JPS60126077A - Culture of microorganism - Google Patents

Culture of microorganism

Info

Publication number
JPS60126077A
JPS60126077A JP58232507A JP23250783A JPS60126077A JP S60126077 A JPS60126077 A JP S60126077A JP 58232507 A JP58232507 A JP 58232507A JP 23250783 A JP23250783 A JP 23250783A JP S60126077 A JPS60126077 A JP S60126077A
Authority
JP
Japan
Prior art keywords
dna
microorganism
xylanase
culture
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58232507A
Other languages
Japanese (ja)
Other versions
JPH0375153B2 (en
Inventor
Koki Horikoshi
弘毅 掘越
Toshiaki Kudo
俊章 工藤
Hiroshi Honda
本田 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP58232507A priority Critical patent/JPS60126077A/en
Priority to DK138984A priority patent/DK138984A/en
Priority to FI840843A priority patent/FI85721C/en
Priority to AT88121510T priority patent/ATE90387T1/en
Priority to EP88121510A priority patent/EP0316023B1/en
Priority to AT84102440T priority patent/ATE61410T1/en
Priority to DE19843486163 priority patent/DE3486163T2/en
Priority to DE8484102440T priority patent/DE3484207D1/en
Priority to EP84102440A priority patent/EP0121138B1/en
Priority to CA000449095A priority patent/CA1226833A/en
Priority to US06/590,636 priority patent/US4624922A/en
Publication of JPS60126077A publication Critical patent/JPS60126077A/en
Priority to FI890246A priority patent/FI86438C/en
Publication of JPH0375153B2 publication Critical patent/JPH0375153B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01032Xylan endo-1,3-beta-xylosidase (3.2.1.32), i.e. endo-1-3-beta-xylanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • C12N15/625DNA sequences coding for fusion proteins containing a sequence coding for a signal sequence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/86Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in cyclic amides, e.g. penicillinase (3.5.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01008Endo-1,4-beta-xylanase (3.2.1.8)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To produce a physiologically active polymeric substance out of the microbial cell, and collect the polymeric substance in high efficiency, by preparing a plasmid integrated with a DNA participating in the extracellular production of a physiologically active polymeric substance, inserting the plasmid in the cell of the host microorganism, and culturing the microorganism. CONSTITUTION:The present invention is exemplified in the case that the physiologically active polymeric substance is xylanase. The DNA fragment capable of producing and accumultaing xylanase out of the microbial cell and collected from Bacillus C125 strain (FERM-P No.7344) is integrated in a vector (DNA of pBR322 plasmid). The plasmid is inserted in the cell of Escherichia coli HB101 to obtain a transformed strain [Escherichia coli HB101 (pCX311) (FERM-P No. 7345, cf. the figure)]. The transformed strain is cultured in a medium containing sodium chloride, etc. as an inorganic salt, and xylan, etc. as a carbon source for about 12-48hr, and xylanase accumulated out of the microbial cell is collected.

Description

【発明の詳細な説明】 本発明は、宿主の微生物細胞内に、生理宿性−分子物質
の菌体外生産に関与する%足の遺伝情報を担うデーオキ
シリが核酸(DNA)を組み込んだプラスミドを含有さ
せてこれを培養し、この特定の遺伝情報によって@配置
分子物質を菌体外に生成(分泌)、蓄積させて著量の生
理物質を採取することを目的とするものである。喘゛足
の遺伝情報を担うり、 N A全組み込んだグラスミド
全宿土の微生物に導入し、との微生’Ifak培養する
ことによってアミノ酸、−27″テド等の比較的低分子
物¥jを生産する方法が提案されているが、高分子物質
の生産能をもつグラスミドは宿主の微生物によって増殖
の程度が異なり、且つプラスミドの十分な発現機能全実
現することができず、また七〇市効l帛養方法も確立さ
れていない。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a plasmid in which deoxyri, which carries the genetic information of the microorganism involved in the extracellular production of physiological host-molecular substances, has integrated a nucleic acid (DNA) into the host microorganism cell. The purpose is to collect a significant amount of physiological substances by cultivating the cells and producing (secreting) and accumulating them outside the bacterial cells based on this specific genetic information. By introducing the genetic information of the pancreatic foot into the microorganisms of the host soil, and culturing the microorganisms with NA, relatively low molecular weight compounds such as amino acids and -27" However, Grasmid, which has the ability to produce high-molecular substances, has different levels of growth depending on the host microorganism, and is unable to fully express the plasmid. No effective cultivation method has been established.

従来、微生物の枚重産物である尚分子物1Mを菌体外に
生産する遺伝情報を担うLINA會和み込んだプラスミ
ドによって他の鵬に機する微生物を宿主として形質転換
させた場合、特定の生産物のみ′fr:菌体外に著量に
生産せしめることができす、宿主として通常用い得るエ
シェリヒア属の微生物ではグラス−ミドによる形質転挨
によってもこれを達成することができなかった。
Conventionally, when another microorganism is transformed as a host with a plasmid that carries the genetic information for producing 1M, a monomer product of a microorganism, outside the bacterial cell, specific production is possible. Only 'fr' can be produced in large quantities outside the bacterial body, but this could not be achieved with microorganisms of the genus Escherichia, which can normally be used as hosts, even by transformation using grass-mids.

これVC:i’J 1.、 、本発明者は、先に、バチ
ルス楓に属する微生物の代−(産物である高分子物質と
して被ニシリナーゼの菌体外生産(分泌)に関与する遺
伝情報を−IIiうDNAを組み込んだプラスミドをエ
シェリヒア1mPIAする微生物に導入し、この微生物
の縞贅方法を見出してその菌体外に、ペニシリナーゼ等
の酵素蛋白を著量に生産(分泌)せしめイ4Iることに
成功し、前記の目的の達成を初めてロエ匪とした。
This VC: i'J 1. The present inventor has previously developed a plasmid incorporating DNA of a microorganism belonging to Bacillus Kaede (IIi) containing genetic information involved in the extracellular production (secretion) of nicillinase as a product polymeric substance. was introduced into a microorganism called Escherichia 1mPIA, and by finding a method for striping this microorganism, they succeeded in producing (secretion) a large amount of enzyme proteins such as penicillinase outside the microorganism, and achieved the above-mentioned purpose. This is the first time that he has achieved this goal.

