JPS6012747A - Heat sink for electronic device - Google Patents

Heat sink for electronic device

Info

Publication number
JPS6012747A
JPS6012747A JP58120475A JP12047583A JPS6012747A JP S6012747 A JPS6012747 A JP S6012747A JP 58120475 A JP58120475 A JP 58120475A JP 12047583 A JP12047583 A JP 12047583A JP S6012747 A JPS6012747 A JP S6012747A
Authority
JP
Japan
Prior art keywords
diamond
heat sink
crystal
nitrogen content
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58120475A
Other languages
Japanese (ja)
Other versions
JPH0310233B2 (en
Inventor
Shuichi Sato
周一 佐藤
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58120475A priority Critical patent/JPS6012747A/en
Priority to US06/621,768 priority patent/US4617181A/en
Priority to DE8484107115T priority patent/DE3475275D1/en
Priority to EP84107115A priority patent/EP0136408B1/en
Priority to CA000457494A priority patent/CA1227726A/en
Publication of JPS6012747A publication Critical patent/JPS6012747A/en
Publication of JPH0310233B2 publication Critical patent/JPH0310233B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain the heat sink excellent in heat dissipating characteristic at low cost by a method wherein an artificial synthetic Ib type diamond crystal having nitrogen content at 5-100ppm is used as the material of the heat sink for a device, and is processed so that the cystal area having the maximum area becomes a plane (110). CONSTITUTION:In manufacturing the titled heat sink the diamond cystal having nitrogen content at 5-100ppm is used. At this time, an unprocessed crystal grown surface is left on at least one surface, and the crystal surface at the part having the maximum area of the processed crystal surface is made as the plane (110). In such a manner, the heat sink excellent in heat dissipating characteristic is obtained at low cost by the use of a diamond having a high thermal conductivity and easy to be processed.

Description

【発明の詳細な説明】 (イ)技術分野 ダイヤモンドは既知の如く、最も熱伝導度の良い物質で
あり、工業的用途も大きい材質である。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field Diamond, as is known, is a material with the best thermal conductivity and has a wide range of industrial uses.

ところが、天然のダイヤモンド原石の場合には、含有チ
ッ装置によって、熱伝導度が著しく異なる性質を有して
いる。含有チン素置が多い方が熱伝導度が小さくその値
は室温で含有チッ装置により24W/cIyIL〜6W
/’(:tm、程度変化する。この内、含有チソ装置が
IPPM以下のダイヤモンドを選別し、llaタイプ(
窒素量が更゛に多いものをIaタイプと称する。)と称
している。このllaタイプのダイヤモンドハ・殆んと
が20W/j以」二と言う高い熱伝導度を示し、高熱を
発生する半導体レーザー、ダイオード、マイクロ波発振
素子等のエレクトロニクス用デバイスの放熱用ヒートシ
ンクとして、用いられている。近年こう言った分野の発
達は著しく、ダイヤモンドヒートシンクの需要も急速に
伸びている。本発明は、このエレクトロニクス用デバイ
スに用いるダイヤモンドヒートシンクに関するものであ
る。
However, in the case of natural rough diamonds, the thermal conductivity varies significantly depending on the nitrogen content. The thermal conductivity is smaller when there is a large amount of iron contained, and the value is 24W/cIyIL~6W at room temperature depending on the contained silicon device.
/'(:tm, degree varies.Among these, the containing titanium equipment selects diamonds with IPPM or less, and lla type (
The one with even higher nitrogen content is called type Ia. ). This lla type diamond exhibits a high thermal conductivity of 20W/J or more, and can be used as a heat sink for heat dissipation in electronic devices such as semiconductor lasers, diodes, and microwave oscillation elements that generate high heat. It is used. The development of these fields has been remarkable in recent years, and the demand for diamond heat sinks is rapidly increasing. The present invention relates to a diamond heat sink used in this electronics device.

