JPS60126872A - Semiconductor photodetector and manufacture thereof - Google Patents

Semiconductor photodetector and manufacture thereof

Info

Publication number
JPS60126872A
JPS60126872A JP58234529A JP23452983A JPS60126872A JP S60126872 A JPS60126872 A JP S60126872A JP 58234529 A JP58234529 A JP 58234529A JP 23452983 A JP23452983 A JP 23452983A JP S60126872 A JPS60126872 A JP S60126872A
Authority
JP
Japan
Prior art keywords
type
region
substrate
light
guard ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58234529A
Other languages
Japanese (ja)
Inventor
Kunihiro Tanigawa
谷川 邦広
Hirokazu Fukuda
福田 広和
Shigeki Hamashima
濱嶋 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58234529A priority Critical patent/JPS60126872A/en
Publication of JPS60126872A publication Critical patent/JPS60126872A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1032Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIBVI compounds, e.g. HgCdTe IR photodiodes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To give energy gap width optimum within a range of a wavelength of 1-30mum by forming an n type light-receiving region shaping a p-n junction to a p type mercury telluride cadmium base body and an n type guard ring region having small carrier concentration to the peripheral region of the n type light- receiving region. CONSTITUTION:An n type Hg1-xCdxTe single crystal substrate 1 is thermally treated, a Hg vacancy is formed, and the substrate is converted into a p type. A protective film 2 is shaped to the substrate 1, and a guard ring section is removed. Hg is diffused near the exposed surface of the substrate 1 through heat treatment, and an n type region 3 is formed and used as the guard ring. The protective film 2 is removed and a protective film 4 is formed newly, and a region of a light-receiving section is removed. An n<+> type light-receiving region 5 is shaped through heat treatment in nitrogen or an inert gas atmosphere. The protective film 4 is removed, a light-receiving section coating film 6 and a protective insulating film 7 are formed, and an n-side region 8 and a p-side electrode 9 are disposed by a gold group material.

Description

【発明の詳細な説明】 (at 発明の技術分野 本発明は半導体受光装置、特にテルル死水銀カドミウム
ン半導体材料として広い波長範囲の赤外線について優れ
た特性を有するアバランシエフオニ・トダイオードと、
テルル化水銀カドミウムの物性に即したその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a semiconductor light-receiving device, particularly an avalanche onion diode which has excellent characteristics in the infrared rays over a wide wavelength range as a tellurium-dead mercury-cadmium semiconductor material;
This invention relates to a method for producing mercury cadmium telluride in accordance with its physical properties.

(bl 技術の背景 赤外線領域の光半導体装置に適する材料としてテルル化
水銀カドミウム(Hg1−xCdxTe)が知られてい
る。この3元化合物において水銀およびカドミウムはテ
ルルと化合してあたかも1元素のように作用して擬似2
元素特性を示す。すなわち大きいエネルギギャップ幅(
Eg中1.6ev)’v有する半導体であるCdTeと
、負のエネルギギャップ幅(Eg二0.3 e V )
ン有する半金属であるHgTeとからなるHgx−xC
dxTeはCdTeのモル分率Xにほぼ比例するエネル
ギギャップ幅を有する。
(bl Technology background) Mercury cadmium telluride (Hg1-xCdxTe) is known as a material suitable for optical semiconductor devices in the infrared region.In this ternary compound, mercury and cadmium are combined with tellurium, as if they were one element. acting pseudo 2
Indicates elemental properties. That is, a large energy gap width (
CdTe is a semiconductor with a negative energy gap width (Eg20.3 e V)
Hgx-xC consisting of HgTe, a metalloid with
dxTe has an energy gap width approximately proportional to the mole fraction X of CdTe.

この特性によりて、前記モル分率xY選択して波長約1
乃至30〔μ展〕の範囲において任意の波長帯域の赤外
線を対象とする光半導体材料とすることができる。
Due to this characteristic, the mole fraction xY is selected and the wavelength is approximately 1
The optical semiconductor material can be used as a target for infrared rays in any wavelength band in the range of 30 μm to 30 μm.

fcl 従来技術と問題点 光信号’vt気信号に変換する場合に受光素子としてア
バランシェフォトダイオード(以下APII)&略称す
る)を用いることによってその信号対[−比乞大きくす
ることができる。すなわちAPDにおいては入射した光
によって形成されるキャリアを強電界で加速し、なだれ
降伏ン発生させることによって電流増倍が行なわれ、そ
の結果APDに続く増幅回路における信号対雑音比が改
善される。
fcl Prior Art and Problems When converting an optical signal into an optical signal, the signal can be significantly increased by using an avalanche photodiode (hereinafter referred to as APII) as a light receiving element. That is, in an APD, current multiplication is performed by accelerating carriers formed by incident light with a strong electric field to generate avalanche breakdown, and as a result, the signal-to-noise ratio in the amplifier circuit following the APD is improved.

