JPH0355105B2 - - Google Patents

Info

Publication number
JPH0355105B2
JPH0355105B2 JP58038087A JP3808783A JPH0355105B2 JP H0355105 B2 JPH0355105 B2 JP H0355105B2 JP 58038087 A JP58038087 A JP 58038087A JP 3808783 A JP3808783 A JP 3808783A JP H0355105 B2 JPH0355105 B2 JP H0355105B2
Authority
JP
Japan
Prior art keywords
dna
penicillinase
medium
production
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58038087A
Other languages
Japanese (ja)
Other versions
JPS59162874A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58038087A priority Critical patent/JPS59162874A/en
Priority to DK138984A priority patent/DK138984A/en
Priority to FI840843A priority patent/FI85721C/en
Priority to AT84102440T priority patent/ATE61410T1/en
Priority to DE8484102440T priority patent/DE3484207D1/en
Priority to EP84102440A priority patent/EP0121138B1/en
Priority to EP88121510A priority patent/EP0316023B1/en
Priority to AT88121510T priority patent/ATE90387T1/en
Priority to DE19843486163 priority patent/DE3486163T2/en
Priority to CA000449095A priority patent/CA1226833A/en
Publication of JPS59162874A publication Critical patent/JPS59162874A/en
Priority to US07/032,032 priority patent/US4962055A/en
Priority to FI890246A priority patent/FI86438C/en
Publication of JPH0355105B2 publication Critical patent/JPH0355105B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01032Xylan endo-1,3-beta-xylosidase (3.2.1.32), i.e. endo-1-3-beta-xylanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/86Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in cyclic amides, e.g. penicillinase (3.5.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01008Endo-1,4-beta-xylanase (3.2.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/02Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amides (3.5.2)
    • C12Y305/02006Beta-lactamase (3.5.2.6)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、宿主の微生物細胞内に、代謝産物で
ある高分子物質の菌体外選択生産に関与する特定
の遺伝情報を担うデオキシリボ核酸(DNA)を
組み込んだプラスミドを含有させてこれを培養せ
しめ、この特定の遺伝情報によつて高分子物質を
菌体外に生成、蓄積させて著量の生産物質を採取
することを目的とするものである。特定の遺伝情
報を担うDNAを組み込んだプラスミドを宿主の
微生物に導入し、この微生物を培養することによ
つてアミノ酸、ペプチド等の比較的低分子物質を
生産する方法が提案されているが、高分子物質の
生産能をもつプラスミドは宿主の微生物によつて
増殖の程度が異なり、且つプラスミドの十分な発
現機能を実現することができず、またその有効な