(ロ)従来技術と問題点 しかしながら、天然産11a型グイセモンドは、産出量
が少なく、極めて高価である為、デバイス性能の高信頼
性、及びデバイスの長寿命が要求される。通信用半導体
レーザーあるいはマイクロ波用ダイオード用ヒートシン
クに限られることが多い。又、同じIlaタイプダイヤ
モンド原石でも、チッ素含有量によって、熱伝導度が変
化する為、安定性に欠けると言う欠点が有る。又、ダイ
ヤモンドは、最も硬い物質であることも良く知られてい
る。この為加工が極めて難しい。一般にダイヤモンドを
加工する場合には、ナタネ油にダイヤモンド粉末を混ぜ
たペースト状のものを、鋳物製の円盤に塗布し、この円
盤を高速回転させ、その上に、ダイヤモンドを押し当て
て、研摩する方法がとられる。この場合ダイヤモンドは
結晶面による摩耗特性が著しく異なる。(100)面、
(111)面、(110)面における摩耗特性を表−1
に示す。
(b) Prior Art and Problems However, naturally occurring type 11a gouisemondo is produced in small quantities and is extremely expensive, so high reliability of device performance and long life of the device are required. It is often limited to heat sinks for communication semiconductor lasers or microwave diodes. In addition, even with the same Ila type diamond rough, the thermal conductivity changes depending on the nitrogen content, so it has the disadvantage of lacking stability. It is also well known that diamond is the hardest substance. For this reason, processing is extremely difficult. Generally, when processing diamonds, a paste made of rapeseed oil and diamond powder is applied to a cast metal disk, the disk is rotated at high speed, and a diamond is pressed onto it to polish it. method is taken. In this case, diamond has significantly different wear characteristics depending on its crystal plane. (100) plane,
Table 1 shows the wear characteristics of (111) and (110) surfaces.
Shown below.

表 1 注)摩耗量は、各面内における最も削 り易い方向で研摩したもの。Table 1 Note) Wear amount is the maximum amount of wear on each surface. Polished in a direction that is easy to scratch.

従って、(110)面を研摩すれば良く削れるが、誤ま
って(111)面を研摩すると、鋳物製の円盤ばかり削
ってしまい、ダイヤモンドは、殆んど削れない状態とな
る。この為、ダイヤモンド原石の面方位を正しく判定す
る事は、ダイヤモンドを加工する上で不可欠の条件であ
る。天然原石の多くは、110面よりなる12面体、あ
るいは(i i g面よりなる8面体で構成されている
が、面と1aiの境界の稜が融解しているものが多く、
面方位を探すのは、熟練を要し、誤ることも多い。又、
殆んどの面が、曲面よりなっている為、かなりのダイヤ
部分を研摩しなければならない。その為加工費と、点は
、エレクトロニクス用デバイスの電極としてダイヤモン
ド表面を用いる為、金のコーティングを表面に施さなけ
ればならない。その際の技術が難かしく、充分な表面強
度が全てのヒートシンクに亘って得られず歩留りが悪い
ことにある。ダイヤモンドの表面は、極めて活性化して
おり、酸素が極めて多く付着している。この為単に、金
を蒸着しただけでは、ダイヤモンドとの密着強度が低く
、デバイス及びリード線等を接着することが出来ない。
Therefore, if you polish the (110) plane, it will cut well, but if you accidentally polish the (111) plane, only the cast disc will be ground, and the diamond will be in a state where it is almost impossible to cut it. For this reason, correctly determining the surface orientation of rough diamonds is an essential condition for processing diamonds. Most natural rough stones are composed of dodecahedrons consisting of 110 faces, or octahedrons consisting of (i, g, and g faces), but in many cases the edges of the boundaries between the faces and 1ai are fused.
Finding the plane direction requires skill and is often error-prone. or,
Since most of the surfaces are curved, a considerable portion of the diamond must be polished. This requires processing costs, and because the diamond surface is used as an electrode for electronics devices, a gold coating must be applied to the surface. The technology involved is difficult, and sufficient surface strength cannot be obtained over all the heat sinks, resulting in poor yields. The surface of diamond is highly activated and has an extremely large amount of oxygen attached to it. For this reason, if gold is simply vapor-deposited, the adhesion strength with diamond is low, and devices, lead wires, etc. cannot be bonded together.

通常は、Ti 、 Cr等の酸素と反応し易すい金属を
、先ず、イオンブレーティング、スパッタリング等の方
法で、コテイングしその上に金を同方法あるいは蒸着方
法でコーティングし、ヒートシンクとして用いている。
Usually, a metal that easily reacts with oxygen, such as Ti or Cr, is first coated using a method such as ion blasting or sputtering, and then gold is coated on top using the same method or vapor deposition method, and used as a heat sink. .

この場合、Ti、Cr等をコーティングする際の表面処
理及びコーティング条件が螢しく、ダイヤモンドと、コ
ーテイング膜の間に、充分な接着強度が得られず、リー
ド線を接着した場合、コーテイング膜が剥離することが
有る。
In this case, the surface treatment and coating conditions when coating Ti, Cr, etc. are too hot, and sufficient adhesion strength cannot be obtained between the diamond and the coating film, and when the lead wire is bonded, the coating film peels off. There is something to do.

