JPS60126859A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60126859A
JPS60126859A JP58234241A JP23424183A JPS60126859A JP S60126859 A JPS60126859 A JP S60126859A JP 58234241 A JP58234241 A JP 58234241A JP 23424183 A JP23424183 A JP 23424183A JP S60126859 A JPS60126859 A JP S60126859A
Authority
JP
Japan
Prior art keywords
film
well
region
type
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58234241A
Other languages
Japanese (ja)
Other versions
JPH0714060B2 (en
Inventor
Katsutada Horiuchi
勝忠 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58234241A priority Critical patent/JPH0714060B2/en
Publication of JPS60126859A publication Critical patent/JPS60126859A/en
Publication of JPH0714060B2 publication Critical patent/JPH0714060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Non-Volatile Memory (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To reduce the areas of each diffusion region, to which the same potential must be applied, and to fine the device by making two regions having mutually reverse conduction types adjoin together in a surface section and directly coating adjacent section with a metallic film. CONSTITUTION:A p type well 2, an n type well 12, element isolation insulating films 3, gate oxide films 7, gate electrodes 8, gate protective insulating films 15 and phosphorus added Si oxide films 16 are formed on an Si substrate 1', and arsenic ions are implatned to the well 2 and boron ions to the well 12. An Si nitride film 17 and an Si thin-film 18 are deposited, and the surface is etched vertically. Phosphorus is implanted to the well 12 and boron to the well 2 to form a p type high-concentration diffusion region 4 and an n type high-concentration diffusion region 19. An Al film is evaporated on the whole surface, and the whole is processed up to desired constitution. Both the p type high-concentration region 4 and an n type source diffusion region 5 and both a p type source diffusion region 14 and the n type high-concentration region 19 are connected in the surface at that time.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置に係り、特にウェル内トランジスタ
のゲート電極との関係で自己整合的にウェル接地電極を
構成し得る超微細相補型絶縁ゲート電界効果トランジス
タ、又はウェルを用いる超微細不揮発性メモリトランジ
スタ等に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a semiconductor device, and in particular to an ultra-fine complementary insulated gate electric field capable of forming a well ground electrode in a self-aligned manner in relation to a gate electrode of an in-well transistor. The present invention relates to effect transistors or ultrafine nonvolatile memory transistors using wells.

〔発明の背景〕[Background of the invention]

一従来の相補型絶縁ゲート電界効果トランジスタ(以降
CMQS )−ランジスタと称する。)におけるウェル
内にはウェル接地電極を取出す為のウェルと同一導電型
高濃度拡散領域とウェル内トランジスタのソース・ドレ
インを構成するウェルと反対導電型拡散領域が各々独立
に形成されていた。すなわち、第1図は従来のCにOS
トランジスタの部分を示す断面図で、■はnlシリコン
基板、2はP型のウェル領域である。ウェル2内には素
子分離用の厚いフィルド酸化膜3をマスクにして形成し
たp型窩濃厚不純物拡散領域4.及びn型高不純物拡散
領域で構成されるトランジスタのソース領域5及びドレ
イン領域6が形成されている。ソース拡散領域5及びド
レイン拡散領域6はゲート酸化膜7及びゲート電極8を
マスクして形成される。
One conventional complementary insulated gate field effect transistor (hereinafter referred to as CMQS) - transistor. ), a high concentration diffusion region of the same conductivity type as the well for taking out the well ground electrode, and a diffusion region of the opposite conductivity type to the well constituting the source/drain of the transistor in the well were independently formed. In other words, Figure 1 shows the conventional C OS
In the cross-sectional view showing the transistor part, ■ is an Nl silicon substrate, and 2 is a P-type well region. In the well 2, a p-type cavity dense impurity diffusion region 4 is formed using a thick filled oxide film 3 for element isolation as a mask. A source region 5 and a drain region 6 of the transistor are formed of n-type high impurity diffusion regions. Source diffusion region 5 and drain diffusion region 6 are formed by masking gate oxide film 7 and gate electrode 8.

9は表面安定化絶縁膜である。p耐高濃度不純物拡散領
域4、及びn型ソース拡散領域5は金属電極10により
接続され接地電位に固定される。ドレイン拡散領域6は
CMOSトランジスタを構成するPチャネル型トランジ
スタのドレイン拡散層と金属電極11により接続され、
CMOSトランジスタのと 出力端ちなっている。第1図の部分断面図で示されるご
とき従来構造の側OSトランジスタに於てはウェル電位
を与える拡散領域4はソース拡散領域5とはまったく独
立に構成されていた。すなわち、ウェル電位を与えるP
型窩不純物濃度拡散領域4の形成にはn型ソース領域5
との分離の為のフィルド酸化膜3領域の存在が不可欠で
あり、微細化上の欠点となっていた。ウェル電位を与え
る高濃度拡散領域4の構成数を減ずれば(例えば、1ウ
エル内の各トランジスタ毎に設けていた高濃度拡散領域
4を1ウェル一つの高濃度拡散領域で置き替えてしまう
等の処置。)微細化上の欠点は軽減される。しかしなが
らこの場合はウェル2内におけるトランジスタの構成位
置によってp型拡散領域4からの距離が異なる為、ウェ
ル抵抗の影響により各トランジスタの閾電圧値が異なる
欠点が生じた。
9 is a surface stabilizing insulating film. The p-resistant high concentration impurity diffusion region 4 and the n-type source diffusion region 5 are connected by a metal electrode 10 and fixed to the ground potential. The drain diffusion region 6 is connected to the drain diffusion layer of a P-channel transistor constituting a CMOS transistor by a metal electrode 11.
The output terminal is the same as that of a CMOS transistor. In the side OS transistor of the conventional structure as shown in the partial cross-sectional view of FIG. 1, the diffusion region 4 providing the well potential was constructed completely independently of the source diffusion region 5. That is, P giving the well potential
The n-type source region 5 is used to form the mold cavity impurity concentration diffusion region 4.
The presence of the filled oxide film 3 region for isolation from the oxide film is essential, and this has been a drawback in terms of miniaturization. By reducing the number of high-concentration diffusion regions 4 that provide well potential (for example, replacing the high-concentration diffusion region 4 provided for each transistor in one well with one high-concentration diffusion region per well). ) The disadvantages of miniaturization are alleviated. However, in this case, since the distance from the p-type diffusion region 4 differs depending on the configuration position of the transistor in the well 2, a drawback arises in that the threshold voltage value of each transistor differs due to the influence of the well resistance.