HgCdTeY九半導体材料とするAPDとして、キャ
リア濃度が2 X 1015(m−3)程度であるP型
HgCdTe半導体基板に硼素(BIY 200 (K
 eV)程度でイオン注入してn十P接合を形成し、こ
れに保護絶縁膜及び電極乞配設する構造が既に知られて
いる。しかしながらこのようなAPDにおいては電極間
に逆バイアス電圧が印加される動作時にn+型領領域周
辺で局部的に高電界が形成さ第1てマイクロプラズマが
発生し、−洩れ電流が増加してAPD出力出力電信号対
雑音比が像下するなどの問題があり、HgCdTe系A
PDは未だ実用化されるには到っていない。
As an APD using HgCdTeY9 semiconductor material, boron (BIY 200 (K
A structure is already known in which an n0P junction is formed by ion implantation at a voltage of about eV), and a protective insulating film and electrodes are provided thereon. However, in such an APD, during operation when a reverse bias voltage is applied between the electrodes, a high electric field is locally formed around the n+ type region, firstly micro plasma is generated, and - leakage current increases, causing the APD to There are problems such as a lower output electric signal-to-noise ratio, and HgCdTe type A
PD has not yet been put into practical use.

従来知られているシリコン(Si)、ゲルマニウム(G
e )或いは砒化ガリウム(GaAs ) 、燐化イン
ジウム(InP)等の半導体材料ン用いてA、PD ’
f影形成る場合には、受光領域の周縁における高電界の
形成ケ防止するガードリング領域を受光領域と同様に例
えば不純物のイオン注入によって形成することが可能で
あって、これによってマイクロプラズマの生成や洩れ電
流の増加を防止している。
Conventionally known silicon (Si) and germanium (G)
e) Or A, PD' using semiconductor materials such as gallium arsenide (GaAs) and indium phosphide (InP).
In the case of f-shading, it is possible to form a guard ring region at the periphery of the light-receiving region to prevent the formation of a high electric field in the same manner as the light-receiving region, for example by implanting impurity ions, thereby preventing the generation of microplasma. This prevents leakage current from increasing.

しかるにHgCdTeにおいてはイオン注入の ドーズ
量を選択することによってそのキャリア濃度を制御する
ことは不可能である。すなわち例えばP型HgcdTe
単結晶にB+イオンを注入する際に、そのドーズ量ビI
o13乃至10” 〔cm−”)程度の範囲で変化させ
ても加熱処理後キャリア濃度が3乃至5 x 1018
(m ”)とほぼ一定値のnfiとなる。
However, in HgCdTe, it is impossible to control the carrier concentration by selecting the ion implantation dose. That is, for example, P-type HgcdTe
When implanting B+ ions into a single crystal, the dose amount BiI
Even if the carrier concentration is changed within the range of o13 to 10"[cm-"], the carrier concentration after heat treatment is 3 to 5 x 1018
(m''), which is an almost constant value nfi.

またドーズ量を1012〔α−勺程度とすれば導電型及
びキャリア濃度は変化しない。なおこれはイオン注入に
よって生ずる結晶欠陥によってキャリア濃度が決定され
るためであると考えられている。
Further, if the dose is set to approximately 1012 [α-1], the conductivity type and carrier concentration do not change. It is believed that this is because the carrier concentration is determined by crystal defects caused by ion implantation.

前記の如き事情からHgCdTe系APDにガードリン
グを設けるためには、先に述べた如き他の半導体材料と
は異なるこのIf g Cd T e に即した手段が
必をとなる。
Due to the above-mentioned circumstances, in order to provide a guard ring in the HgCdTe-based APD, it is necessary to use a means that is compatible with If g Cd Te, which is different from other semiconductor materials as described above.