(ハ)発明の構成 本発明により、前述の各問題点に対し、人工合成ダイヤ
モンドを用いることにより安定した高熱伝導度を有し、
かつ加工がし易すいダイヤモンドヒートシンクを供給す
るものである。先づ第一に、ダイヤモンド原石の熱伝導
度が安定した高い範囲内あるチッ装置の同定について説
明する。ヒートシンクに用いられる人工合成ダイヤモン
ドは、主に砥粒合成に用いられる膜成長法と、温度差法
とで作られるがここでは、第1図に示すような一般に温
度差法と呼ばれる方法で合成される、人工ダイヤモンド
原石を使った場合について述べる。チッ素含有量は成長
速度を1 m g/b〜3.5mg/hまで変えて、1
0〜150PPMまで変化させた。成長速度を制御する
手段は当初、第1図中の炭素と、ダイヤモンド種結晶物
質の間隔を変えること(溶媒長さを変える)によって温
度差を変えることでijなったが、成長速度の再現性は
余り良くなかった。
(C) Structure of the Invention The present invention solves the above-mentioned problems by using artificially synthesized diamond, which has stable high thermal conductivity.
The present invention also provides a diamond heat sink that is easy to process. First, we will explain the identification of a diamond rough device whose thermal conductivity is within a stable and high range. Artificially synthesized diamonds used in heat sinks are mainly produced using the film growth method used for abrasive grain synthesis and the temperature difference method. We will discuss the case of using an artificial diamond rough. The nitrogen content was determined by varying the growth rate from 1 m g/b to 3.5 mg/h.
It was varied from 0 to 150 PPM. Initially, the means to control the growth rate was to change the temperature difference by changing the distance between the carbon and diamond seed crystal materials in Figure 1 (by changing the length of the solvent), but the reproducibility of the growth rate was was not very good.

従って本発明では、第2図に示す如く、ダイヤモンド種
結晶物質の下に、熱伝導の良いMO等の高融点金属円板
を敷き、その円板の厚みを変えることで、下方に散逸さ
れる熱量を変化させ、ダイヤモンド種結晶物質と炭素源
間の温度差を変え成長速度を変える方法をとった所、成
長速度のバラツキは小さくなった。チッ素含有量の測定
は、赤外吸収測定器により、ダイヤモンド原石の11’
30CI4−1の、吸収係数を正確に測定することに同
定した。
Therefore, in the present invention, as shown in Fig. 2, a high melting point metal disk such as MO with good thermal conductivity is placed under the diamond seed crystal material, and the thickness of the disk is changed so that the heat dissipates downward. By changing the amount of heat and changing the temperature difference between the diamond seed crystal material and the carbon source to change the growth rate, the variation in growth rate became smaller. The nitrogen content is measured using an infrared absorption measuring device at 11' of the rough diamond.
30CI4-1 was identified to accurately measure the absorption coefficient.

第5図に吸収係数と、含有チッ装置の関係を示す。FIG. 5 shows the relationship between the absorption coefficient and the nitrogen content.

又、上記方法によって合成したダイヤモンド原石の成長
速度と、含有チッ装置の関係を第4図に示す。図は、ニ
ッケル溶媒を用いているが、他の溶媒についても同一の
結果が得られた。その結果110PP〜150PPMの
チッ素を含有するIb型のダイヤモンド原石が得られた
。これらのダイヤモンドの熱伝導度を測定した所、第5
図に示すような結果が得られた。その結果、10PPM
〜1100PPの範囲内では、熱伝導度がほぼ一定で高
い値を示すが、150PPMになると、熱伝導度は、低
い値を示し出す。このことから、チッ装置が10〜10
DI”PMの範囲内にある人工合成ダイヤモンドから作
成されたヒートシンクが高熱伝導度を有し、バラツキの
少ない・慶れたエレクトロニクスデバイス用ヒートシン
クであることが判かる。合成ダイヤ一方天然ダイヤモン
ドでは窒素が特定の結晶面に数百オングストロームの単
位で凝集析出している。
Further, FIG. 4 shows the relationship between the growth rate of the rough diamond synthesized by the above method and the nitrogen content device. Although the figure uses a nickel solvent, the same results were obtained with other solvents. As a result, a type Ib diamond rough containing 110PP to 150PPM of nitrogen was obtained. When the thermal conductivity of these diamonds was measured, the fifth
The results shown in the figure were obtained. As a result, 10PPM
Within the range of ~1100PP, the thermal conductivity is almost constant and exhibits a high value, but when it reaches 150PPM, the thermal conductivity begins to exhibit a low value. From this, it can be seen that the chit device is 10 to 10
It can be seen that the heat sink made from synthetic diamond within the range of DI"PM has high thermal conductivity and is a good heat sink for electronic devices with little variation.On the other hand, synthetic diamond has nitrogen It aggregates and precipitates on specific crystal faces in units of several hundred angstroms.