従来構造に於ける他の欠点はp型拡散領域4およびn型
ソース拡散領域5には同一電位(接地、電位)を与える
にもかかわらず各々の拡散領域に別個に開孔を施し、配
線電極で接続することに基づく。すなゎふ所望箇所、2
各開孔を設it 6 A L:: 4よ位置ずれの予裕
を確保する必要があり、面積の増大をもたらす。さらに
開孔面積を縮小して面積低減良 を指向すれば開孔加工下止が増大し、接続不良確率が増
加する欠点をも生じた。
Another drawback of the conventional structure is that although the same potential (ground, potential) is applied to the p-type diffusion region 4 and the n-type source diffusion region 5, holes are made separately in each diffusion region, and the wiring electrode Based on connecting with. Sunawafu desired location, 2
When each opening is provided, it is necessary to ensure a margin for positional deviation, which results in an increase in area. Furthermore, if the area of the opening is reduced to aim for a reduction in area, the number of holes required to process the hole increases, resulting in an increase in the probability of connection failure.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述した従来技術の欠点を解消すること
であり、ウェル内で相異なる導電型を有し、かつ同一電
位が与えられるべき各拡散領域が占有する面積を飛躍的
に減することにある。更に本発明は電極接続開孔の個数
、及びその合せ予裕をも占めた占有面積をも減少させ、
CMOSトランジスタ等の超微細化に最適な構造を提供
することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to dramatically reduce the area occupied by each diffusion region within a well that has different conductivity types and is to be given the same potential. It is in. Furthermore, the present invention reduces the number of electrode connection holes and the area occupied by the combined allowance.
The purpose of this invention is to provide an optimal structure for ultra-miniaturization of CMOS transistors and the like.

〔発明の概要〕[Summary of the invention]

上記目的を達成する為に本発明はウェル電位を与えるウ
ェルと同一導電型拡散領域4をウェル内トランジスタの
ソース拡散領域5と自己整合の関係で構成するものであ
る。すなわち従来公知の自己整合ゲートトランジスタと
はゲート電極8端に対してソース拡散領域5及びドレイ
ン拡散領域6を自己整合の関係に構成するものであった
が本発明においてはウェル電位を与える拡散領域4もゲ
ート電極8端と自己整合の関係で構成するものである。
In order to achieve the above object, the present invention configures a diffusion region 4 of the same conductivity type as a well that provides a well potential in a self-aligned relationship with a source diffusion region 5 of a transistor in the well. That is, a conventionally known self-aligned gate transistor is one in which a source diffusion region 5 and a drain diffusion region 6 are configured in a self-aligned relationship with respect to an end of a gate electrode 8. However, in the present invention, a diffusion region 4 that provides a well potential is constructed. It is also constructed in a self-aligned relationship with the end of the gate electrode 8.

すなわち、ゲート電極8上に設けられた絶縁膜厚分だけ
ゲート電極8から離れて拡散領域4が形成される。上記
、自己整合構造の実現の為に本発明に於いてはゲート電
極、及びその側壁絶縁膜の形成の後、シリコン窒化膜等
の拡散阻止膜を上記側壁絶縁膜に対して自己整合的にか
つ選択的に残置させる。上記、拡散阻止膜の選択的残置
は拡散阻止膜上に堆積するシリコン等の薄膜゛の膜厚の
制御、及びその異方性エツチング量の制御によりゲート
電極及びゲート側壁絶縁膜の側壁部に残置されるシリコ
ン等の薄膜膜厚を制御すればよい。すなわち上記残置シ
リコン薄膜をマスクにして加工すれば拡散阻止膜をゲー
ト電極と自己整合的に8選択残置できる。
That is, the diffusion region 4 is formed apart from the gate electrode 8 by the thickness of the insulating film provided on the gate electrode 8. In order to realize the self-aligned structure described above, in the present invention, after forming the gate electrode and its sidewall insulating film, a diffusion blocking film such as a silicon nitride film is applied in a self-aligned manner to the sidewall insulating film. Leave it on selectively. The above-mentioned selective leaving of the diffusion blocking film is achieved by controlling the thickness of the thin film of silicon or the like deposited on the diffusion blocking film and by controlling the amount of anisotropic etching. What is necessary is to control the thickness of the thin film of silicon or the like. That is, by processing using the remaining silicon thin film as a mask, eight selective diffusion prevention films can be left in self-alignment with the gate electrode.

上記の拡散阻止膜の選択残置前後に各々の拡散領域4及
び5を形成するガスは、選択残置した拡散阻止膜の除去
前後に各々の拡散領域4及び5を形成すればウェル電位
を与するべき拡散領域4もゲート電極8と自己整合的に
形成される。上記。
The gas that forms each of the diffusion regions 4 and 5 before and after selectively leaving the diffusion prevention film described above should give a well potential if each of the diffusion regions 4 and 5 is formed before and after removing the selectively left diffusion prevention film. Diffusion region 4 is also formed in self-alignment with gate electrode 8. the above.

相異なる導電型を有する二つの拡散領域の形成の後、各
々の拡散領域表面に直接金属配線を施すか、名は各拡散
領域表面をシリサイド化し、電気的に接続すればよい。
After forming two diffusion regions having different conductivity types, metal wiring may be directly provided on the surface of each diffusion region, or the surface of each diffusion region may be silicided to electrically connect them.