(di 発明の目的 本発明は波長約1乃至30〔μm〕の範囲において最適
のエネルギギャップ幅が選択され、かつ良好な効果が得
られるガードリングを備えた半導体受光装置ケ提供する
ことを目的とする。
(di) Purpose of the Invention The purpose of the present invention is to provide a semiconductor light receiving device equipped with a guard ring that can select the optimum energy gap width in the wavelength range of about 1 to 30 [μm] and obtain good effects. do.

fel 発明の構成 本発明の前記目的は、p型テルル化水銀カドミウム基体
に形成され、該基体とpn接合を形成するn型受光領域
と、該n型受光領域の周縁に形成され、該n型受光領域
よりキャリア濃度が小なるn型ガードリング領域とを備
えてなる半導体受光装置により達成される。
fel Structure of the Invention The object of the present invention is to provide an n-type light-receiving region formed on a p-type mercury cadmium telluride substrate and forming a p-n junction with the substrate; This is achieved by a semiconductor light-receiving device comprising an n-type guard ring region whose carrier concentration is lower than that of the light-receiving region.

前記の半導体受光装置は、p型テルル化水銀カドミウム
基体に不純物イオンケ選択的に注入し、加熱処理7行な
ってn型受光領域を形成する工程と、水銀蒸気ン含む雰
囲気中において加熱処理を行ない、該基体に選択的に水
銀を導入する工程とン含み、該n型受光領域の周縁にn
型ガードリング領域を形成する製造方法により実現する
ことができる。
The semiconductor light receiving device described above includes the steps of selectively implanting impurity ions into a p-type mercury cadmium telluride substrate, performing seven heat treatments to form an n-type light receiving region, and performing heat treatment in an atmosphere containing mercury vapor. a step of selectively introducing mercury into the substrate, and a step of selectively introducing mercury into the substrate;
This can be realized by a manufacturing method that forms a mold guard ring region.

濃度i x 1016(cm 3)以下でかつゆるやか
に遷移する接合ンもってp展テルル化水銀カドミウム半
導体基体に形成されて、これに囲まれて受光部となるキ
ャリア濃度が1x 1o” 8(c++rJ以上の前記
第1のn型領域に対して、良好なガードリング効果が得
られる。
It is formed in a p-extended mercury cadmium telluride semiconductor substrate with a junction that transitions slowly at a concentration of ix 1016 (cm 3) or less, and is surrounded by a carrier concentration of 1x 1o" 8 (c++rJ or more), which becomes a light receiving part. A good guard ring effect can be obtained for the first n-type region.

(fl 発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。
(fl Embodiments of the Invention The present invention will be specifically described below by way of embodiments with reference to the drawings.

第1図fa)乃至(d)は本発明の第1の実施例につい
て、その主要製造工程における状態を示す断面図である
FIGS. 1fa) to 1(d) are cross-sectional views showing the main manufacturing steps of the first embodiment of the present invention.

第1図(a)参照 本実施例においてはキャリア濃度5 x 10”j:a
m−3程度のn型Hg1−xCdxTe単結晶基板1を
用いる。
Refer to FIG. 1(a) In this example, the carrier concentration is 5 x 10"j:a
An n-type Hg1-xCdxTe single crystal substrate 1 of about m-3 size is used.

本実施例は最高感度波長を約1.55Cμm〕とするた
めにモル分率XY約067として固体再結晶法によって
成長させた単結晶によってこの基板1を形成している。
In this embodiment, the substrate 1 is formed of a single crystal grown by a solid-state recrystallization method with a mole fraction of XY of approximately 067 in order to have a maximum sensitivity wavelength of approximately 1.55 C .mu.m.

前記n型1:i gCd T e基板1に温度約450
℃において、時間100時間程度の加熱処理ン実施する
ことによって、基板1全体にHg空空格子化生成しめて
キャリアauf2 X 1 o”5(Cm ’ )程度
ノル型に変換する。
The temperature of the n-type 1: i gCd T e substrate 1 is about 450.
By carrying out a heat treatment at a temperature of about 100 hours, Hg vacancies are generated in the entire substrate 1, and carriers auf2 X 1 o''5 (Cm') are converted into a Nor-type carrier.

第1図fb)参照 p型に変換され7HgCdTe基板1上に例えば、硫化
亜鉛(ZnS)Y用いて保護膜2Z形成し、ガードリン
グを形成する領域の保護膜2’に選択的に除去する。
Refer to FIG. 1fb) A protective film 2Z is formed using, for example, zinc sulfide (ZnS)Y on the 7HgCdTe substrate 1 which has been converted to p-type, and is selectively removed from the protective film 2' in the region where the guard ring is to be formed.