これは結晶の成長環境の差に基づくものである。This is based on the difference in the crystal growth environment.

が、本発明のIb型合成ダイヤモンドでは窒素を固溶し
ているため熱伝導の低下は少い。第二番1」の問題点と
しては、天然瞑石(Ilaのタイプ)より、ダイヤモン
ドヒートシンクを加工する際上記のような欠点があった
However, since the type Ib synthetic diamond of the present invention contains nitrogen as a solid solution, the decrease in thermal conductivity is small. The problem with No. 2 and 1 is that when processing a diamond heat sink, it has the above-mentioned drawbacks compared to natural stone (Ila type).

■面方位が良く判からす、研摩部(よく研摩出来る面)
を誤まることがある。
■Glass with good surface orientation, polished part (surface that can be polished well)
may be mistaken.

■ダイヤ面は、曲面が多く加工代が多く加工時間も掛か
る。
■The diamond surface has many curved surfaces and requires a lot of machining cost and time.

本発明では、結晶1/77が明確な人工合成ダイヤモン
ド(第6図d照)を用いることによってダイヤ結晶面の
面方位が簡114−に°rIJ別出来研摩面を1キ(ま
ることもない。さらに、結晶面が平面からなっている為
に、成長した状態の結晶面をそのまま使用することが可
能である。成長した状態の結晶面をそのまま利用した例
の幾つかを第7図に示す。ダイヤモンドヒートシンクは
、さらにこの上に、金等の金属をコーティングしなけれ
ばならない。普通ある程度の大きさに成長した結晶面は
、成長ステップが残っている場合が多い。やはりコーテ
ィングの際、大きなステップが残っているのは好ましく
ない。この大きなステップをなくすには、溶媒又は、炭
素源中にケイ素を添加すると殆んど研摩したと同一の滑
らかな結晶面が得られる。また、ケイ素を含んでいる場
合には、Ti 、 Cr等のイオンブレーティング、ス
パツタリングの際、Tiとケイ素等のケイ化物を作るた
めなのか、コーテイング膜の強度が上がる。しかし合成
ダイヤモンド中に含まれるケイ素の量は、1ooppM
以下が望ましい。
In the present invention, by using artificially synthesized diamond with a clear crystal grain size of 1/77 (see Fig. 6 d), the diamond crystal plane orientation can be easily 114-°rIJ, and the polished surface can be polished by 1° (no rounding). Since the crystal faces are flat, it is possible to use the grown crystal faces as they are. Figure 7 shows some examples of using the grown crystal faces as they are.Diamond A heat sink must be coated with a metal such as gold on top of this. Normally, crystal planes that have grown to a certain size often have growth steps remaining. After all, large steps remain during coating. To eliminate this large step, adding silicon to the solvent or carbon source will give a smooth crystal surface that is almost the same as polished surfaces. During ion blating and sputtering of Ti, Cr, etc., the strength of the coating film increases, probably due to the creation of silicides of Ti and silicon.However, the amount of silicon contained in synthetic diamond is 1ooppM.
The following are desirable.

に)発明の効果 」二連の本発明の如く、チッ素含有量が10〜100 
P I’ Mの人工に合成ダイヤモンド原石)型を用い
れば、熱伝導が高く (天然11aと等しい)バラツキ
の少ない高品質のエレクトロニクスデバイス用ヒートシ
ンクが得られる。又、天然112型より安価な人工合成
ダイヤ原石を用いさらに、天然ダイヤモンド原石に比較
して加工がし易すく加工代が少なく、しかも結晶面の一
部をそのまま加工なしで、ヒートシンクの一部として使
用出来ることにより安価なエレクトロニクスデバイス用
ヒートシンクカ本発明により供給出来る。上記のような
効果がある。
2) Effects of the invention As in the two series of the present invention, the nitrogen content is 10 to 100.
By using PI'M's synthetic diamond rough diamond type, a high-quality heat sink for electronic devices with high thermal conductivity (equivalent to natural 11a) and little variation can be obtained. In addition, we use artificially synthesized rough diamonds, which are cheaper than natural 112-type diamonds, and are easier to process and require less processing cost than natural rough diamonds.Moreover, we can use a part of the crystal face as it is without any processing, so it can be used as part of a heat sink. The present invention can provide an inexpensive heat sink for electronic devices. It has the same effect as above.

eつ 実施例 実施例1 第2図で示すような温度差法により、六−八面体からな
る0、4+jの合成ダイヤモンドを作った。
Examples Example 1 A 0,4+j synthetic diamond consisting of hex-octahedrons was produced by the temperature difference method as shown in FIG.