本発明の構成においては相異なる導電型を有する二つの
拡散領域4及び5が互いに接する構成となるがCMOS
トランジスタのごとく、両者に等電位を与える半導体装
置の場合には何ら障害は生じない。また相異なる導電型
を有する拡散層の形成に於いて、一方の拡散層の形成は
他方の拡散層形成領域を補償、又は消滅させる方向に作
用するが各拡散層を形成する不純物の拡散係数の違い、
及び不純物イオン打込みの打込みエネルギ条件を考慮に
入れて不純物材料の選定と製造条件を設定すれば問題は
生じない。
In the structure of the present invention, two diffusion regions 4 and 5 having different conductivity types are in contact with each other, but CMOS
In the case of a semiconductor device, such as a transistor, in which an equal potential is applied to both sides, no trouble occurs. Furthermore, when forming diffusion layers having different conductivity types, the formation of one diffusion layer acts in the direction of compensating or eliminating the other diffusion layer formation region, but the diffusion coefficient of the impurity forming each diffusion layer difference,
No problem will arise if the impurity material selection and manufacturing conditions are set taking into consideration the implantation energy conditions for impurity ion implantation.

以下本発明を実施例によってさらに詳細に説明する。説
明の都合上、図面をもって説明するが要部が拡大して示
されているので注意を要する。
The present invention will be explained in more detail below using examples. For convenience of explanation, the explanation will be made using drawings, but please note that important parts are shown enlarged.

〔発明の実施例〕[Embodiments of the invention]

実施例1 第2図乃至第4図は本発明による半導体装置の一実施例
を示した図で、真性に近い高抵抗シリコン基板1′に公
知技術を用いてp型ウェル領域2、n型ウェル領域12
、及び素子分離絶縁膜3を形成した。素子分離絶縁膜3
は埋込み絶縁膜法により形成したが通常の選択酸化法(
LOCO5法)に基づくものであってもよい。ウェル領
域2,12等の形成後、公知のMOSトランジスタ製造
方法に従って15nm厚のゲート酸化膜7、タングステ
ン(W)によるゲート電極8、及び燐がわずかにソ 添加されたシやコン酸化膜からなるゲート保護絶縁膜1
5を形成した。ゲート保護絶縁膜15はゲート電極8の
蝕刻時に同一マスクにより同時−に加工した。ゲート電
極8の加工後、燐がわずかに添加されたシリコン酸化膜
16を0.2μmの厚さで全面に堆積させた。続いて反
応性スパッタエツチングによりシリコン基板表面と垂直
方向にエツチングを進行させ、平坦部に堆積されたシリ
コン酸化堆積膜を除去するとゲiト電極8の側壁部にの
みシリコン酸化堆積膜16が残置された。次にn型ウェ
ル領域12上をフォトレジスト膜で覆い、p型ウェル領
域2にのみ砒素(Aa)をイオン打込みにより注入した
。上記注入はゲート酸化膜7を介して行なわれたがゲー
ト電極8はイオン打込みに対するマスクとなり、その直
下のシリコン基板部にはAsイオンは注入されない。上
記イオン打込みの後、フォトレジスト膜を除去し、活性
化熱処理を施してn型のソース拡散層領域5.及びドレ
イン拡散層領域6が形成された。硼素(B)のイオン打
込による同様な製法によりn型ウェル領域12内にP型
のソース拡散層領域14、及びドレイン拡散層領域13
を形成した。しかる後、0.15μm厚のシリコン窒化
膜(Si、N4)17、及び0.3μm厚のシリコン薄
膜18を連続して全面に堆積させた(第2図)。
Embodiment 1 FIGS. 2 to 4 are diagrams showing an embodiment of a semiconductor device according to the present invention, in which a p-type well region 2, an n-type well region 2 and an n-type well Area 12
, and an element isolation insulating film 3 were formed. Element isolation insulating film 3
was formed by the buried insulating film method, but the conventional selective oxidation method (
It may be based on the LOCO5 method). After forming well regions 2, 12, etc., a gate oxide film 7 with a thickness of 15 nm, a gate electrode 8 made of tungsten (W), and a silicon oxide film doped with a slight amount of phosphorous are formed according to a known MOS transistor manufacturing method. Gate protection insulating film 1
5 was formed. The gate protection insulating film 15 was processed simultaneously with the etching of the gate electrode 8 using the same mask. After processing the gate electrode 8, a silicon oxide film 16 slightly doped with phosphorus was deposited on the entire surface to a thickness of 0.2 μm. Subsequently, reactive sputter etching is performed to advance the etching in a direction perpendicular to the surface of the silicon substrate to remove the silicon oxide deposited film deposited on the flat areas, leaving the silicon oxide deposited film 16 only on the side walls of the gate electrode 8. Ta. Next, the n-type well region 12 was covered with a photoresist film, and arsenic (Aa) was implanted only into the p-type well region 2 by ion implantation. Although the above-mentioned implantation was performed through the gate oxide film 7, the gate electrode 8 serves as a mask for ion implantation, and As ions are not implanted into the silicon substrate portion immediately below it. After the ion implantation, the photoresist film is removed and activation heat treatment is performed to form the n-type source diffusion layer region 5. And a drain diffusion layer region 6 was formed. A P-type source diffusion layer region 14 and a drain diffusion layer region 13 are formed in the n-type well region 12 by a similar manufacturing method using boron (B) ion implantation.
was formed. Thereafter, a 0.15 μm thick silicon nitride film (Si, N4) 17 and a 0.3 μm thick silicon thin film 18 were successively deposited over the entire surface (FIG. 2).

