston material. In this case, the materials made of alloy F-II are each heated to 470C. After hot forging, each piston material is water-cooled at a cooling rate of 6607:/sec.

第3図は各ピストン素材に安定化処理を施した場合の硬
度(HRB)変化を示すもので、各硬度は各ピストン素
材を各温度に48時間保持した後室温で測定されたもの
である。fI”h+ は合金F〜〃よりなるピストン素
材をそれぞれ示し、CIは前記比較例を示す。
Figure 3 shows the change in hardness (HRB) when each piston material was subjected to stabilization treatment, and each hardness was measured at room temperature after holding each piston material at each temperature for 48 hours. fI''h+ represents a piston material made of alloy F~, and CI represents the comparative example.

第3図から明らかなように合金F、Hよりなるピストン
素材f1〜A1の場合は安定化処理温度が500Cでも
それ程硬度の低下は認められない。
As is clear from FIG. 3, in the case of piston materials f1 to A1 made of alloys F and H, no significant decrease in hardness is observed even at a stabilization treatment temperature of 500C.

直噴タイプを採用したエンジンのディーゼル化等に伴い
ピストンの使用温度は400〜450Cと高くなる傾向
にあるが、このような使用環境におし・ても前記ピスト
ン素材f1〜h1は十分な高温強度を有するもので、こ
れは粉末製造工程において、冷却速度を1Q5C/s 
ec以上に設定することにより達成し得るものである。
With the shift to diesel engines that employ direct injection types, the operating temperature of pistons tends to rise to 400 to 450 C, but even in such operating environments, the piston materials f1 to h1 have a sufficiently high temperature. It has strength, and in the powder manufacturing process, the cooling rate can be reduced to 1Q5C/s.
This can be achieved by setting it to ec or higher.

各ピストン素材JI−h1に450 C13時間の安定
化処理を施し、次いで機械加工によりヘッド部外径が7
3.55順のピストンを削成し、それを400Cに所定
時間保持し、その後寸法成長変化率を調べたところ、前
記実施例1のピストンd、に略相当する値を示すことが
判明した。このことから前記合金F 、 Ifよりなる
ピストンは熱間寸法安定性に優れていることが明らかで
ある。
Each piston material JI-h1 was stabilized for 450C for 13 hours, and then machined to a head diameter of 7.
A piston of 3.55 order was ground, held at 400C for a predetermined time, and then the dimensional growth change rate was examined, and it was found that the value approximately corresponds to that of the piston d of Example 1. From this, it is clear that the pistons made of the alloys F and If have excellent hot dimensional stability.

以上のように本発明によれば、特定の耐熱アルミニウム
合金粉末を用いて、成形および高温下における安定化処
理工程を経て熱間寸法安定性に優れた高強度な耐熱アル
ミニウム合金製部材を得ることができる。
As described above, according to the present invention, a high-strength heat-resistant aluminum alloy member with excellent hot dimensional stability can be obtained by using a specific heat-resistant aluminum alloy powder and undergoing a stabilization treatment process at high temperatures. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例におけるピストン素材に対する安定
化処理温度と硬度の関係を示すグラフ、第2図は第1実
施例におけるピストンを300Cに保持した場合の保持
時間と寸法成長変化率の関係を示すグラフ、第3図は第
2実施例におけるピストン素材に対する安定化処理温度
と硬度の関係を示すグラフである。 特許出願人 本田技研工業株式会社 第3図 第1図
Figure 1 is a graph showing the relationship between stabilization temperature and hardness for the piston material in the first example, and Figure 2 is the relationship between holding time and dimensional growth change rate when the piston is held at 300C in the first example. FIG. 3 is a graph showing the relationship between stabilization treatment temperature and hardness for the piston material in the second embodiment. Patent applicant: Honda Motor Co., Ltd. Figure 3 Figure 1

Claims (1)