更に、8意研究の結果、本発明者は、尚分子物τjとし
てキシラナーゼの菌体外生産(分泌)に関/−Jする遺
伝悄釦’(r +1iうDNA全組み込んだプラスミ1
゛をエシェリヒア視に槙する微生物に導入して形質転換
し/こ新規微生物を得、画形微生物の培養方法を見出し
てその菌体外にキシラナーゼ等々の酵素]f白によって
代表される高分子物質を著量に生産(分V、、)せしめ
得ることに成功して本発明を完成するに至った、 本発明において「高分子物質」とは、微生物の産出する
代謝産物である酵素蛋白類、抗生物質等々の他、動物起
源の生理活性蛋白知合包含する一連の有用な生理活性高
分子物質群を相称するものである。
Furthermore, as a result of eight researches, the present inventors have discovered that a plasmid 1 containing all the DNA containing a genetic button '(r+1i) related to the extracellular production (secretion) of xylanase as a molecular compound τj.
A new microorganism was obtained by introducing this into a microorganism similar to Escherichia, and a method for culturing the microorganism was discovered, and enzymes such as xylanase were added to the outside of the microorganism. In the present invention, "polymer substances" refer to enzyme proteins that are metabolic products produced by microorganisms, In addition to antibiotics, the term refers to a group of useful bioactive polymer substances, including bioactive proteins of animal origin.

以下、本発明方法について詳細に説明する。The method of the present invention will be explained in detail below.

本発明方法において用いられる微生物は、エシェリヒア
属の染色体外遺伝子(fラスミド〕として知られるコリ
シンE、因子等の、培養された細胞内で増殖し得る形式
全とるグラスミド(染色体外DNAすなわちベクターD
NA )に、外米の遺伝子DNA1組み込んだプラスミ
ドを含有する、エシェリヒア・コリによって代表される
エシェリヒアんに楕する微生物である。
The microorganism used in the method of the present invention contains all types of grasmids (extrachromosomal DNA or vector D
It is an Escherichia-like microorganism represented by Escherichia coli, which contains a plasmid that incorporates the foreign rice gene DNA 1 in NA).

前記ベクターDNAに組み込まれる外来遺伝子(DNA
断片)は、特定の高分子物質の函体外生産(分泌)に関
与する情報を担うDNAであり、高分子物質、例えばキ
シラナーゼ、ベニシリナーゼ、ホスファターゼ、β−ガ
ラクトシダーゼ、アミラーゼ、プロテアーゼ、β−グル
カナーゼ等々の酵素蛋白類を生産して菌体外に分泌せし
める情報を担うDNAが挙けられる。
A foreign gene (DNA) to be incorporated into the vector DNA
Fragments) are DNAs that carry information involved in the extra-box production (secretion) of specific polymeric substances, such as xylanase, benicillinase, phosphatase, β-galactosidase, amylase, protease, β-glucanase, etc. Examples include DNA that carries information for producing enzyme proteins and secreting them outside the bacterial body.

前記外来の遺伝子DNAは、微生物起源の高分子物質の
菌体外生産(分泌)に関与する情報を担うDNAとして
、汐11えば、バチルス(Baclllus )縞に属
する微生物のバチルス・Cl2G菌(微工研菌奇第73
ダダ号)から調製されたDNA断片が有利に用いられる
The foreign genetic DNA is a DNA that carries information involved in the extracellular production (secretion) of microbial-originated macromolecular substances. Kenbokuki No. 73
Advantageously, DNA fragments prepared from Dada are used.

本発明に使用される、キシラナーゼの菌体外生産に関与
する遺伝情報を担うDNAを含有する微生物の例として
は、バチルス・Cl、2.5−菌(、微工研藺寄第73
ググ号)を挙げることができる。バチルス・C/25菌
は埼玉県入間郡鶴ケ島町で採収された土壌より分離され
た微生物であり、次の菌学的性質を有する。
Examples of microorganisms containing DNA carrying genetic information involved in the extracellular production of xylanase used in the present invention include Bacillus Cl,
Google). Bacillus C/25 is a microorganism isolated from soil collected in Tsurugashima Town, Iruma District, Saitama Prefecture, and has the following mycological properties.

なお、国学的性質の試験及び分類方法は、「エアロビッ
ク・スポア・ホーミング・バクテリア」〔’ Aero
blc Spare−formlng Bacterl
a’(UnitedState Depart、vn@
nt of Agrlcul、ture、 Nov、 
/932by N、R,Sm1th、 R,E、Gor
don & F、E、C1ark ) )及ヒ「パーツ
エースマニュアル・オプ・デタミネイテイグ・バクテリ
オロソー」CI?、t7年)(Bergey’s Ma
nual of Determinative Bac
teri −ology(/ 937 ) )に基づい
て行われた。
In addition, the test and classification method for national properties is ``Aerobic Spore Homing Bacteria''['Aero
blc Spare-formlng Bacterl
a'(United State Department, vn@
nt of Agrlcul, ture, Nov,
/932by N, R, Sm1th, R, E, Gor
Don & F, E, C1ark)) and Hi "Parts Ace Manual Op Determining Bacteriolosso" CI? , t7) (Bergey's Ma
nual of Determinative Bac
It was carried out based on teri-ology (/937)).

a)形態 /)大きさは0.5〜0.7μ×3.0〜グ、θμの桿
菌である。
a) Morphology/) The size is a rod of 0.5-0.7 μ x 3.0 μ and θμ.

2)胞子を形成し、大きさはθ、4〜00gμ×1.Q
〜7.2μの卵形であって、胞子のうμふくらんでいる
2) Forms spores, size θ, 4-00gμ×1. Q
~7.2μ ovoid, spore-like swollen.

3)ダラム染色g:は陽性である。3) Durham staining G: is positive.

b)各培地における生育状態 C)生理的性質 以上の諸性質を総括すると、前記バチルス・Cl、25
菌は、好気性の壱胞子細菌であることがら、バチルス(
Baclllus ) mKmする微生物であることは
明らかであるが、特に生育し得る範囲がplし/、θと
左s℃までである点において明らかに公知の菌種と区別
され、好アルカリ性細菌の新菌種と認定することが妥当
であると結論された。
b) Growth status in each medium C) Physiological properties and above, the above Bacillus Cl, 25
Since the bacterium is an aerobic monosporous bacterium, Bacillus (
Although it is clear that it is a microorganism with a growth rate of mKm, it is clearly distinguished from known species in that its growth range is up to pl/θ and s°C, and it is a new alkalophilic bacterium. It was concluded that it is appropriate to recognize it as a species.

前記ベクターDNAとじてに、天然に存在するものを抽
出したもの\他、増殖に必須な部分以外のDNAの部分
が一部欠落しているものでもよく、例えばCo I E
 、の系統、pMB 9の系統、pBR,lユd系統、
pSC10/の系統、R乙にの系統、ラムダ−ファージ
の系統等が挙げられる。
The vector DNA may be extracted from naturally occurring DNA, or may be one in which part of the DNA other than the part essential for proliferation is missing, such as Co I E.
, pMB 9 strain, pBR, l ud strain,
Examples include the pSC10/ line, the R2 line, and the lambda phage line.