次に再□び反応性スパッタエツチング法によりシリコン
基板表面と垂直方向にだけエツチングを進行させ平坦部
に堆積されたシリコン薄膜18を除去するとゲート電極
8の側壁のシリコン酸化堆積膜16の側壁部にのみシリ
コン薄膜18が残置された。この状態で残置されたシリ
コン薄膜18をマスクにして露出しているシリコン窒化
膜17を熱燐酸(HaPO4)により除去した(第3図
)。
Next, by using the reactive sputter etching method again, etching is performed only in the direction perpendicular to the silicon substrate surface to remove the silicon thin film 18 deposited on the flat portion, and the side wall portion of the silicon oxide deposited film 16 on the side wall of the gate electrode 8 is etched. Only the silicon thin film 18 remained. In this state, the exposed silicon nitride film 17 was removed using hot phosphoric acid (HaPO4) using the remaining silicon thin film 18 as a mask (FIG. 3).

続いてヒドラジン(’N2 H2)溶液により残置され
ていたシリコン薄膜18を全面的に除去した。
Subsequently, the remaining silicon thin film 18 was completely removed using a hydrazine ('N2 H2) solution.

上記状態に於いてシリコン窒化膜17はゲート電極8の
側壁のシリコン酸化膜16端より約0.3μmの幅でシ
リコン酸化膜16、及びゲート電極17と自己整合で残
置している。次にp型ウェル領域2上をフォトレジスト
膜で覆い、n型ウェル領域12にのみ燐(P)をイオン
注入する。上記のイオン注入に於いては、残置されたシ
リコン窒化膜17下のシリコン基板には注入されず、か
つシリコン窒化膜が存在しなす領域のシリコン基板内に
於てはその接合深さが既形成のP型ドレイン拡散層14
の接合深さより深くなるごとく打込みエネルギを設定す
る。上記イオン打込みの後、フォトレジスト膜を除去し
、打込みイオンの活性化熱処理を施して高濃度n型拡散
層19を形成した。
In the above state, the silicon nitride film 17 remains in self-alignment with the silicon oxide film 16 and the gate electrode 17 with a width of about 0.3 μm from the end of the silicon oxide film 16 on the side wall of the gate electrode 8. Next, the p-type well region 2 is covered with a photoresist film, and phosphorus (P) ions are implanted only into the n-type well region 12. In the above ion implantation, the ions are not implanted into the silicon substrate under the remaining silicon nitride film 17, and the junction depth in the region of the silicon substrate where the silicon nitride film exists is already formed. P-type drain diffusion layer 14 of
Set the driving energy so that it is deeper than the bonding depth. After the ion implantation, the photoresist film was removed and the implanted ions were subjected to activation heat treatment to form a high concentration n-type diffusion layer 19.

p型ウェル領域2に対してもBイオン打込みを上記製造
工程に準じて実施し、高濃度P型拡散領域4を形成した
。しかる後、シリコン基板1表面に露出しているゲート
酸化膜7を除去し、全面のアルミニウム(AQ)膜を蒸
着した。上記AQ膜を所望の回路構成に従い加工した。
B ion implantation was also carried out into the p-type well region 2 according to the above manufacturing process to form a high concentration P-type diffusion region 4. Thereafter, the gate oxide film 7 exposed on the surface of the silicon substrate 1 was removed, and an aluminum (AQ) film was deposited over the entire surface. The above AQ film was processed according to the desired circuit configuration.

ここに於てp型窩濃度拡散領域4とn型ソース拡散領域
5の各表面を接続するごとく接地電極10′を、n型ド
レイン拡散領域6とp型ドレイン拡散領域13を接続す
るごとく出力電極11′を、さらにp型ソース拡散領域
14とn型高濃度拡散領域19を接続するごとく電源供
給電極20を構成した。しかる後、公知の技術を用いて
表面安定化絶縁膜9の堆積と所望箇所への開孔を行い、
第2層目のAQ膜の蒸着、及び所望回路構成に従った配
線加工によりAQ配線21,22、及び23を形成した
(第4図)。
Here, a ground electrode 10' is connected to connect the surfaces of the p-type cavity concentration diffusion region 4 and the n-type source diffusion region 5, and an output electrode is connected to the n-type drain diffusion region 6 and the p-type drain diffusion region 13. 11', a power supply electrode 20 was further configured to connect the p-type source diffusion region 14 and the n-type high concentration diffusion region 19. Thereafter, a surface stabilizing insulating film 9 is deposited and holes are formed at desired locations using known techniques.
AQ wirings 21, 22, and 23 were formed by vapor deposition of a second layer of AQ film and wiring processing according to a desired circuit configuration (FIG. 4).

上記の製造工程によりゲート長1.0μmのCMOSト
ランジスタを製造したがP至高濃度拡散領域4端からn
型高濃度拡散領域19端までの寸法は同一ゲート寸法の
従来構造CMOSトランジスタのものの約1/3弱にま
で小さくなった。上記素子寸法の縮小はウェル電位を印
加する高濃度拡散領域4又は19とソース拡散領域5又
は14の形成がゲート電極8に対して自己整合の関係で
構成されることに基づく。上記の構成に於いては従来C
MOSトランジスタ構造における拡散層4と5、又は1
4と19間に介在していたフィルド酸化膜3の存在の必
要がなく寸法低減に寄与している。さらに各拡散層間の
接続も共通孔により実施できる為、従来構造における各
開孔位置合せ予裕に要する寸法も低減される。本実施例
に基づくCMOSトランジスタに於いては素子寸法の低
減化と共に開孔数も半減し、開孔部加工不良に基づく拡
散層と電極間の接触不良率も大幅に低減することができ
た。
A CMOS transistor with a gate length of 1.0 μm was manufactured using the above manufacturing process.
The dimension up to the end of the heavily doped diffusion region 19 has been reduced to about 1/3 of that of a conventional structure CMOS transistor with the same gate dimension. The above reduction in element size is based on the fact that the high concentration diffusion region 4 or 19 to which the well potential is applied and the source diffusion region 5 or 14 are formed in a self-aligned relationship with the gate electrode 8. In the above configuration, conventional C
Diffusion layers 4 and 5 or 1 in MOS transistor structure
There is no need for the filled oxide film 3 interposed between 4 and 19, contributing to size reduction. Furthermore, since the connection between the respective diffusion layers can be achieved through a common hole, the size required for the alignment margin of each hole in the conventional structure is also reduced. In the CMOS transistor based on this example, the number of openings was reduced by half as well as the element size, and the rate of poor contact between the diffusion layer and the electrode due to poor processing of the openings was also significantly reduced.