培養方法も確立されていない。 従来、微生物の代謝産物である高分子物質を菌
体外に生産する遺伝情報を担うDNAを組み込ん
だプラスミドによつて他の属に属する微生物を宿
主として形質転換させた場合、特定の生産物のみ
を菌体外に著量に生産せしめることができず、宿
主として通常用い得るエシエリヒア属の微生物で
はプラスミドによる形質転換によつてもこれを達
成することができなかつた。 これに対し、本発明者は、バチルス属に属する
微生物の代謝産物である高分子物質の菌体外選択
生産に関与する遺伝情報を担うDNAを組み込ん
だプラスミドをエシエリヒア属に属する微生物に
導入し、この微生物の培養方法を見出してその菌
体外に、酵素蛋白によつて代表される高分子物質
を著量に生産せしめ得ることに成功し、前記の目
的の達成を初めて可能とした。 以下、本発明方法について詳細に説明する。 本発明方法において用いられる微生物は、エシ
エリヒア属の染色体外遺伝子(プラスミド)とし
て知られるコリシンE1因子等の、培養された細
胞内で増殖し得る形式をとるプラスミド(染色体
外DNAすなわちベクターDNA)に、外来の遺伝
子DNAを組み込んだプラスミドを含有する、エ
シエリヒア・コリによつて代表されるエシエリヒ
ア属に属する微生物である。 前記ベクターDNAに組み込まれる外来遺伝子
DNA(染色体DNA断片)は、バチルス属の微生
物の特定の代謝産物の菌体外選択生産に関与する
情報を担うDNAであり、高分子物質、例えばペ
ニシリナーゼ、アミラーゼ、プロテアーゼ、β−
グルカナーゼ等の酵素蛋白を菌体外に生産せしめ
る情報を担うDNAが挙げられる。 前記ベクターDNAとしては、天然に存在する
ものを抽出したものゝ他、増殖に必須な部分以外
のDNAの部分が一部欠落しているものでもよく、
例えばColE1の系統、pMB9の系統、pSC101の系
統、R6Kの系統、ラムダーフアージの系統等が
挙げられる。 また、前記ベクターDNAに前記外来遺伝子
DNAを組み込む方法は、既知のいずれの方法も
適用し得る。例えば、適当な制限酵素
(Endonuclease)を選択、処理してDNAを切断
し、次いで同様に処理した、ベクターとして用い
るDNAと混合し、リガーゼによつて再結合する
方法が用いられる。 このように得られた外来の染色体DNA断片と
ベクターDNAの結合物を、形質転換法によつて
受容菌であるエシエリヒア属の微生物の菌体に導
入し、遺伝形質として安定するまで増殖すると、
所望の染色体上の遺伝形質とベクターDNAの形
質を併せもつ形質転換株が得られる。このように
して得られた微生物を培養するには、特定の遺伝
情報によつて生成される物質の生産に適した培地
であつて且つ宿主のエシエリヒア属の微生物の生
育に適した培地を用い得るが、本発明方法では、
使用培地の組成として、生育のために要求される
無機塩を必須に含有する培地で生育、増殖させ、
同一培地で菌体量が最大に達したときから実質的
に前記培地中に代謝産物である高分子物質の生
成、蓄積が停止するまでの時間中、そのまま培養
を継続することが必要である。無機塩としては、
特に塩化ナトリウムが有効であり、また塩化カリ
ウムも用い得る。無機塩を含有する培地として
は、グルコース、シユークロース、ラクトース、
マルトース、グリセロール等の炭素源、アンモニ
ア水、アンモニウム塩等の窒素源、無機イオンの
他に、必要に応じてアミノ酸、ビタミン等の栄養
素を含有させることができ、通常、エシエリヒ
ア・コリの生育培地として用いられるLB培地
(トリプトン、酵母エキス、食塩)、BPB培地
(Difco;ポリペプトン、酵母エキス、リン酸カ
リウム)、栄養、寒天培地(Difco0001)、トリプ
トン、食塩培地等を基本培地として調製したもの
を用いればよい。 無機塩を含まない前記の培地では、80%以上の
物質が菌体内で生産されるので、生成物質のほと
んどを菌体外に生産させるためには無機塩の存在
は必須である。また、無機塩の使用量は、培地組
成に対して0.5〜2.0%が適当である。 炭素源の影響は、前記LB培地にグルコースを、
又更にグリセロールを加えたときに特にすぐれた
結果が得られ、培地組成に対してそれぞれ0.1%
及び0.2%量の添加が望ましい。 培養方法は、PH、温度、酵素供給量等の条件と
してエシエリヒア属の微生物の生育に適した条件
を採り得るが、前記微生物を培地に接種した後、
前記微生物が生育してその菌体量が最大に達した
とき、即ち対数増殖後期から実質的に培地中に高
分子物質の生成、蓄積が停止するまでの時間中、
同一培地をそのまま継続することが必要である。 エシエリヒア属の微生物の前記菌体量が最大に
達したときから実質的に培地中に高分子物質の生
成、蓄積が停止するまでの時間は、ほぼ16〜48時
間の範囲である。なお、PH条件は特に影響されな
いが、PH6〜8が適当である。かくして、培養中
に生育のために要求される無機塩その他の成分を
培地に更に添加することなく、前記微生物の菌体
外に高分子物質が著量に生産され、有利に採取し
得る。 本発明方法によつて、生産物質は目的とする単