また〜前記ベクターDNAに前記外米遺伝子DNAを組
み込む方法は、既知のいずれの方法も適用し得る。例え
ば、適当な制限酵素 (Endonuclease ) k A択、処理して
D N A i切断し、次いで同様に処理した、ベクタ
ーとして用いるON、Aと混合し、リガーゼによって再
結合する方法が用いられる。
Moreover, any known method can be applied to the method of incorporating the foreign rice gene DNA into the vector DNA. For example, a method may be used in which the DNA is digested with an appropriate restriction enzyme (Endonuclease), followed by mixing with ON, A, which has been treated in the same manner and used as a vector, and religating with ligase.

このように得られた外米のDNA断片とベクターDNA
の結合物を、形質転換法によって受容菌で矛)るエシェ
リヒア属の微生物の菌体に導入し、遺伝形質として女定
するまで増殖すると、所望の遺伝形質とベクターDNA
の形質を併せもつ形質転挾株が得られる。このようにし
て得られた微生物全培養するには、特定の遺伝情報によ
って生成される物質の生産に逸した培地であって且つ宿
主のエシェリヒア属の微生物の生育に適した培地を用い
得るが、本発明方法では、使用培地の組成として、生育
のために要求される無機塩とともに、選択された炭素源
を必須に含有する培地で生育、増殖させ、同一培地で第
体蓋が最大に達したときから実質的に前記培地中に代謝
産物である茜分子物質の生成、蓄積が停止するまでの時
間中、そのまま培養を継続することが必要である。無機
塩としては、特に塩化ナトリウムが有効であり、また塩
化カリウムも用い得る。無機塩を含有する培地としては
、グルコース、シュークロース、ラクトース、マルトー
ス、グリセロール、鼓、キシラン等々の炭素源、アンモ
ニア水、アンモニウム塩等の窒素源、無機イオンの他に
、必要に応じてアミノ酸、ビメミン等の栄養素を含有さ
せることができ、特に前記炭素源の影qlIは重要であ
り、生産物質に応じて適宜選択し、添加することが必要
である。通常、エシエ」ノヒア、コリの生育培地として
用いられるLB培地(トリプトン、酵母エキス、食塩)
、BPB培地(Dlfco ;ポリペプトン、酵母エキ
ス、リン敵カリウム)、栄養、寒天培地(Difco0
00/)、トリグトン0食塩培地等を基本培地として調
製したものを用いれはよい。
DNA fragments of foreign rice and vector DNA thus obtained
The conjugate is introduced into the cells of a recipient microorganism of the genus Escherichia by the transformation method, and when it grows until it is established as a genetic trait, the desired genetic trait and vector DNA are combined.
A transgenic strain having both of these traits can be obtained. To fully culture the microorganisms obtained in this way, a medium that is incapable of producing substances produced by specific genetic information and that is suitable for the growth of host microorganisms of the genus Escherichia can be used. In the method of the present invention, growth and proliferation are performed in a medium that essentially contains a selected carbon source as well as an inorganic salt required for growth, and the body operculum reaches its maximum size in the same medium. It is necessary to continue the culture from the time until the production and accumulation of madder molecular substances, which are metabolic products, substantially cease in the medium. As the inorganic salt, sodium chloride is particularly effective, and potassium chloride can also be used. The medium containing inorganic salts includes carbon sources such as glucose, sucrose, lactose, maltose, glycerol, drumstick, xylan, etc., nitrogen sources such as aqueous ammonia and ammonium salts, and inorganic ions, as well as amino acids, if necessary. Nutrients such as vimemin can be contained, and the influence of the carbon source qlI is particularly important, and it is necessary to appropriately select and add nutrients depending on the substance to be produced. LB medium (tryptone, yeast extract, salt) usually used as a growth medium for Eshie nohia and coli.
, BPB medium (Dlfco; polypeptone, yeast extract, potassium phosphate), nutrients, agar medium (Difco0
00/), Trigton 0 salt medium, etc. may be used as the basic medium.

無機塩を含まない前記の培地では、gO−以上の物質が
菌体内で生産されるので、生成物質のほとんどを陶体外
に生産させるためには無機塩の存在は必須である。また
、無機塩の使用tは、培地組成に対してはソ0.S〜3
.0%が適当である。
In the above-mentioned medium that does not contain inorganic salts, substances of gO- or higher are produced within the bacterial cells, so the presence of inorganic salts is essential in order to produce most of the produced substances outside the ceramic body. Furthermore, the use of inorganic salts is approximately 0.0% with respect to the medium composition. S~3
.. 0% is appropriate.

炭素源の影9i1id、前記LB培地に叡及び/又にキ
シランを加えたときに%にすぐれた結果が得られ、培地
組成に対してそれぞれはソθ、5チ蓋の添加が望ましい
When carbon source shadow 9ilid, xylan and/or xylan were added to the LB medium, excellent results were obtained in %, and it is desirable to add θ and 5, respectively, to the medium composition.

培養方法に、p111温度、酸系供給量等の条件として
エシェリヒア属の微生物の生育に逸した条件を採、0得
るが、前記微生物を培地に接種した後、前記微生物が生
育してその菌体曾が最大にさしたとき、即ち対数増殖後
期から実質的に培地中に茜分子物質の生成、蓄積が停止
するまでの時間中、同一培地で培養をそのままg続する
ことが必要である。
In the culture method, conditions such as p111 temperature and acid system supply amount that fail to grow Escherichia microorganisms were adopted, and 0 was obtained. However, after inoculating the microorganisms into the medium, the microorganisms grew and It is necessary to continue culturing in the same medium for a period of time from when the growth rate reaches its maximum, that is, from the late stage of logarithmic growth until the production and accumulation of madder molecular substances in the medium substantially ceases.

エシェリヒア属の微生物の前日己菌体景が最大VC達し
たときから実質的に培地中に高分子物質の生成、蓄積が
停止するまでの時間は、はぼ/コーグざ時間の範囲であ
る、なお、p11条件は特に影曽されないが、9115
〜gの範囲、特にp117が過当である。かくして、培
養中に生育のために喪氷される無a!塩及び炭素源その
他の成分を培地に史に絵肌することなく、前記微生物の
菌体外に高分子物質が著量に生産(分泌)され、有オU
に採取し得る。
The time from when the bacterial population of Escherichia microorganisms reaches the maximum VC until the production and accumulation of polymeric substances in the medium substantially stops is within the time range of Habo/Koguza. , p11 condition is not particularly affected, but 9115
A range of ~g, especially p117, is reasonable. Thus, no aa is dehydrated for growth during cultivation. Using salts, carbon sources, and other components as a medium, a significant amount of polymeric substances are produced (secreted) outside the cells of the microorganisms, and the presence of
It can be collected.