なお本実施例に於いてはAQ配線による2層配線構造の
例につき記したが1層配線、又は3層配線以上で構成し
ても本実施例の効果を何ら損ねることはない。
Although this embodiment has been described as an example of a two-layer wiring structure using AQ wiring, the effects of this embodiment will not be impaired in any way even if the structure is composed of one-layer wiring, or three or more layers of wiring.

実施例2 第5図乃至第8図は本発明の他の実施例を示した図であ
る。前記第1の実施例に於て、ソース拡散層5及び14
とドレイン拡散層6及び13の形成に関する各イオン打
込み工程等を省略し、シリコン窒化膜17、及びシリコ
ン薄膜18の堆積、シリコン薄膜18の反応性スパッタ
エツチング、さらにはゲート側壁に隣接して残置したシ
リコン薄膜をマスクにした与シリコン窒化膜17の選択
エツチングの各工程を実施した。続いてp型ウェル領域
2とp型ドレイン拡散層を形成する予定の領域上をフォ
トレジスト膜で覆い、n型ウェル領域12上に露出して
いるゲート酸化膜7を介してn型ウェル領域12内に高
濃度の燐をイオン注入した。上記のイオン注入に於て、
フォトレジスト膜、シリコン窒化膜17、及びゲート保
護絶縁膜で覆われている領域下のウェル領域12には燐
イオンは注入されない、上記イオン注入の後、残置し しているフォト集ジスート膜を除去してから注入イオン
の活性化熱処理を施しn型高濃度拡散領域19を形成し
た。次に再びフォトレジスト膜24によりn型ウェル領
域12とn型ドレイン拡散層を形成予定の領域上を覆い
、硼素をイオン注入した(第5図)。硼素のイオン注入
も露出しているゲート酸化膜7を介して実施されたがシ
リコン窒化膜17.及びフォトレジスト膜24下のp型
ウェル領域2には硼素の注入は実施されない。硼素のイ
オン注入の後、残置されているフォトレジスト膜24を
除去し、注入イオンの活性化熱処理を行ってP型窩濃度
拡散領域4をP型ウェル2内に形成した。上記の熱処理
の後、ゲート電極8の側壁に隣接して残置されているシ
リコン窒化膜17を熱燐酸液で除去し、続いて露出して
いるゲート酸化膜7も除去してシリコン基板表面を露出
させたにの状態で、5Qnm厚のシリコン薄膜を選択的
に除去した。、上記に於て、残置したシリコン薄膜25
,26、及び27は少なくとも露出されたシリコン基板
表面は全面的に覆うように構成されている。上記のシリ
コン薄!1g25.2B、及び27は、いわゆる選択堆
積法と称される方法、すなわち露出シリコン基板面にの
み選択的にシリコン薄膜を堆積させる方法により形成し
てもよい。
Embodiment 2 FIGS. 5 to 8 are diagrams showing another embodiment of the present invention. In the first embodiment, the source diffusion layers 5 and 14
The ion implantation steps related to the formation of the drain diffusion layers 6 and 13 were omitted, and the deposition of the silicon nitride film 17 and the silicon thin film 18, the reactive sputter etching of the silicon thin film 18, and the remaining adjacent to the gate sidewalls were omitted. Each step of selective etching of the silicon nitride film 17 was carried out using the silicon thin film as a mask. Next, the p-type well region 2 and the region where the p-type drain diffusion layer is to be formed are covered with a photoresist film, and the n-type well region 12 is formed through the gate oxide film 7 exposed on the n-type well region 12. A high concentration of phosphorus was ion-implanted into the interior. In the above ion implantation,
Phosphorous ions are not implanted into the well region 12 under the region covered with the photoresist film, silicon nitride film 17, and gate protection insulating film. After the above ion implantation, the remaining photocondensing disuit film is removed. Thereafter, the implanted ions were subjected to activation heat treatment to form an n-type high concentration diffusion region 19. Next, the areas where the n-type well region 12 and the n-type drain diffusion layer are to be formed are again covered with a photoresist film 24, and boron ions are implanted (FIG. 5). Boron ion implantation was also performed through the exposed gate oxide film 7, but the silicon nitride film 17. Also, boron is not implanted into the p-type well region 2 under the photoresist film 24. After the boron ion implantation, the remaining photoresist film 24 was removed, and the implanted ions were subjected to activation heat treatment to form a P-type cavity concentration diffusion region 4 in the P-type well 2. After the above heat treatment, the silicon nitride film 17 remaining adjacent to the side walls of the gate electrode 8 is removed using a hot phosphoric acid solution, and then the exposed gate oxide film 7 is also removed to expose the silicon substrate surface. A silicon thin film with a thickness of 5 Qnm was selectively removed under the condition. , in the above, the remaining silicon thin film 25
, 26, and 27 are configured to completely cover at least the exposed silicon substrate surface. The silicone above is thin! 1g25.2B and 27 may be formed by a so-called selective deposition method, that is, a method of selectively depositing a silicon thin film only on the exposed silicon substrate surface.

シリコン薄膜25,26,27の形成後、n型ウェル領
域12上をフォトレジスト膜28で覆った(第6図)。
After forming the silicon thin films 25, 26, and 27, the n-type well region 12 was covered with a photoresist film 28 (FIG. 6).