次いで温度約200 (’O)の飽和HgA気雰気気囲
気中時間の加熱処理ケ行ない、HgCdTe基板1の表
出面の近傍にHgYg散させて、キャリア濃度が5×1
015〔cIrL−3〕程度からゆるやかに減少するn
型領域3を形成してガードリングとする。
Next, heat treatment is performed for a period of time in a saturated HgA atmosphere at a temperature of about 200 ('O) to scatter HgYg near the exposed surface of the HgCdTe substrate 1, so that the carrier concentration is 5×1.
n gradually decreases from about 015 [cIrL-3]
A mold region 3 is formed to serve as a guard ring.

n影領域の深さは約5μmである。The depth of the n shadow area is approximately 5 μm.

第1図fcl参照 前記保護膜2を除去して新しく保護膜4を形成し、受光
部を形成する領域の保護膜4ン選択的に除去する。
Refer to FIG. 1fcl. The protective film 2 is removed, a new protective film 4 is formed, and the protective film 4 is selectively removed in the region where the light receiving section is to be formed.

例えば硼素fB)イオンをエネルギー200 (KcV
:]程度においてドーズ−1111×1013乃至1×
1015〔crn−2〕程度に注入し、窒素(N2)或
いは不活性ガス雰囲気中で温度約200〔“0〕、時間
10乃至20分間程度の加熱処理2行なう。この結果光
に述べた如く接合の深さ約1〜2〔μm〕、ギヤリア濃
度3乃至5 X 10”’ (cnt−3)程[(7)
 n十型受光領域5が形成される。
For example, a boron fB) ion with an energy of 200 (KcV
: ] Dose -1111×1013 to 1×
1015 [crn-2], and heat treatment 2 is performed in a nitrogen (N2) or inert gas atmosphere at a temperature of about 200 ["0] for about 10 to 20 minutes. As a result, the bonding is completed as described in the photo. depth of about 1 to 2 [μm], gearia concentration of about 3 to 5 × 10'' (cnt-3) [(7)
An n-type light receiving region 5 is formed.

第1図fd)参照 前記保@膜りン除去し、例えばZnSによって受光部コ
ーテイング膜6及び保護絶縁膜7乞設け、金(Au)系
材料によってn1illl電極8及びn側電極9を配設
する。
Refer to Fig. 1 fd) The above-mentioned protective film is removed, and a light receiving part coating film 6 and a protective insulating film 7 are provided using, for example, ZnS, and an n1ill electrode 8 and an n-side electrode 9 are provided using a gold (Au)-based material. .

以上説明した製造方法によって本実施例のHgCdTe
APDg子が完成する。なお前記実施例においては先に
ガードリング部を形成し次いで受光部のn″−製領域5
ン形成しているが、この工程順を入換えてカードリング
部を後に形成してもよい。
The HgCdTe of this example was produced by the manufacturing method explained above.
APD g child is completed. In the above embodiment, the guard ring portion is first formed, and then the n″-made region 5 of the light receiving portion is formed.
However, the order of these steps may be changed to form the card ring portion later.

また前記実施例においてガードリングとするn型領域3
を形成して保護膜2を除去した後に、第2図に示す如く
、コーテイング膜及び保護絶縁膜とするZnS 膜10
を形成し、znSnS膜上0上けたレジスト膜11に開
口を設けてB+イオン注入7行ない、加熱処理後にZn
S膜10に開口を設けてn側電極娑配設し、更にp側電
極を設ける製造方法によっても、第1図(d)に示した
構造のH,gCdTeAPDY製造することができる。
In addition, in the above embodiment, the n-type region 3 serving as a guard ring
After forming the protective film 2 and removing the protective film 2, as shown in FIG.
was formed, an opening was formed in the resist film 11 overlying the ZnSnS film, seven B+ ions were implanted, and after heat treatment, Zn
H,gCdTeAPDY having the structure shown in FIG. 1(d) can also be manufactured by a manufacturing method in which an opening is provided in the S film 10, an n-side electrode is provided, and a p-side electrode is further provided.

更に第3図は本発明の他の実施例を示す断面図である。Furthermore, FIG. 3 is a sectional view showing another embodiment of the present invention.