本発明方法によって、生芝物質は目的とする単一の高分
子物質のみならず、複数の酵素蛋白類がそれぞれ菌体外
に@墓に生産(分路)され、併せて採取することができ
る。即ち、前記エシエリヒ7−コ1)HB10/(pC
X3//)株の培養ニより、キシラナーゼと共にベニシ
リナーゼや従来、菌体内にのみ検出されていたアルカリ
ホスファターゼが、後述の実施例に記載の如く、それぞ
れ菌体外に著量に分泌されることが明らかにされた。
According to the method of the present invention, the raw grass material is not only a single target polymer substance, but also multiple enzyme proteins are produced (shunted) outside the bacterial body @grave, and can be collected together. . That is, the above Esierich 7-co1) HB10/(pC
X3//) strain, it was found that xylanase, benicillinase, and alkaline phosphatase, which had previously been detected only inside the bacterial cells, were secreted in significant amounts outside the bacterial cells, as described in the Examples below. revealed.

これは、本発明によって得られる後述のプラスミr (
p c x 3 / / ) +c含まれる約9,0θ
00塩基対のDNAが、代謝産物の菌体外生殖(分泌)
能全宿主に附与していること全意味するものである。
This is based on the plasmid r (
p c x 3 / / ) +c included approximately 9,0θ
00 base pairs of DNA is used for extracellular reproduction (secretion) of metabolites.
It means that it is endowed with a fully competent host.

本発明の培養方法にエリ、酵素蛋白の他、抗生?!I實
、多糖類その他の筒分子発酵生産物を著量に生産するこ
とができ、また更に、外米の生理活性−分子物質の生産
の遺伝情報を担う[)NAと生理活性高分子物質の菌体
外選択生産(分泌)に関与する遺伝情報を担うDNAと
を併すもつノラスミドを利用することによって、インシ
ュリン等のホルモンペプチドやインターフェロン抗体等
の生理活性蛋白の大倉生座法にも適用し倚るので、有用
高分子物質の工業的発酵生産に寄与するところ極めて大
である。
Does the culture method of the present invention require antibiotics in addition to enzymes and proteins? ! In fact, polysaccharides and other cylindrical fermentation products can be produced in large quantities, and in addition, NA and bioactive polymeric substances, which carry genetic information for the production of biologically active molecular substances in foreign rice, can be produced in large quantities. By using norasmid, which has DNA that carries genetic information involved in extracellular selective production (secretion), it can also be applied to the Okura bioactive protein production method for hormone peptides such as insulin and physiologically active proteins such as interferon antibodies. It greatly contributes to the industrial fermentation production of useful polymeric substances.

以下に、本発明方法の一例として1酵素蛋白のキシラナ
ーゼの場合について説明する。まずその菌体外生産(分
泌)遺伝情報を担うDNAを組み込んだプラスミドによ
るエシェリヒア・コリの形質転換株の調製全例示する。
Below, as an example of the method of the present invention, the case of one enzyme protein, xylanase, will be explained. First, a complete example of the preparation of a transformed strain of Escherichia coli using a plasmid incorporating DNA carrying genetic information for extracellular production (secretion) will be described.

(りキシラナーゼ生産能の遺伝情報音もつDNAの調製 キシラナーゼを菌体外に生成、′4Ji私する能力を有
する好アルカリ性のバチルス・C/ユ5鉋(微工輯鉋奇
第73’l’を号)全培地1r/l):候10.0、酵
母エキスS、0、ポリ4グトン S、O、に、HPO4
/ 、θ、 Mg5(J4・りH2Cθ、62をNa 
z COA /θでpH4,θに5tuttしタモノコ
中、3θCで79時間振盪培glを行ない、対数JJI
I畑後期の菌体を来lsl後、フェノール法によるDN
A抽出法によってDNAを抽出、棺表し、DNA5岬を
4#た。
(Preparation of DNA with genetic information for xylanase production ability No.) Total medium 1r/l): 10.0%, yeast extract S, 0, poly 4gton S, O, HPO4
/ , θ, Mg5 (J4・riH2Cθ, 62 is Na
z COA / θ to pH 4, θ for 5 tuts, shaken culture for 79 hours at 3θC in Tamonoko, log JJI
After bringing the bacterial cells at the late stage of I field, DN was determined by the phenol method.
DNA was extracted using the A extraction method, extracted, and DNA 5 cape was extracted into 4 samples.

(21D N A断片のベクターへの挿入(1)で得た
0NA10μmをとり、制限エンドヌクレアーゼH1n
dlllk加え、37℃で3分、70分、20分、30
分、ルθ分反応させて部分的に切断した。一方、ベクタ
ーとして用いるテトラサイクリン抵抗性(Tetr )
 とアンピシリン抵抗性(Amp’ ) ’にもつpB
R322fラスミ ド D N A (Bethesd
a Re5earch Laboratorles社(
米国)袈)をHindll で完全に切断して、45C
,5分の熱処理後、前者と混合し、T4ファージ由来の
DNAリガーゼによって70℃、ユ弘時間DNA鎖の連
結反応を行ない、ルS℃、3分の熱処理慄、反応液にΩ
倍容のエタノールを加えてDNA’e組み込んだグラス
ミド1)NA全沈澱、採取した。
(Insertion of the 21D DNA fragment into the vector. Take 10 μm of the 0NA obtained in (1) and inject it with restriction endonuclease H1n.
Add dllllk and at 37℃ for 3 minutes, 70 minutes, 20 minutes, 30 minutes.
The mixture was allowed to react for 1 and θ minutes and was partially cleaved. On the other hand, tetracycline resistance (Tetr) used as a vector
and ampicillin resistance (Amp')'
R322f Lasmi de DNA (Bethesd
a Re5earch Laboratories (
(USA)) was completely cut off with Hindll and 45C
After heat treatment for 5 minutes, the former was mixed with the former, and the DNA strands were ligated at 70℃ using T4 phage-derived DNA ligase for 3 minutes.
Grasmid DNA'e was incorporated by adding twice the volume of ethanol. 1) Total NA precipitate was collected.