上記フォトレジスト膜28をマスクにして砒素をシリコ
ン薄膜25と26の一部領域にイオン打込みにより注入
してからフォトレジスト膜28を除去し、活性化熱処理
によりn型ソース拡散領域5、及びn型ドレイン拡散領
域6を形成した。上記の拡散置載形成に於いてP型つェ
ル領域部でのソース拡散領域5の接合深さは約0.2μ
mであったがp型窩濃度拡散領域4内でのn型不純物に
より形成された接合深さは30nm以下であった。n型
のソース5及びドレイン拡散領域6の形成の後、p型ウ
ェル領域2上にフォトレジスト膜を選択的に残置させ、
上記製法に準じてn型ウェル領域内に硼素イオン打込み
によりp型のドレイン拡散領域13、及びソース拡散領
域14を形成した。P型トレイン13及びソース拡散領
域14の形成後全面にパラジウム(Pd)膜を蒸着し、
約250℃の熱処理を施し、Pdとシリコン薄膜25,
26.27の反応により0.1μm厚のパラジウムシリ
サイド(P d 2 S i)層29゜30、及び31
を形成した。上記Pd、Si層形成に於て、下地シリコ
ン薄膜25,26、及び27はPd25t層形成により
完全に消費され一下地シリコン基板も表面より約50n
m程度消費された。すなわち、P型窩濃度拡散領域4上
の極めて浅いn型層領域及びn型高濃度拡散領域19上
の極めて浅いp型層領域は上記のPd、Si層29及び
31の形成により消滅してしまった。なおPdはシリコ
ン酸化膜15とは反応せずPd25t層29,30.3
1の形成後、未反応のPd膜を沃素(I2−)と沃化ア
ンモニウム(NH,I)の水溶液で除去するとシリコン
薄膜25.26、及び27が存在していた領域にのみP
d、St層は選択的に残置された(第7図)。
Using the photoresist film 28 as a mask, arsenic is implanted into some regions of the silicon thin films 25 and 26 by ion implantation, the photoresist film 28 is removed, and the n-type source diffusion region 5 and the n-type A drain diffusion region 6 was formed. In the above diffusion mounting formation, the junction depth of the source diffusion region 5 in the P-type well region is approximately 0.2μ.
m, but the junction depth formed by the n-type impurity in the p-type cavity concentration diffusion region 4 was 30 nm or less. After forming the n-type source 5 and drain diffusion regions 6, a photoresist film is selectively left on the p-type well region 2;
A p-type drain diffusion region 13 and a p-type source diffusion region 14 were formed by boron ion implantation in the n-type well region according to the above manufacturing method. After forming the P-type train 13 and the source diffusion region 14, a palladium (Pd) film is deposited on the entire surface,
After heat treatment at about 250°C, Pd and silicon thin film 25,
The reaction of 26.27 resulted in a 0.1 μm thick palladium silicide (P d 2 Si) layer 29, 30, and 31.
was formed. In forming the above Pd and Si layers, the base silicon thin films 25, 26, and 27 are completely consumed by the formation of the Pd25t layer, and the base silicon substrate is also approximately 50 nm from the surface.
About m was consumed. That is, the extremely shallow n-type layer region on the P-type cavity concentration diffusion region 4 and the extremely shallow p-type layer region on the n-type high concentration diffusion region 19 disappear due to the formation of the Pd and Si layers 29 and 31 described above. Ta. Note that Pd does not react with the silicon oxide film 15 and the Pd25t layers 29, 30.3
After forming 1, when the unreacted Pd film is removed with an aqueous solution of iodine (I2-) and ammonium iodide (NH,I), P is removed only in the regions where silicon thin films 25, 26 and 27 were present.
d, the St layer was selectively left (Fig. 7).

Pd、St層29,30、及び31の形成後、Pd、S
iの低抵抗化の為の熱処理を500℃で施した。しかる
後、表面安定化絶縁膜9の堆積と所望箇所への開孔を行
った。上記開孔に用いたフォトレジスト膜を残置した状
態でタングステン(W)を蒸着し、フォトレジスト膜上
のW膜をフォトレジスト除去と同時に除去した。その結
果、開孔部にのみW膜32が残置された。続いてAQ膜
の蒸着と所望の回路構成に従った配線加工を施し、AQ
配線20,22、及び23を形成した(第8図)。
After forming the Pd, St layers 29, 30, and 31, the Pd, S
Heat treatment was performed at 500°C to lower the resistance of i. Thereafter, a surface stabilizing insulating film 9 was deposited and holes were formed at desired locations. Tungsten (W) was deposited with the photoresist film used for the openings remaining, and the W film on the photoresist film was removed at the same time as the photoresist was removed. As a result, the W film 32 was left only in the opening. Next, the AQ film is deposited and the wiring is processed according to the desired circuit configuration.
Wirings 20, 22, and 23 were formed (FIG. 8).

上記の製造工程を経て製造された側OSトランジの スタの寸法は前記第1の実施例のへと同じく、従来構造
CMOSトランジスタの約1/3弱にまで小さく構成す
ることができた。さらに本実施例に基づくCMOSトラ
ンジスタに於てはウェル2及び12と同型の高濃度拡散
領域4及び19表面に形成される極めて浅い接合(トン
ネル接合)もシリサイド層29及び31の形成により制
御性良く消滅できる。したがって前記第16の実施例に
基づ< CMOSトランジスタに比べて、さらにオーミ
ック性よくウェル2及び12に電圧を印加することがで
きた。
As with the first embodiment, the size of the side OS transistor manufactured through the above manufacturing process can be reduced to about 1/3 of that of the conventional structure CMOS transistor. Furthermore, in the CMOS transistor based on this embodiment, extremely shallow junctions (tunnel junctions) formed on the surfaces of the high concentration diffusion regions 4 and 19 of the same type as the wells 2 and 12 can also be easily controlled by forming the silicide layers 29 and 31. It can disappear. Therefore, it was possible to apply voltage to the wells 2 and 12 with better ohmic properties than in the CMOS transistor according to the 16th embodiment.