用いた溶媒は鉄、ニッケル合金、合成温度は、1450
°C1圧力は、5.6GP合成時間は、48時間であっ
た。赤外分光2:(で測定したチッ素含イf量は、48
PPMであった。この原石を用いて、レーサーで、0.
8mm厚にスライス状にカットした。このスライス状の
ダイヤモンドの両面を研摩し0.5[の厚みにしく10
0)面が、側面になるようにして、レーザーで1mm×
1ynmにカットした。さらにカノトシたダイヤの一面
を、45°の角度で而取りをし、酸処理した後イオンブ
レーティングで、T+ 、 Auをコーティングした。
The solvent used was iron and nickel alloy, and the synthesis temperature was 1450
°C1 pressure was 5.6 GP synthesis time was 48 hours. Infrared spectroscopy 2: (Nitrogen content f amount measured with
It was PPM. Using this rough stone, 0.
It was cut into slices with a thickness of 8 mm. Polish both sides of this sliced diamond to a thickness of 0.5 [10
0) With the surface facing the side, use a laser to cut 1mm x
It was cut to 1ynm. Furthermore, one side of the cut diamond was removed at a 45° angle, treated with acid, and then coated with T+ and Au using ion blating.

完成したヒートシンクの−1−に、半導体レーザーを取
り付は性能テストを行なった所、天然+1a型ヒートシ
ンクに取り(1けた場合と同一のN/8比が得られ、又
レーザー寿命も同一であった。
After performing a performance test by attaching a semiconductor laser to -1- of the completed heatsink, I installed it on a natural +1A type heatsink (the same N/8 ratio as in the case of a single digit was obtained, and the laser life was also the same). Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