(3)キシラナーゼの菌体外生産(分泌)遺伝子を担う
プラスミドによる形質転換 エシェリヒア・コリK −/ 2株とエシェリヒア・3
98株のノ1イーグリッド株であるエシェリヒア 、 
コリH8107株(Mo1ecular Clonln
gALaboratoryManual p、301I
(/ 9 g 2 )参照〕(遺伝形g : F−1h
sds、!θ(r−8、m−8)、rec A / 、
J’、ara / II、ρroA2、 IacY/、
gal にコ、rps L 2θ(Sm’ )、xyl
 −3゜mtl−/、sup E 1111λ−)iL
B培地(純水/ を当 リ ト リ グ ト y (D
lfco ) / θ ノ、 酔イh エキスsy、グ
ルコース/ f、Na1l /θr’を含み、pH’7
.0にl!14IRシたもの)/θ罰に接種し、37C
で振盪培養を行ない、対数増畑後期まで生育させた後に
集菌した。これ紮水冷下、最終濃度でθ、 03 M 
CaC22の浴液に順次懸濁させてコンピテントな細胞
とした。この細胞m =液に(2)で得たプラスミドD
NAの浴屏故を加えて水冷下でAO分反応させ、&2C
,/〜コ分間ヒートショックを与えて前記グラスミドD
NA全細胞内に取り込ませた。次いで、この細胞懸濁液
を別途、前記LB培地に接種し、37℃、3〜!r時間
振盪培養して形質転換反応を行なった後、粂菌、洗滌し
て形質転換稍を得、 そのなかからエシェリヒア・コリ
Ha/θ/ (pcx、1//)(微工研−寄第73’
lS号) (FERMP−り3ダS)を得た。この形質
転換株のグラスミド(pCXJ//)Lキシラナーゼの
菌体外生産(分泌)に関与する遺伝情@を担うキシラナ
ーゼDNA断片が組み込まれているDNA円形分子、即
ち98R312fラスミドDNAと約lIt、θθOの
塩基対のDNAから成るデ、0/Kbの新規なりNA円
形分子であり、その制限酵素切断地図は第を図に示すと
おりである。
(3) Transformation with a plasmid carrying the extracellular production (secretion) gene of xylanase Escherichia coli K-/2 strain and Escherichia coli strain 3
Escherichia, which is 98 shares of No. 1 Egrid strain,
coli strain H8107 (Molecular Clonln
gAL Laboratory Manual p, 301I
(/9 g2)] (Genetic form g: F-1h
sds,! θ(r-8, m-8), rec A/,
J', ara/II, ρroA2, IacY/,
gal Niko, rps L 2θ(Sm'), xyl
-3゜mtl-/, sup E 1111λ-)iL
B medium (pure water/) was added (D
Contains lfco) / θ, Intoxicating extract sy, glucose/f, Na1l/θr', pH'7
.. 0 to l! 14IR Shimono) / θ punishment, 37C
After culturing with shaking, the cells were harvested after growing to late logarithmic expansion. The final concentration was θ, 03 M under cooling with water.
The cells were sequentially suspended in a CaC22 bath solution to obtain competent cells. This cell m = plasmid D obtained in (2) in the solution
Add a bath of NA and react with AO under water cooling, &2C
,/~ by applying a heat shock to the Grasmid D.
NA was incorporated into all cells. Next, this cell suspension was separately inoculated into the LB medium and incubated at 37°C for 3~! After culturing with shaking for r hours to perform a transformation reaction, the Mice bacteria were washed to obtain transformed microorganisms, from which Escherichia coli Ha/θ/ (pcx, 1//) (Feikoken-Kyodai 73'
1S) (FERMP-RI3DAS) was obtained. This transformed strain, Grasmid (pCXJ//), contains a DNA circular molecule incorporating a xylanase DNA fragment carrying the genetic information involved in the extracellular production (secretion) of L xylanase, that is, 98R312f lasmid DNA and approximately 1It, θθO. It is a novel 0/Kb NA circular molecule consisting of DNA with 1 base pair, and its restriction enzyme cleavage map is as shown in the figure.

実施例/ 前記(3)で得られた形質転換株、エシェリヒア・コリ
He/θ/ (pC,X3//H微工研−寄第り3岬5
号)(FERMP−73グS)を、LB培地(/1当り
トリグトン/θv1酵母エキス51、グルコース/1、
グリセロールur、NaCt/θ)、ペニシリン10キ
全言む)10Cmeに0、Sチのキシランを含むSθO
Mg容のフラスコで37℃にて振盪培養した。細胞の生
育(菌体菫の測定は、A A o nmの販光度(00
)で、酵素活性は、酵素液0.005罰にキシラナーゼ
(生化M?丘繞紬1ハ I−b江fN +口ひ ハ^ハ
 へ瓢粛1リスマレイド緩衝液θ、/罰を加えて90℃
で70分間反応させ、DNS(3,5− dinitrosalicyllc acid ) /
 rrd;f加えて700℃でS分間反応させた後に水
グmlを加えて510mμの吸光kk測短し、7分間に
キシロース/Tnyの還元力音生する酵素量をキシラナ
ーゼ/単位(U)とした。
Example/Transformed strain obtained in (3) above, Escherichia coli He/θ/ (pC,
No.) (FERMP-73gS) was mixed with LB medium (Trigton/θv1 yeast extract 51, glucose/1,
Glycerol ur, NaCt/θ), Penicillin 10K) SθO containing 0 and S xylan in 10Cme
Shaking culture was carried out at 37°C in an Mg flask. Cell growth (bacterial violet measurement is performed using A A o nm luminous intensity (00
), and the enzyme activity is 90 by adding 0.005 enzyme solution to xylanase (biochemical M? ℃
DNS (3,5-dinitrosalicyl acid) /
After adding rrd;f and reacting at 700℃ for S minutes, add ml of water and measure the absorption kk at 510 mμ, and calculate the amount of enzyme that produces the reducing power of xylose/Tny in 7 minutes as xylanase/unit (U). did.

第1図に、前記LB培地に0.S%ギシランを加えた培
地を用いた場合のキシラナーゼの活性、即ちキシラナー
ゼの菌体外生産C分泌)能を示すグラフである。
FIG. 1 shows that the LB medium has 0. It is a graph showing xylanase activity, that is, xylanase extracellular production (C secretion) ability when using a medium containing S% Gysilane.

前Hピ形質転換株の菌体1は接蝕後、9〜/コ時間で最
大に煙し、第1図に示すとおり、菌体外キシラナゼの活
性にほぼ6時間抜力・ら増大しにじめ、73時間仮に最
大に達した(キθ、33U/me)。
Cell 1 of the pre-Hpi transformed strain reached its maximum level at 9 hours after inoculation, and as shown in Figure 1, the extracellular xylanase activity continued to increase for approximately 6 hours. At first, it tentatively reached the maximum for 73 hours (ki θ, 33 U/me).

生産されたキシラナーゼに非常If(女定であり、第1
図VC示されるように、更に七の才ま培養(il−11
g時間まで継続しても生産量に減少せず、全酵素活性の
ざ0%以上に達した。これに対して、菌体内キシラナー
ゼに、培養初期(接種後7時間)において若干認められ
たが、その生産は全酵素活性の10%程度であり、最高
で0゜/ 3 U / trteに過ぎず、しかもその
活性は徐々に減少した。
If the xylanase produced is extremely
As shown in Figure VC, an additional seven-year-old culture (IL-11
Even if the production was continued for up to g hours, the production amount did not decrease and reached 0% or more of the total enzyme activity. On the other hand, although some intracellular xylanase was observed in the early stage of culture (7 hours after inoculation), its production was about 10% of the total enzyme activity, and the maximum was only 0°/3 U/trte. , and its activity gradually decreased.