本実施例においては半絶縁性テルル化カドミウム(Cd
Te)基板21上に液相エピタキシャル成長方法等によ
ってp型Hg1−xCdxTe層22Te率ば厚さ10
〔μm)程度に成長して、このp型)igl−xCdx
Te層22Te率発明により前記実施例と同様にガード
リングとするnm領域23及び受光部のn十型領域25
’!’形成する。次いで絶縁膜27′P!r:形成した
後に、受光部全面を被覆するn側電極28と、その外側
のp型HgCdTe層22上にp側電極29を配設する
In this example, semi-insulating cadmium telluride (Cd
Te) A p-type Hg1-xCdxTe layer 22Te with a thickness of 10
[μm], this p-type)igl-xCdx
Te layer 22 Te layer 22 According to the invention, a nm region 23 serving as a guard ring and an n-type region 25 of a light receiving part are formed as in the previous embodiment.
'! 'Form. Next, the insulating film 27'P! r: After forming, a p-side electrode 29 is provided on the n-side electrode 28 covering the entire surface of the light receiving part and the p-type HgCdTe layer 22 on the outside thereof.

本実施例において基板21に用いたCdTeはそのエネ
ルギギャップ幅が先に述べた如<HgCdTeより太き
(、HgCdTe層によって吸収される光に対しては透
明であり、入射光YCdTe基板21側より入射させて
n側電極2 B Y n+型領領域25全面に設けるこ
とが可能である。
The CdTe used for the substrate 21 in this example has an energy gap width that is wider than that of HgCdTe (as described above), and is transparent to the light absorbed by the HgCdTe layer, so that the incident light is closer to the YCdTe substrate 21 side. It is possible to make the light incident and provide the n-side electrode 2 B Y on the entire surface of the n+ type region 25 .

以上説明した本発明の実施例はその最高感度波長は1.
55Cμm〕であり、なだれ降伏電圧は50乃至eoM
程度である。なお本発明の製造方法によってガードリン
グ部のみを形成した試料については、100Iv1以上
の耐圧が得られている。
The embodiment of the present invention described above has a maximum sensitivity wavelength of 1.
55 Cμm], and the avalanche breakdown voltage is 50 to eoM
That's about it. Note that for a sample in which only the guard ring portion was formed by the manufacturing method of the present invention, a withstand voltage of 100 Iv1 or more was obtained.

本実施例のAPDになだれ降伏電圧の90チの逆バイア
ス電圧を印加するときの洩れ電流は1×10 ’ (A
At)程度以下であって従来例より大幅に減少している
。また量子効率は70(イ)程度、電流増倍率は約30
が得られている。
When a reverse bias voltage of 90 degrees, which is the avalanche breakdown voltage, is applied to the APD of this example, the leakage current is 1×10' (A
At) or less, which is significantly reduced compared to the conventional example. In addition, the quantum efficiency is about 70 (a), and the current multiplication factor is about 30.
is obtained.

fgl 発明の詳細 な説明した如く本発明によって、l(gl−xCdxT
eの物性が半導体受光装置に活用されて優れた特性娶有
するアバランシェフォトダイオードY提供することがで
き、波長1〔μm〕乃至30〔μm〕程度の広い赤外線
領域内の任意の波長帯域についての半導体受光装置の要
求ン満たすことが可能となる。
fgl As described in detail, according to the present invention, l(gl-xCdxT
The physical properties of e can be utilized in a semiconductor photodetector to provide an avalanche photodiode with excellent characteristics, and the semiconductor can be used for any wavelength band within the wide infrared region of about 1 [μm] to 30 [μm] wavelength. It becomes possible to meet the requirements of the light receiving device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(at乃至(dlは本発明の実施例を示す断面図
、第2図は前記実施例とは異なる製造方法を示す断面図
、第3図は他の実施例を示す断面図である。 図において、1はHgt xCdxTe基板、3及び2
3はn型ガードリング領域、5及び25は県警受光領域
、6はコーティング族、7及び27は絶縁膜、8及び2
8はn側電極、9及び29はp側電極、10はZnS膜
、21は半絶縁性CdTe基板、22はHg1−xCd
xTe成長層を示す。 閂 代理人 弁理士 松 岡 宏四部1− ビ 茅 1 図
FIG. 1 (at to (dl) is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view showing a manufacturing method different from the above embodiment, and FIG. 3 is a sectional view showing another embodiment. In the figure, 1 is a HgtxCdxTe substrate, 3 and 2
3 is an n-type guard ring region, 5 and 25 are prefectural police light receiving regions, 6 is a coating group, 7 and 27 are insulating films, 8 and 2
8 is an n-side electrode, 9 and 29 are p-side electrodes, 10 is a ZnS film, 21 is a semi-insulating CdTe substrate, 22 is Hg1-xCd
The xTe growth layer is shown. Barrel Agent Patent Attorney Hiroshi Matsuoka 1-Bi Kaya 1 Diagram