図中1はダイヤモンド種結晶、2は溶媒、6は炭素源、
4は圧力媒体、5は加熱用ヒーター。 6は圧力媒体、7はMo等の円板を示す。第6図は、チ
ッ素濃度を横軸に、吸収係数をたて軸に取り、Ib型と
、Ia型の吸収係数とチッ素濃度との関係をそれぞれ示
す。第4図はチッ素濃度と成長速度の関係を示す。第5
図は、各温度(横軸)に対する■a(天然)とIb1)
内はチッ素含有量を示すIとIa (天然)型ダイヤモ
ンドの熱伝導率を示す。第6図は、一般的な人工合成ダ
イヤモンド単結晶の形を示す。第7図は、人工合成ダイ
ヤモンド原石からヒートシンクを作り出す時、結晶成長
面をそのまま、ヒートシンクの表面とする例を示す。 第1(2) 第2図 手続補正書(方式) 1.事件の表示 昭和58年特許願 第120475号 2、発明の名称 エレクトロニクスデバイス用ヒートシンク3、補正をす
る者 事件との関係 特許出願人 住 所 大阪市東区北浜5丁目15番地名称(213)
住友電気工業株式会社 社長 用上哲部 4、代理人 住 所 大阪市此花区島屋1丁目iBa号住友電気工業
株式会社内 6、補正の対象 明細書中、図面の簡単な説明の欄 7、補正の内容 明細書第11頁1行目14図面の簡単な説明」の下行に
「第1図は従来法によるダイヤモンド合成方法を示し、
第2181は本発明による合成方法」を挿入する。 手 続 補 正 書 1.事件の表示 昭和 58年 特許願 第 120475 号2、発明
の名称 エレクトロニクスデバイス用ヒートシンク3、補正をす
る者 社長用上哲部 4、代理人 6、補正により増加する発明の数 7、補正の対象 願書及び明細書中、発明の名称の欄及び、特許請求の範
囲の欄、及び図面。 8、補正の内容 (1)願書及び明細書中の発明の名称を「エレクトロニ
クスデバイス用ヒートシンクおよびその製造法」に訂正
する。 (2、特許請求の範囲を別紙の通り訂正する。 (3)図面(第5図)を別紙の通り訂正する。 (4)明細書第2頁第17行目「れる。通信用」を「れ
る通信用」と訂正する。 (5)同書第3頁の表1の中の条件の欄を下記に訂正す
る。 表 1 (6)回書第5頁の第17行目の「範囲ある」を[範囲
にある」と訂正する。 (7)同書第6頁第4行目の「10〜150PPMJを
「窒素含有量を5〜150PPMJと訂正する。 (8)′同書同頁箱17行目の「ことに同定した。」を
「ことで測定した。」と訂正する。 (9)同1寸第7頁第2行目から3行目のrlOPPM
〜+50PPMJを[5〜+50PPMJと訂正する。 (10)同書同頁第6行目r IOPPM −1100
PP Jを「5〜10100PPと訂正する。 (11)同書第7頁第9行目[10〜10100PPを
「5〜10100PPと訂正する。 (I2)同1■第9頁第9行[Iの次に下記を挿入する
。 「本願発明の別の特徴は面方位の判定しやすい人工合成
Ib型ダイヤモンドを用いることにより、最大面積をを
する加工面を(I0)面に容易に選ぶことができる。こ
の理由は表1に記載の通り(11G)面は削りよい面で
あり、この而の加工量を多くしたエレクトロニクスデバ
イス用ヒートシンクは、その加工費が安価であるためよ
り実用的である。 例えば第7図のDに示すヒートシンクでは最大面積を有
する平面部は(+10)面である。」(I3)同書第9
頁第11行目r 10− +00PPM Jを「5〜1
0100PPと訂正する。 特許請求の範囲 「(1)含有する窒素量が、5〜1100PPであるI
b型ダイヤモンド結晶を用いたことを特徴とするエレク
トロニクスデバイス用ヒートシンク。 (2)含有スル窒素m h< 、5〜1100PP 1
’あるIb型ダイヤモンド結晶を特定の結晶面で加工し
たことを特徴とするエレクトロニクスデバイス用ヒート
シンクの製造法。 (3)少なくとも一面に未加工の結晶成長面を残したこ
とを特徴とする特許請求の範囲第0項記載のエレクトロ
ニクスデバイス用ヒートシンクの製造法。 (4)加工された結晶面のうちで最大面積を有する結晶
面が(11G)面であることを特徴とする特許請求の範
囲第0項記載のエレクトロニクスデバイス用ヒートシン
クの製造法。」
In the figure, 1 is a diamond seed crystal, 2 is a solvent, 6 is a carbon source,
4 is a pressure medium, and 5 is a heating heater. 6 is a pressure medium, and 7 is a disk made of Mo or the like. FIG. 6 shows the relationship between the absorption coefficient and nitrogen concentration for type Ib and type Ia, with the horizontal axis representing the nitrogen concentration and the vertical axis representing the absorption coefficient. FIG. 4 shows the relationship between nitrogen concentration and growth rate. Fifth
The figure shows ■a (natural) and Ib1) for each temperature (horizontal axis)
The inside shows the thermal conductivity of I and Ia (natural) type diamonds, which show the nitrogen content. FIG. 6 shows the shape of a general artificially synthesized diamond single crystal. FIG. 7 shows an example in which when a heat sink is produced from an artificially synthesized diamond rough, the crystal growth surface is used as the surface of the heat sink. Part 1 (2) Figure 2 Procedural Amendment (Method) 1. Display of the case 1982 Patent Application No. 120475 2, Name of the invention Heat sink for electronic devices 3, Person making the amendment Relationship to the case Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (213)
President of Sumitomo Electric Industries, Ltd. Tetsube 4, Agent address: 6, Sumitomo Electric Industries, Ltd., IBa, 1-chome, Shimaya, Konohana-ku, Osaka, Column 7 for brief explanation of drawings in the specification subject to amendment, Amendment At the bottom of the detailed description of contents, page 11, line 1, 14, ``Brief explanation of the drawings'', it says ``Figure 1 shows a conventional diamond synthesis method.
No. 2181 inserts "Synthesis method according to the present invention". Procedural amendment 1. Display of the case 1982 Patent Application No. 120475 2, Name of the invention Heat sink for electronic devices 3, Person making the amendment 4, Representative 6, Number of inventions increased by the amendment 7, Application subject to the amendment and in the specification, the title of the invention column, the claims column, and the drawings. 8. Contents of the amendment (1) The name of the invention in the application and specification is corrected to "Heat sink for electronic devices and manufacturing method thereof." (2. The scope of the claims is corrected as shown in the attached sheet. (3) The drawing (Figure 5) is corrected as shown in the attached sheet. (4) On page 2, line 17 of the specification, "for communications" is changed to " (5) The condition column in Table 1 on page 3 of the same book is corrected as follows. Table 1 (6) “There is a range” in line 17 of page 5 of the circular. (7) Correct "10 to 150 PPMJ" in the fourth line of page 6 of the same book to "Nitrogen content is 5 to 150 PPMJ." (8) 'Correct the nitrogen content to 5 to 150 PPMJ.' Correct "Identified by" to "Measured by". (9) rlOPPM on page 7, lines 2 to 3,
Correct ~+50PPMJ to [5~+50PPMJ. (10) Same book, same page, line 6 r IOPPM -1100
PP J is corrected as ``5-10100PP. (11) Same book, page 7, line 9 [10-10100PP is corrected as ``5-10100PP. (I2) Same book, page 9, line 9 [I Next, insert the following: ``Another feature of the present invention is that by using artificially synthesized type Ib diamond whose surface orientation is easy to determine, it is possible to easily select the (I0) surface as the processed surface with the largest area. The reason for this is that, as shown in Table 1, the (11G) surface is a surface that can be easily machined, and heat sinks for electronic devices with a large amount of machining are more practical because the machining cost is low.For example: In the heat sink shown in Fig. 7D, the plane portion having the maximum area is the (+10) plane.'' (I3) Ibid. No. 9
Page 11th line r 10- +00PPM J to "5~1
Corrected to 0100PP. Claims: ``(1) I containing an amount of nitrogen of 5 to 1100 PP
A heat sink for electronic devices characterized by using b-type diamond crystal. (2) Containing sulfur nitrogen m h<, 5-1100PP 1
'A method for manufacturing a heat sink for electronic devices, characterized by processing a certain type Ib diamond crystal with a specific crystal plane. (3) The method for manufacturing a heat sink for an electronic device according to claim 0, wherein an unprocessed crystal growth surface is left on at least one surface. (4) The method for manufacturing a heat sink for an electronic device according to claim 0, wherein the crystal plane having the largest area among the processed crystal planes is the (11G) plane. ”