また、第2図は、前記LB培地にキシランに代えて0゜
左チの飯を加えた培地を用いた場合のキシラナーゼの活
性を示すグラフであり、第1図の場合とはソ同様の仰向
が認めらizた。なお、比較として、DNA供与菌の前
記バチルス・C/lダ菌(微工研菌寄第73タグ号)を
培養してキシラナーゼ活性を測定した。
Furthermore, Fig. 2 is a graph showing the xylanase activity when using a medium in which 0° left side rice was added instead of xylan to the LB medium, which is different from the case in Fig. 1. The direction was recognized. As a comparison, the DNA donor bacillus Bacillus C/Ida (Feikoken Bacterial Serial No. 73 tag) was cultured and the xylanase activity was measured.

前記バチルス・C/、25菌の場合は、使用J路地((
r/l):キシラン1060、酵母エキスS、0、ポリ
にプトンS、θ、に2HPO4/ 、 (/%MgSO
4・ 7H20、0,2k Na2Co3 / θでp
Hろ。0に調整したもの〕/θQ mlを含むSOOゴ
容のフラスコに接種し、37℃で振盪培養した。
In the case of Bacillus C/, 25 bacteria, use J Alley ((
r/l): xylan 1060, yeast extract S, 0, polypone S, θ, 2HPO4/, (/%MgSO
4. 7H20, 0,2k Na2Co3/p at θ
H-ro. [adjusted to 0]/θQ ml was inoculated into a SOO-sized flask and cultured with shaking at 37°C.

培養液の菌体外キシラナーゼ活性をに時間初に測定した
。接種後、g時間で徐々に活性が上が9、弘g時間に至
ってやっと活性は最高C0,3U/d)に達したが、以
後急速に活性に減少した(第3図参照)。
The extracellular xylanase activity of the culture solution was measured at the beginning of the day. After inoculation, the activity gradually increased at 9 g hours, and reached the maximum activity (C0.3 U/d) at 9 g hours, but the activity rapidly decreased thereafter (see Figure 3).

実施例ス A+J 8己エシエリヒア・コリHB/θ/ (PCX
3//)(微工仙酌寄第734t3−吋)(FERMP
−73iis>の菌体外キシラナーゼ生産について、培
地中における無榛塩の影1Ik−を比較した。なお、培
養榮件に実施例/と同様である。
Example A+J 8 Eschierhia coli HB/θ/ (PCX
3//) (FERMP
The extracellular xylanase production of ``-73iis'' was compared with that of ``1Ik-'' without salt in the medium. The culture conditions are the same as in Examples.

即ち、実施例/の培地を基本培地と踵これに無懺塩fc
添加して/り時間および10時間、それぞれ培養し、無
機塩の影響を調べた。
That is, the medium of Example/ was added to the basal medium and the salt-free fc.
The effect of the inorganic salt was investigated by culturing for 1 hour and 10 hours after the addition of the inorganic salt.

この結果を第7表に示J0 第 / 表 実施例3 前記エシェリヒア・コリHB / 0 / (pCX3
//)(微工研菌寄第73qS号) (FERM P−
73グS)の菌体外生#物質について、グラスミド(p
CX3/ / )を導入しないエシェリヒア・コリHB
/θノ株及びρF3R32,2グラスミドを導入したエ
シェリヒア・コリH8107株の生伴物質と比較して、
キシラナーゼ以外の酵素蛋白類を調べた結果を第2表に
示す。
The results are shown in Table 7.
//) (FERM P-
Regarding the extracellular #substance of 73gS), Grasmid (p
Escherichia coli HB without introducing CX3/ / )
/θ strain and Escherichia coli H8107 strain into which ρF3R32,2 Grasmid was introduced,
Table 2 shows the results of examining enzyme proteins other than xylanase.

なお、培養条件h1実施例/のキシランを加えたLB培
地で、4ニシリナーゼについてな、37℃にてコθ時間
振盪培査し、アルカリホスファターゼ及びβ−ガラクト
シダーゼについては、75時間それぞれ培養した。また
、アルカリホスファターゼ及びβ−ガラクトシダーゼの
酵素活性は)波畏q2θnmにおける吸光度(OD )
を測定して表わしたものである。
In addition, in LB medium supplemented with xylan according to the culture conditions h1 Example, 4-nisirinase was cultured with shaking at 37° C. for θ hours, and alkaline phosphatase and β-galactosidase were cultured for 75 hours. In addition, the enzymatic activities of alkaline phosphatase and β-galactosidase are determined by the optical density (OD) at q2θnm.
It is measured and expressed.

(参号例) 実施例/の形質転換株の培簀液に硫酸アンモニウムを加
えて塩析した後、沈澱金水に溶力・して−夜流水で透析
し、pIIり、左のユQ’rn M燐酸−燐酸/ソーダ
ー緩衝液で平価化したCMセルロースVr。
(Example No.) After salting out by adding ammonium sulfate to the culture solution of the transformed strain in Example /, it was dissolved in precipitated gold water, dialyzed against night running water, pII filtered, and the left YuQ'rn M phosphate-CM cellulose Vr equalized with phosphate/soda buffer.

吸増させた後に食塩濃度をθ、/Mから0.7Mまで変
化させてキシラナーゼを治山させると、O,グM#後で
溶出される。活性のある区分金mめ−[−t77:?ツ
クスーG−10θ(5ephadcx G−/θO)に
よるダル沖過を行って鞘装キシラナーゼを得た。また、
前記バチルス・Cl2S劇(微工研菌寄第734tlI
号)の培養故全同体に処理して精製し、同様なキシラナ
ーゼを得た。
After increasing the absorption, xylanase is eluted after xylanase by changing the salt concentration from θ,/M to 0.7M. Active classification money m-[-t77:? Dull filtration with Tsukusu G-10θ (5ephadcx G-/θO) was performed to obtain sheath-mounted xylanase. Also,
The Bacillus Cl2S play (Feikoken Bacterial Serial No. 734tlI)
The same xylanase was obtained by treating and purifying the entire homogenate from the culture of No. 1).