本実施例に基づ< CMOSト、ランとスタに於ては前
記第1の実施例に基づく特徴はすべて有しているがさら
に他の特徴としてソース拡散層5及び14、ドレイン拡
散層6尽び13の各接合深さを前記第1の実施例のもの
よりも浅く構成できることである。すなわち、本実施例
に基づけばシリサイド形成時に消費され纂シリコンをシ
リコン薄膜25゜26.27の堆積により補償すること
ができる。
Based on this embodiment, the CMOS transistor, run, and star have all the features based on the first embodiment, but additional features include source diffusion layers 5 and 14 and drain diffusion layers 6 and 6. and 13 can be made shallower than those of the first embodiment. That is, based on this embodiment, the silicon residue consumed during silicide formation can be compensated for by depositing a silicon thin film of 25°26.27°.

さらにシリサイド層は形成後に高温熱処理を施さぬ限り
AQ等の金属膜よりも基板シリコンとの反応性に乏しい
。したがって前記第1の実施例のごとく各拡散層表面を
直接金属膜で覆う構成に比べて安定であり、ソース・ド
レインの各拡散層5゜14及び6,13の各接合深さを
接合破壊不良を伴うことなく極めぞ浅く構成することが
できる6本実施例に於てはシリサイド形成時に消費され
るシリコンを補償する為にシリコン薄膜25゜26、及
び27を堆積したが上記堆積は所望により省略してもよ
い。さらに本実施例に於てはソース・ドレインの各拡散
層5,14及び6,13の形成をシリサイド層29,3
0、及び31の形成前に実施したーが、シリサイド層形
成後、シリサイド層内にイオン打込みし、シリサイド層
の低抵抗化熱処理時の不純物析出現象を利用しソース・
ドレイン拡散層を形成しても良い。この場合、本実施例
に基づくソース・ドレイン接合形成よりさらに浅い10
nm程度の極めて浅い接合が得られる。
Furthermore, unless a silicide layer is subjected to high-temperature heat treatment after formation, it has poorer reactivity with the substrate silicon than a metal film such as AQ. Therefore, it is more stable than the structure in which the surface of each diffusion layer is directly covered with a metal film as in the first embodiment, and the junction depth of each source/drain diffusion layer 5. In this embodiment, silicon thin films 26 and 27 were deposited to compensate for the silicon consumed during silicide formation, but the above deposition may be omitted if desired. You may. Furthermore, in this embodiment, the formation of the source/drain diffusion layers 5, 14 and 6, 13 is performed using the silicide layers 29, 3.
This was carried out before the formation of 0 and 31, but after the silicide layer was formed, ions were implanted into the silicide layer, and the source was
A drain diffusion layer may also be formed. In this case, the shallower 10
An extremely shallow junction on the order of nm can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によればウェル電位を与えるべき拡散領域をウェ
ル内トランジスタのゲート電極と自己整合で構成できる
為素子寸法を従来構造に比べて格段に縮小することがで
きる。上記の縮小度はゲート長が1.0μmの条件に於
て従来構造の1/3以下である。
According to the present invention, the diffusion region to which a well potential is to be applied can be constructed in self-alignment with the gate electrode of the transistor in the well, so that the element dimensions can be significantly reduced compared to conventional structures. The above reduction degree is 1/3 or less of the conventional structure under the condition that the gate length is 1.0 μm.

本発明の他の特徴はウェル電位を与える拡散領域はソー
ス拡散層を直接接続できるため接続開孔個数が半減でき
、したがって開孔工程に基づく導通不良等を半減する効
果も有している。
Another feature of the present invention is that the diffusion region providing the well potential can be directly connected to the source diffusion layer, so the number of connection holes can be halved, which also has the effect of halving conduction failures caused by the hole-opening process.

本発明はCMOSトランジスタの超微細化に最適である
がその適用はCMOSトランジスタに限定されない。す
なわちウェル構造を有する半導体装置、たとえば電気的
書換え可能型のネ揮発性半導体記憶装置に対しても適用
できる。さらに本発明は前記の各実施例で記載したごと
き二種類のウェルから構成される半導体装置ばかりでな
く一種類のウェルにより構成される半導体装置に対して
も適用できる。
Although the present invention is most suitable for ultra-miniaturization of CMOS transistors, its application is not limited to CMOS transistors. That is, the present invention can also be applied to a semiconductor device having a well structure, such as an electrically rewritable non-volatile semiconductor memory device. Furthermore, the present invention can be applied not only to semiconductor devices configured with two types of wells as described in the above embodiments, but also to semiconductor devices configured with one type of well.

本発明の実施例に於てシリサイド層としてPd2Siの
場合につき記載したが他のシリサイド層、すなわち、T
i、Zr、Hf、Vt Nb。
In the embodiments of the present invention, the case where Pd2Si is used as the silicide layer is described, but other silicide layers, ie, T
i, Zr, Hf, Vt Nb.