Claims (1)

【特許請求の範囲】[Claims] (1)含有する窒素量が、−〜1100PPであるIb
τQ) ダイヤモンド結晶の少なくとも一面に、未加工
の結晶成長面を残したことを特徴とする特許請求の範囲
第(1)項記載のエレクトロニクスデバイス用ヒートシ
ンク。
(1) Ib containing nitrogen amount is -~1100PP
τQ) The heat sink for an electronic device according to claim 1, wherein an unprocessed crystal growth surface is left on at least one surface of the diamond crystal.
JP58120475A 1983-07-01 1983-07-01 Heat sink for electronic device Granted JPS6012747A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58120475A JPS6012747A (en) 1983-07-01 1983-07-01 Heat sink for electronic device
US06/621,768 US4617181A (en) 1983-07-01 1984-06-18 Synthetic diamond heat sink
DE8484107115T DE3475275D1 (en) 1983-07-01 1984-06-20 Synthetic diamond heat sink
EP84107115A EP0136408B1 (en) 1983-07-01 1984-06-20 Synthetic diamond heat sink
CA000457494A CA1227726A (en) 1983-07-01 1984-06-26 Synthetic diamond heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58120475A JPS6012747A (en) 1983-07-01 1983-07-01 Heat sink for electronic device

Publications (2)

Publication Number Publication Date
JPS6012747A true JPS6012747A (en) 1985-01-23
JPH0310233B2 JPH0310233B2 (en) 1991-02-13

Family

ID=14787091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58120475A Granted JPS6012747A (en) 1983-07-01 1983-07-01 Heat sink for electronic device

Country Status (1)

Country Link
JP (1) JPS6012747A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296207A (en) * 1990-08-31 1994-03-22 Benno Lux Composite element, process for its preparation and its use
US5371383A (en) * 1993-05-14 1994-12-06 Kobe Steel Usa Inc. Highly oriented diamond film field-effect transistor
US5424561A (en) * 1993-05-14 1995-06-13 Kobe Steel Usa Inc. Magnetic sensor element using highly-oriented diamond film and magnetic detector
US5442199A (en) * 1993-05-14 1995-08-15 Kobe Steel Usa, Inc. Diamond hetero-junction rectifying element
US5491348A (en) * 1993-05-14 1996-02-13 Kobe Steel Usa, Inc. Highly-oriented diamond film field-effect transistor
US5493131A (en) * 1993-05-14 1996-02-20 Kobe Steel Usa, Inc. Diamond rectifying element
US5512873A (en) * 1993-05-04 1996-04-30 Saito; Kimitsugu Highly-oriented diamond film thermistor
US5523160A (en) * 1993-05-14 1996-06-04 Kobe Steel Usa, Inc. Highly-oriented diamond film
US7252795B2 (en) 2003-08-26 2007-08-07 Matsushita Electric Industrial Co., Ltd. High thermal conductivite element, method for manufacturing same, and heat radiating system
EP2468392A2 (en) 2003-10-10 2012-06-27 Sumitomo Electric Industries, Ltd. Diamond tool, synthetic single crystal diamond and method for synthesizing single crystal diamond, and diamond jewelry
US8698131B2 (en) 2009-03-26 2014-04-15 Seiko Epson Corporation Organic EL apparatus, method of manufacturing organic EL apparatus, electronic apparatus
CN108854850A (en) * 2018-07-12 2018-11-23 郑州华晶金刚石股份有限公司 A kind of synthesis technology of personalization gem grade diamond