両者のキシラナーゼの同一性をみるために、p11活性
、超遠心分析、電気泳動及び分子量等を測定したところ
、次のとおり両者の同一性が確認された。
In order to confirm the identity of both xylanases, p11 activity, ultracentrifugation analysis, electrophoresis, molecular weight, etc. were measured, and the identity of both was confirmed as follows.

a ) pH4t −31”を酢酸塩、pH5−g n
 ) IJ ス? レイ) 、pH7〜9はトリス塩酸
、p119〜//はグリシン苛性ソーダを用いて夫々詞
整し、前記測短法によってpHの影響全円べた結果、第
S図のとおり、両酵素のpH活性の同一性が明ら力・に
された。
a) pH4t-31” as acetate, pH5-g n
) IJ Su? Ray), pH 7-9 was adjusted using Tris-HCl, p119-// was adjusted using glycine caustic soda, and as a result of calculating the influence of pH using the above-mentioned distance measurement method, as shown in Figure S, the pH activity of both enzymes was adjusted. Sameness was made clear and powerful.

b)超遠心分析では、両醇素と−もに沈降定数約3.5
3の単一ピークを示した。
b) In ultracentrifugation analysis, the sedimentation constant of both doxions was approximately 3.5.
3 single peaks were shown.

c) pHg、 3のディスク電気泳動で両酵素ともに
一本のバンドになっており、アンフオラインによるエレ
クトロホーカシングで単一のピークを示し、等電点に乙
。3にあった。
c) Both enzymes form a single band in disk electrophoresis at pHg 3, and electrofocusing with ampholine shows a single peak, with a peak at the isoelectric point. It was on 3.

d)分子量は、両酵素毒もに5DS−ポリアクリルアミ
ド法により約グO2θθθと測定された。
d) The molecular weight of both enzymes was determined by the 5DS-polyacrylamide method to be about 202θθθ.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明方法で用いたエシェリヒア
・コリHe/θ/ (pCX3//)によるキシラナー
ゼ生産活性を、第3図は、バチルス・CI2!;菌によ
るキシラナーゼ生産活性金それぞれ示すグラフである。 第9図は、エシェリヒア・コリHe/θ/ (pCX3
//)のグラスミドCpCX3//)の制限#累切断地
図であり、第5図ハ、工7エリヒア・コリlθ/ Cp
CX3//)とノぐチルス・Clu5菌の差出するキシ
ラナーゼのpH活性の同一性を小ナグラフである。 %許出願人 理化学研究所 第3図 培養日間(hγ〕 第4図 □:ρBR322プラスニドDNA 区匠8a迄室羽 バカレスC425DNA断片(キシう
丈−ぜ’DNA断片) 第5図 E、coQしHB 101 (pcX311)−一→ 
ハ゛そトルレス・CI2!5jI2時許庁長官 若 杉
 和 夫 殿 の表示 昭和58年特許願第232507号の名称 微
生物の培養方法 をする者 との関係 出願人 称 (679)理化学研究所 埋入 命令の日イマ1 自 発 面中、第1図および第2図を別紙の通り訂正する。 手続補正書 59.10.−5 昭和 年 月 日 1、事件の表示 昭和58年特許願第23250’7号
2、発明の名称 微生物の培養方法 3、補正をする者 事件との関係 出願人 名称 (679)理化学研究所 4、代理人 5、補正命令の日付 自 発 明細書の記載を次のとおり訂正する。
Figures 1 and 2 show the xylanase production activity of Escherichia coli He/θ/ (pCX3//) used in the method of the present invention, and Figure 3 shows the xylanase production activity of Bacillus CI2! is a graph showing the xylanase production activity of bacteria. Figure 9 shows Escherichia coli He/θ/ (pCX3
This is a limit # cumulative cutting map of Grasmid CpCX3//) of //), and Fig. 5 C, E. coli lθ/ Cp
A small graph shows the identity of the pH activity of xylanase produced by CX3//) and Nogutilus Clu5. % Applicant RIKEN Figure 3 Culture period (hγ) Figure 4 □: ρBR322 Plasnid DNA Muroha until Kusho 8a Bakares C425 DNA fragment (kiss length-ze' DNA fragment) Figure 5 E, coQ and HB 101 (pcX311)-1→
Indication of Mr. Kazuo Wakasugi, Director-General of the Microbial System Torres CI2!5j I2 Title of Patent Application No. 232507 of 1988 Relationship with the person who performs the method of culturing microorganisms Applicant name (679) RIKEN Implantation Order Figures 1 and 2 will be corrected as shown in the attached sheet during the Japanese Imma 1 spontaneous release. Procedural amendment 59.10. -5 Showa year, month, day 1, case description 1982 Patent Application No. 23250'7 2, title of the invention Method for culturing microorganisms 3, relationship with the person making the amendment case Applicant name (679) RIKEN 4 , Agent 5, date of amendment order, amend the description of the invention specification as follows.

Claims (1)