Ta、Cr’、Mo、W、Go、Ni、及びPt等の高
融点金属、又は遷移金属のシリサイド層、又はそれらの
金属膜自体であっても本発明の効果はまったくかわらな
い。この場合、各シリサイドの形成時に消費されるシリ
コン膜厚が各金属により異なる為、補償するシリコン薄
膜の膜厚を所望により制御すれば良い。
The effects of the present invention do not change at all even if it is a silicide layer of a high melting point metal such as Ta, Cr', Mo, W, Go, Ni, and Pt, or a transition metal, or a film of these metals themselves. In this case, since the silicon film thickness consumed during the formation of each silicide differs depending on each metal, the film thickness of the compensating silicon thin film may be controlled as desired.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のCMOSトランジスタの部分断面図、第
2図乃至第4図は本発明の第1の実施例の製造工程を工
程順に示す断面図、第5図乃至第8図は本発明の他の実
施例の製造工程を工程順に示す断面図である。 1.1′・・・基板、2,12・・・ウェル領域、3・
・・絶縁膜、4・・・同一導電型不純物領域、5,6・
・・不純物領域、7・・・ゲート絶縁膜、8・・・ゲー
ト電極、9・・・絶縁膜、10.11・・・電極、13
.14・・・不純物領域、15・・・ゲート保護絶縁膜
、16・・・絶縁膜、17・・・絶縁膜、18・・・シ
リコン薄膜、19・・・同一導電型不純物領域、20・
・・電極、21,22゜23・・・配線、24・・・フ
ォトレジスト、25,26゜27・・・シリコン薄膜、
28・・・フォトレジスト、29.30,31・・・パ
ラジウムシリサイド層、冨 1 図 下 2 図 %3 図 ¥15図 高 6 図
FIG. 1 is a partial cross-sectional view of a conventional CMOS transistor, FIGS. 2 to 4 are cross-sectional views showing the manufacturing process of the first embodiment of the present invention in order of process, and FIGS. 5 to 8 are cross-sectional views of a conventional CMOS transistor. FIG. 7 is a cross-sectional view illustrating the manufacturing process of another example in order of process. 1.1'...Substrate, 2,12...Well region, 3.
...Insulating film, 4...Impurity region of the same conductivity type, 5, 6.
... Impurity region, 7... Gate insulating film, 8... Gate electrode, 9... Insulating film, 10.11... Electrode, 13
.. 14... Impurity region, 15... Gate protection insulating film, 16... Insulating film, 17... Insulating film, 18... Silicon thin film, 19... Same conductivity type impurity region, 20...
... Electrode, 21, 22° 23... Wiring, 24... Photoresist, 25, 26° 27... Silicon thin film,
28...Photoresist, 29.30,31...Palladium silicide layer, depth 1 Figure bottom 2 Figure %3 Figure ¥15 figure height 6 Figure

Claims (1)

【特許請求の範囲】 1、第1の導電型領域内番;形成され、上記領域と反対
導電型を有する第2の領域を少なくとも有する半導体装
置に於て、上記、第1及び第2の領域は少なくとも表面
部分で隣接し、かつ隣接表面は金属膜で直接覆われてい
ることを特徴とする半導体装置。 2、特許請求の範囲第1項記載の半導体装置に於て、上
記の金属膜は高融点金属又は遷移金属で構成されるか、
又は上記高融点金属又は遷移金属のシリコン化合物で構
成されることを特徴とする半導体装置。
[Claims] 1. First conductivity type region inner number: In a semiconductor device having at least a second region formed and having a conductivity type opposite to the above region, the first and second regions are formed. are adjacent to each other at least in their surface portions, and the adjacent surfaces are directly covered with a metal film. 2. In the semiconductor device according to claim 1, the metal film is made of a high melting point metal or a transition metal, or
Or a semiconductor device comprising a silicon compound of the above-mentioned high melting point metal or transition metal.
JP58234241A 1983-12-14 1983-12-14 Method for manufacturing semiconductor device Expired - Lifetime JPH0714060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58234241A JPH0714060B2 (en) 1983-12-14 1983-12-14 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234241A JPH0714060B2 (en) 1983-12-14 1983-12-14 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS60126859A true JPS60126859A (en) 1985-07-06
JPH0714060B2 JPH0714060B2 (en) 1995-02-15

Family

ID=16967890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234241A Expired - Lifetime JPH0714060B2 (en) 1983-12-14 1983-12-14 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0714060B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133580A (en) * 1985-12-05 1987-06-16 Kazuto Sato Transferring method for random access data
JPS63237444A (en) * 1987-03-25 1988-10-03 Mitsubishi Electric Corp Manufacture of semiconductor device
US7868913B2 (en) 2003-10-10 2011-01-11 Nissan Motor Co., Ltd. Apparatus for converting images of vehicle surroundings

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162360A (en) * 1981-03-31 1982-10-06 Nec Corp Complementary insulated gate field effect semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162360A (en) * 1981-03-31 1982-10-06 Nec Corp Complementary insulated gate field effect semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133580A (en) * 1985-12-05 1987-06-16 Kazuto Sato Transferring method for random access data
JPH0568745B2 (en) * 1985-12-05 1993-09-29 Akita Ken
JPS63237444A (en) * 1987-03-25 1988-10-03 Mitsubishi Electric Corp Manufacture of semiconductor device
US7868913B2 (en) 2003-10-10 2011-01-11 Nissan Motor Co., Ltd. Apparatus for converting images of vehicle surroundings

Also Published As

Publication number Publication date
JPH0714060B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JPH06177349A (en) High density dram and manufacture thereof
JPH0343778B2 (en)
KR19980064586A (en) Semiconductor device and manufacturing method thereof
US5119155A (en) Semiconductor memory device with dielectric isolation
JPH0581052B2 (en)
US20070080404A1 (en) Semiconductor device
KR0139772B1 (en) Semiconductor integrated circuit device and its manufacture
JP3348868B2 (en) Method of forming an integrated circuit connection
US5882964A (en) Process for the production of an integrated CMOS circuit
JPH0645562A (en) Manufacture of stacked semiconductor structure
US5497022A (en) Semiconductor device and a method of manufacturing thereof
JPH10223770A (en) Semiconductor device and manufacture thereof
KR100346063B1 (en) A semiconductor device and a process for manufacturing the same
JP3906032B2 (en) Semiconductor device
JPS60126859A (en) Semiconductor device
JP3137077B2 (en) Semiconductor device and manufacturing method thereof
US6777758B2 (en) Semiconductor device
JP3141825B2 (en) Method for manufacturing semiconductor device
JP5178974B2 (en) Semiconductor device and manufacturing method thereof
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
JP3116889B2 (en) Method for manufacturing semiconductor device
JPH0758792B2 (en) Method for manufacturing vertical channel insulating gate type field effect semiconductor device
JP2001291770A (en) Semiconductor-device and manufacturing method thereof
JP2001217319A (en) Semiconductor integrated circuit device and manufacturing method therefor
CN114551473A (en) Semiconductor device with a plurality of transistors