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296207A (en) * 1990-08-31 1994-03-22 Benno Lux Composite element, process for its preparation and its use
US5512873A (en) * 1993-05-04 1996-04-30 Saito; Kimitsugu Highly-oriented diamond film thermistor
US5442199A (en) * 1993-05-14 1995-08-15 Kobe Steel Usa, Inc. Diamond hetero-junction rectifying element
US5424561A (en) * 1993-05-14 1995-06-13 Kobe Steel Usa Inc. Magnetic sensor element using highly-oriented diamond film and magnetic detector
US5491348A (en) * 1993-05-14 1996-02-13 Kobe Steel Usa, Inc. Highly-oriented diamond film field-effect transistor
US5493131A (en) * 1993-05-14 1996-02-20 Kobe Steel Usa, Inc. Diamond rectifying element
US5371383A (en) * 1993-05-14 1994-12-06 Kobe Steel Usa Inc. Highly oriented diamond film field-effect transistor
US5523160A (en) * 1993-05-14 1996-06-04 Kobe Steel Usa, Inc. Highly-oriented diamond film
US7252795B2 (en) 2003-08-26 2007-08-07 Matsushita Electric Industrial Co., Ltd. High thermal conductivite element, method for manufacturing same, and heat radiating system
US7402340B2 (en) 2003-08-26 2008-07-22 Matsushita Electric Industrial Co., Ltd. High thermal conductive element, method for manufacturing same, and heat radiating system
EP2468392A2 (en) 2003-10-10 2012-06-27 Sumitomo Electric Industries, Ltd. Diamond tool, synthetic single crystal diamond and method for synthesizing single crystal diamond, and diamond jewelry
US8698131B2 (en) 2009-03-26 2014-04-15 Seiko Epson Corporation Organic EL apparatus, method of manufacturing organic EL apparatus, electronic apparatus
CN108854850A (en) * 2018-07-12 2018-11-23 郑州华晶金刚石股份有限公司 A kind of synthesis technology of personalization gem grade diamond
CN108854850B (en) * 2018-07-12 2023-06-23 郑州华晶金刚石股份有限公司 Synthesis process of personalized precious stone grade diamond

Also Published As

Publication number Publication date
JPH0310233B2 (en) 1991-02-13

Similar Documents

Publication Publication Date Title
JPS6012747A (en) Heat sink for electronic device
US4617181A (en) Synthetic diamond heat sink
US4802895A (en) Composite diamond abrasive compact
JPS63216966A (en) Target for sputtering
JPS6080562A (en) Electrodeposited grinding wheel
CA2313438C (en) High quality optical surface and method of producing same
US20020139680A1 (en) Method of fabricating a monolayer abrasive tool
CN110468447A (en) The method of the silicon carbide substrates and chamfering of chamfering
JPS6325234A (en) Manufacture of cylindrical symmetric body having predetermined diameter direction slope of material properties and application thereof
US5551999A (en) Cyclic recovery heat treatment
TWI246173B (en) Diamond compound substrate and its manufacturing method
EP1690958A1 (en) Sputtering target material
JPS59229227A (en) Die using single crystal of synthetic diamond
JPS59124574A (en) Preparation of cutting edge
Andrade Part II.—The structure of metallic coatings. The crystallisation of thin metal films
JP2671397B2 (en) Target for magnetron sputtering
TW200523386A (en) Metallic resistance material, sputtering target, resistance thin flim, and method for making the resistance thin film
JPH07326553A (en) Diamond wafer and its manufacture
JPS60155600A (en) Heat sink for electronic device
JPS6294263A (en) Cutter blade and manufacture thereof
JPH0725033B2 (en) Hard composite powder abrasive
JPS5942916A (en) Method of processing single crystal
JP4661025B2 (en) Metal bond grindstone and manufacturing method thereof
JP2767897B2 (en) Method for producing composite diamond abrasive grains for precision polishing
JPS6016306A (en) Single crystal cutting tool of synthetic diamond