【特許請求の範囲】 0)高分子物質の菌体外生産に関与する遺伝情報を担う
デオキシリポ核#I(DNA )i組み込んだグラスミ
ドを含有するエシェリヒア (Escherlchla ) f4に楓する微生物を
、生育のために要求される無機塩と共に、選択された炭
素源を含有する培地に接種し、接種後、前記微生物の菌
体量が最大に達したときから実質的に前記培地中に前記
高分子物質の生成、蓄積が停止するまでの時間中、培養
全そのま\継続することによって前記微生物の菌体外に
前記高分子物質を生産せしめることを特徴とする微生物
の培養方法。 (2) 無機塩が塩化ナトリウム又は塩化カリウムであ
る%rf請Zの範囲第+11項記載の培養方法。 (3) 塩化ナトリウム又は塩化カリウムが培地組成の
0.5〜3.0チである%許請求の範囲第(2)項記載
のt@養方法。 (4) 炭素源が皺又はキシランである特許請求の範囲
第+1+項記載の培養方法。 (5)培養時間が72〜グg時間である特許請求の範囲
第(1)項記載の培養方法。 (6) エシェリヒア属に属する微生物がエシェリヒア
・コリHB10/ (pCX3// )(倣工研繭寄第
73’lS号) (Escherlchla colt
HB10/ (ρCXJ’//))である特許請求の範
囲第(1)項記載の培養方法。 (7) プラスミドのベクターとしてpBR,?12プ
ラスミドのDNAを用いる特許請求の範囲第(11項記
載の培養方法。 (8) 高分子物質がパテ/I/X (Bacillu
s ) 、liに槁する微生物の代謝産物である%許請
求の範囲第+11項記載の培養方法。 (9) バチルス楓に属する微生物がバチルス(Bac
illus )・C/ 25 ah (微工研菌寄第7
34tグ号)である特許請求の範囲第(81狽記載の培
養方法。 鵠 高分子物質が酵素蛋白である特許請求の範囲第(1
1項記畝の培査方法。
[Scope of Claims] 0) Escherichia f4 containing deoxyliponucleus #I (DNA) i-incorporated grasmid, which carries the genetic information involved in the extracellular production of polymeric substances, is The macromolecular substance is inoculated into a medium containing the selected carbon source together with the inorganic salt required for the purpose, and after inoculation, from the time when the amount of microorganisms reaches the maximum, the polymer substance is substantially added to the medium. A method for culturing a microorganism, characterized in that the polymer substance is produced outside the microorganism by continuing the entire culture until production and accumulation cease. (2) The culture method according to item 11, wherein the inorganic salt is sodium chloride or potassium chloride. (3) The t@ culture method according to claim (2), wherein sodium chloride or potassium chloride accounts for 0.5 to 3.0% of the medium composition. (4) The culture method according to claim 1+, wherein the carbon source is wrinkles or xylan. (5) The culturing method according to claim (1), wherein the culturing time is 72 to 5 hours. (6) A microorganism belonging to the genus Escherichia is Escherichia coli HB10/ (pCX3//) (Imitation Koken Mayoyori No. 73'lS) (Escherlchla colt)
HB10/(ρCXJ'//)) The culture method according to claim (1). (7) pBR as a plasmid vector? Claim No. 12 (Culture method according to Claim 11) using plasmid DNA. (8) The polymeric substance is putty/I/X (Bacillus
s) and li. (9) Microorganisms belonging to Bacillus maple are Bacillus
illus)・C/25 ah (Microtechnical Laboratory No. 7
Claim No. 34(tg)), which is the culture method described in claim No. 81.
Method for culture of ridges described in Section 1.
JP58232507A 1983-03-08 1983-12-09 Culture of microorganism Granted JPS60126077A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP58232507A JPS60126077A (en) 1983-12-09 1983-12-09 Culture of microorganism
DK138984A DK138984A (en) 1983-03-08 1984-02-29 PLASMID, METHOD OF PRODUCING IT, MICROORGANISMS CONTAINING SAME AND PROCEDURE FOR CULTIVATING THE MICROORGANISM
FI840843A FI85721C (en) 1983-03-08 1984-03-02 Method for extracellular production of penicillinase, plasmid used in the method and method for constructing the plasmid
DE8484102440T DE3484207D1 (en) 1983-03-08 1984-03-07 PLASMIDES, METHODS FOR PREPARING THEM, MICROORGANISMS CONTAINING THESE PLASMIDES, AND METHOD FOR CULTIVATING THE MICROORGANISMS.
EP88121510A EP0316023B1 (en) 1983-03-08 1984-03-07 Plasmids, methods for their construction, microorganisms carrying them and methods for the extracellular production of xylanase by cultivation of the microorganisms
AT84102440T ATE61410T1 (en) 1983-03-08 1984-03-07 PLASMIDS, METHODS FOR THEIR PREPARATION, MICROORGANISMS CONTAINING SUCH PLASMIDS AND METHODS FOR CULTIVATION OF THE MICROORGANISMS.
DE19843486163 DE3486163T2 (en) 1983-03-08 1984-03-07 Plasmids, processes for their preparation, microorganisms containing them and methods for extracellular production of xylanase by culturing these microorganisms.
AT88121510T ATE90387T1 (en) 1983-03-08 1984-03-07 PLASMIDS, PROCESSES FOR THEIR PRODUCTION, MICROORGANISMS CONTAINING THEM, AND METHODS FOR THE EXTRACELLULAR PRODUCTION OF XYLANASE BY GROWING THESE MICROORGANISMS.
EP84102440A EP0121138B1 (en) 1983-03-08 1984-03-07 Plasmids, methods for contruction of the same, microorganisms carrying the plasmids and methods for cultivation of the microorganisms
CA000449095A CA1226833A (en) 1983-03-08 1984-03-08 Plasmids, methods for construction of the same, microorganisms carrying the plasmids and methods for cultivation of the microorganism
US06/590,636 US4624922A (en) 1983-12-09 1984-03-19 Plasmid, method for construction of the same, microorganism carrying the plasmid and method for cultivation of the microorganism
FI890246A FI86438C (en) 1983-03-08 1989-01-17 Plasmids Inducing Extracellular Secretion of Xylanase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58232507A JPS60126077A (en) 1983-12-09 1983-12-09 Culture of microorganism

Publications (2)

Publication Number Publication Date
JPS60126077A true JPS60126077A (en) 1985-07-05
JPH0375153B2 JPH0375153B2 (en) 1991-11-29

Family

ID=16940408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58232507A Granted JPS60126077A (en) 1983-03-08 1983-12-09 Culture of microorganism

Country Status (1)

Country Link
JP (1) JPS60126077A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756495A (en) * 1980-09-24 1982-04-05 Kyowa Hakko Kogyo Co Ltd Novel dna-introduction vector and recombinant dna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756495A (en) * 1980-09-24 1982-04-05 Kyowa Hakko Kogyo Co Ltd Novel dna-introduction vector and recombinant dna

Also Published As

Publication number Publication date
JPH0375153B2 (en) 1991-11-29

Similar Documents

Publication Publication Date Title
US4460688A (en) Plasmid and its use
US4624922A (en) Plasmid, method for construction of the same, microorganism carrying the plasmid and method for cultivation of the microorganism
CA1206108A (en) Process for transforming microorganism by means of plasmid introduction
JPS60126077A (en) Culture of microorganism
JP3492935B2 (en) Plasmid vector
JPH062061B2 (en) Process for producing N-acetylneuraminic acid lyase
CZ2017537A3 (en) The strain of Clostridium histolyticum, collagenase prepared using this strain and its use
DE3486163T2 (en) Plasmids, processes for their preparation, microorganisms containing them and methods for extracellular production of xylanase by culturing these microorganisms.
JP2587764B2 (en) Method for producing N-acylneuraminic acid aldolase
US4376164A (en) Process for preparing broad host range small plasmid rings as cloning vehicles
EP0216080B1 (en) Novel plasmids and transformants
US4962055A (en) Plasmid, method for construction of the same, microorganisms carrying the plasmid and method for cultivation of the microorganism
JP2590462B2 (en) Method for producing thermostable protease
JPH0355105B2 (en)
US5246839A (en) Secretion plasmid comprising the kilgene
FI86438B (en) Plasmids which induce extracellular secretion of xylanase, methods for production thereof, and methods for production of xylanase
EP0316023B1 (en) Plasmids, methods for their construction, microorganisms carrying them and methods for the extracellular production of xylanase by cultivation of the microorganisms
JPH0142674B2 (en)
JPH0142675B2 (en)
JPH0579308B2 (en)
JPS61158790A (en) Novel plasmid, preparation thereof and novel microorganism containing said plasmid
JPS62277A (en) Novel plasmid, novel microorganism transformed therewith and production of useful physiologically active substance using same
JPS62275684A (en) Recombinant vector and bacterial cell containing same
JPS63209589A (en) Recombinant plasmid containing nal (n-acylneuraminate aldolase) gene, bacterium belonging to genus provindencia transformed by said plasmid and production of nal
JPH0799975A (en) Recombinant shuttle vector