Claims (1)

【特許請求の範囲】[Claims] (1)P型テルル化水銀カドミウム基体に形成され、該
基体とPN接合を形成するn型受光領域と、該n型受光
領域の周縁に形成され、該n型受光領域よりキャリア濃
度が小なるn型ガードリング領域とを備えてなることを
特徴とする半導体受光装置。 (21PWiテルル化水銀カドミウム基体に不純物イオ
ンを選択的に注入し、加熱処理ン行なってn型受光領域
を形成する工程と、水銀蒸気を含む雰囲気中において加
熱処理を行ない、該基体に選択的に水銀ン導入する工程
と7含み、該n型受光領域の周縁にn型ガードリング領
域を形成することン特徴とする半導体受光装置の製造方
法。
(1) An n-type light-receiving region formed on a P-type mercury cadmium telluride substrate and forming a PN junction with the substrate, and an n-type light-receiving region formed at the periphery of the n-type light-receiving region and having a lower carrier concentration than the n-type light-receiving region. 1. A semiconductor light receiving device comprising: an n-type guard ring region. (A process of selectively implanting impurity ions into a 21PWi mercury cadmium telluride substrate and performing a heat treatment to form an n-type light-receiving region; and a step of selectively implanting impurity ions into the substrate by performing a heat treatment in an atmosphere containing mercury vapor. 7. A method for manufacturing a semiconductor light receiving device, comprising a step of introducing mercury, and forming an n-type guard ring region around the periphery of the n-type light receiving region.
JP58234529A 1983-12-13 1983-12-13 Semiconductor photodetector and manufacture thereof Pending JPS60126872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58234529A JPS60126872A (en) 1983-12-13 1983-12-13 Semiconductor photodetector and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234529A JPS60126872A (en) 1983-12-13 1983-12-13 Semiconductor photodetector and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60126872A true JPS60126872A (en) 1985-07-06

Family

ID=16972451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234529A Pending JPS60126872A (en) 1983-12-13 1983-12-13 Semiconductor photodetector and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60126872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143279A (en) * 1988-09-30 1991-06-18 Rockwell Internatl Corp Piezoelectric actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143279A (en) * 1988-09-30 1991-06-18 Rockwell Internatl Corp Piezoelectric actuator

Similar Documents

Publication Publication Date Title
US3508126A (en) Semiconductor photodiode with p-n junction spaced from heterojunction
US4127932A (en) Method of fabricating silicon photodiodes
US4984032A (en) Semiconductor photodiode
US4141756A (en) Method of making a gap UV photodiode by multiple ion-implantations
JPH0338887A (en) Semiconductor photodetector
US5599733A (en) Method using cadmium-rich CdTe for lowering the metal vacancy concentrations of HgCdTe surfaces
US4034396A (en) Light sensor having good sensitivity to visible light
Olsen Low-leakage, high-efficiency, reliable VPE InGaAs 1.0-1.7 µm photodiodes
JPS63955B2 (en)
US8263966B2 (en) Photodetector and method for manufacturing photodetector
JPS6155791B2 (en)
JPS60126872A (en) Semiconductor photodetector and manufacture thereof
US5804463A (en) Noble metal diffusion doping of mercury cadmium telluride for use in infrared detectors
JPS5938748B2 (en) semiconductor photodetector
US5004698A (en) Method of making photodetector with P layer covered by N layer
JPS61101084A (en) Manufacture of compound semiconductor light-receiving element
Melchior et al. Epitaxial silicon n+-p-π-p+ avalanche photodiodes for optical fiber communications at 800 to 900 nanometers
JPS6180875A (en) Semiconductor device
JPS59149070A (en) Photodetector
JPH01309387A (en) Semiconductor photodetecting element
JPS5921195B2 (en) Visible light receiving element and its manufacturing method
JPS5928071B2 (en) Light receiving element
JPS60178674A (en) Manufacture of avalanche photo diode
JPS60173882A (en) Semiconductor device
JPH0559590B2 (en)