【特許請求の範囲】[Claims] アルミニウム合金溶湯に、該溶湯を冷却速度1o3’I
::/sec以上にて急冷凝固させる粉末化処理を施し
て添加元素を過飽和に固溶しているアルミニウム合金粉
末を得る粉末製造工程と;前記アルミニウム合金粉末に
温度:(000以上520r以下にて押出加工を施して
鍛造用素材を製造し、次いで該鍛造用素材に温度300
C以上にて熱間鍛造を施してアルミニウム合金製部材を
成形し、その後肢部材を冷却速度100C/s e c
以上で急冷する成形工程と、前記部材を温度550C以
下に30分間以上保持する安定化処理工程と;よりなる
熱間寸法安定性に優れた耐熱アルミニウム合金製部材の
製造方法。
The molten aluminum alloy is cooled at a cooling rate of 1o3'I.
A powder manufacturing process of obtaining an aluminum alloy powder in which additive elements are supersaturated as a solid solution by performing a powdering process of rapid solidification at a temperature of 000 to 520 r. Extrusion processing is performed to produce a forging material, and then the forging material is heated to a temperature of 300°C.
The aluminum alloy member is formed by hot forging at C or above, and the rear limb member is cooled at a cooling rate of 100C/sec.
A method for manufacturing a heat-resistant aluminum alloy member having excellent hot dimensional stability, comprising: a forming step of rapidly cooling the member as described above; and a stabilizing treatment step of maintaining the member at a temperature of 550C or less for 30 minutes or more.
JP58235293A 1983-12-14 1983-12-14 Method for manufacturing heat-resistant aluminum alloy member Expired - Lifetime JPH0699787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58235293A JPH0699787B2 (en) 1983-12-14 1983-12-14 Method for manufacturing heat-resistant aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58235293A JPH0699787B2 (en) 1983-12-14 1983-12-14 Method for manufacturing heat-resistant aluminum alloy member

Publications (2)

Publication Number Publication Date
JPS60128251A true JPS60128251A (en) 1985-07-09
JPH0699787B2 JPH0699787B2 (en) 1994-12-07

Family

ID=16983962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58235293A Expired - Lifetime JPH0699787B2 (en) 1983-12-14 1983-12-14 Method for manufacturing heat-resistant aluminum alloy member

Country Status (1)

Country Link
JP (1) JPH0699787B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375337A2 (en) * 1988-12-19 1990-06-27 Sumitomo Electric Industries, Ltd. Parts for use in rotary gear pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535463A (en) * 1978-09-05 1980-03-12 Omron Tateisi Electronics Co Proximity switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535463A (en) * 1978-09-05 1980-03-12 Omron Tateisi Electronics Co Proximity switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375337A2 (en) * 1988-12-19 1990-06-27 Sumitomo Electric Industries, Ltd. Parts for use in rotary gear pump
EP0375337A3 (en) * 1988-12-19 1990-12-19 Sumitomo Electric Industries, Limited Parts for use in rotary gear pump

Also Published As

Publication number Publication date
JPH0699787B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
US4818308A (en) Aluminum alloy and method for producing the same
US4336076A (en) Method for manufacturing engine cylinder block
JPS61117204A (en) High-strength al alloy member for structural purpose
JPS62158856A (en) Production of titanium engine valve
JPH08104937A (en) Aluminum alloy for internal combustion engine piston excellent in high temperature strength and its production
JPS60128251A (en) Manufacture of heat-resistant aluminum alloy member
JPH0121213B2 (en)
JPH1136030A (en) Aluminum alloy for piston, and manufacture of piston
JPH0118981B2 (en)
JPS60116753A (en) Manufacture of heat-resistant aluminum alloy member
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JP4488386B2 (en) Die for hot working and manufacturing method of mold material for hot working
JPH02149627A (en) Super alloy based on nickel
JPS6283453A (en) Manufacture of aluminum alloy ingot for extrusion
JPH0121856B2 (en)
JPH01108338A (en) Aluminum alloy having excellent tensile and fatigue strength
JP3149066B2 (en) Piston for internal combustion engine
JP2004099996A (en) Process for manufacturing component part of internal-combustion engine
JPH0525591A (en) Wire for piston ring and its manufacture
JPH0261024A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPH0539507A (en) Rotor for oil pump made of aluminum alloy and production thereof
JPS61295301A (en) Heat-resistant high-power aluminum alloy powder and its molding
JPS6223952A (en) Al-fe-ni heat-resisting alloy having high toughness and its production
JPS60131945A (en) High-strength aluminum alloy having superior heat resistance
JPS649390B2 (en)