一の高分子物質のみならず、複数の酵素蛋白類が
それぞれ菌体外に著量に生産(分泌)され、併せ
て採取することができる。即ち、エシエリヒア・
コリHB101株の培養により、従来、菌体内にの
み検出されていたアルカリホスフアターゼ及びβ
−ガラクトシダーゼ並びに約10種の蛋白質から成
る蛋白質群が、後述の実施例に記載の如く、それ
ぞれ菌体外に著量に分泌されることが明らかにさ
れた。これは、本発明によつて得られる後述のプ
ラスミド(pEAP2)に含まれる約2000の塩基対
のDNAが、代謝産物の菌体外選択生産(分泌)
能を宿主に附与していることを意味するものであ
る。 本発明の培養方法により、酵素蛋白の他、抗生
物質、多糖類その他の高分子発酵生産物を著量に
生産することができ、また更に、外来の生産物の
遺伝情報を担うDNAとバチルス属に属する微生
物の菌体外選択生産に関与する遺伝情報を担う
DNAとを併せもつプラスミドを利用することに
よつて、インシユリン等のホルモンペプチドやイ
ンターフエロン抗体等の生理活性蛋白の大量生産
法にも適用し得るので、高分子物質の工業的発酵
生産に寄与するところ極めて大である。 以下に、本発明方法の一例として、酵素蛋白の
ペニシリナーゼの場合について説明する。まずそ
の菌体外選択生産遺伝情報を担うDNAを組み込
んだプラスミドによるエシエリヒア・コリの形質
転換株の調製を例示する。 (1) ペニシリナーゼ生産能の遺伝情報をもつ染色
体DNAの調製 ペニシリナーゼを菌体外に生成、蓄積する能
力を有する好アルカリ性のバチルス・No.170菌
(微工研菌寄第3221号)を培地〔(g/):グ
リセロール2.0、酵母エキス5.0、ポリペプトン
5.0、K2HPO41.0、MgSO4・7H2O0.2を
NaHCO310でPH9.0に調整したもの〕中、30℃
で19時間振盪培養を行ない、対数増殖後期の菌
体を集菌後、フエノール法によるDNA抽出法
によつて染色体のDNAを抽出、精製し、染色
体DNA5mgを得た。 (2) 染色体DNA断片のベクターへの挿入 (1)で得た染色体DNA10μgをとり、制限エ
ンドヌクレアーゼHindを加え、37℃で5分、
10分、20分、30分、60分反応させて部分的に切
断した。一方、ベクターとして用いるテトラサ
イクリン抵抗性(Tetr)のpMB9プラスミド
DNA(Bethesda Research Laboratories社
(米国)製)をHindで完全に切断して65℃、
5分の熱処理後、前者と混合し、T4フアージ
由来のDNAリガーゼによつて10℃、24時間
DNA鎖の連結反応を行ない、65℃、5分の熱
処理後、反応液に2倍容のエタノールを加えて
染色体DNAを組み込んだプラスミドDNAを沈
澱、採取した。 (3) ペニシリターゼの菌体外選択生産遺伝子を担
うプラスミドによる形質転換 エシエリヒア・コリK−12株とエシエリヒ
ア・コリB株のハイブリツド株であるエシエリ
ヒア・コリHB101株〔Molecular Cloning A
Laboratory Manual p.504(1982)参照〕
(遺伝形質:F-、hsds20(r- B、m- B)、rec
A13、ara-14、pro A2、lac Y1、gal K2、
rps L20(Sm1)、xyl−5、mtl−1、sup
E44λ-)をLB培地(純水1当りトリプトン
(Difco)10g、酵母エキス5g、グルコース
1g、NaCl10gをPH7.0に調製したもの)10ml
に接種し、37℃で振盪培養を行ない、対数増殖
後期まで生育させた後に集菌した。これを氷冷
下、最終濃度で0.03M CaCl2の溶液に順次懸濁
させてコンピテントな細胞とした。この細胞懸
濁液に(2)で得たプラスミドDNAの溶解液を加
えて氷冷下で60分反応させ、42℃、1〜2分間
ヒートシヨツクを与えて前記プラスミドDNA
を細胞内に取り込ませた。次いで、この細胞懸
濁液を別途、前記LB培地に接種し、37℃、3
〜5時間振盪培養して形質転換反応を行なつた
後、集菌、洗滌して形質転換株、エシエリヒ
ア・コリHB101(pEAP2)(微工研菌寄第6939
号)(FERMP−6939)を得た。この形質転換
株のプラスミド(pEAP2)は、ペニシリナー
ゼの菌体外選択生産(分泌)に関与する遺伝情
報を担うペニシリナーゼDNA断片が組み込ま
れているDNA円形分子、即ちpMB9プラスミ
ドDNAと約2000の塩基対のDNAから成る
7.7kbのDNA円形分子であり、その制限酵素切
断地図は第4図に示すとおりである。 以下、本発明方法を実施例により説明する。 実施例 1 前記(3)で得られた形質転換株、エシエリヒア・
コリHB101(pEAP2)(微工研菌寄第6939号)
(EFRMP−6939)を、LB培地(1当りトリプ
トン10g、酵母エキス5g、グルコース1g、グ
リセロール2g、NaCl10g)100mlを含む500ml
容のフラスコで37℃にて振盪培養した。細胞の生
育(菌体量の測定)は、波長660nmにおける吸
光度(OD)を測定し、菌体外及び菌体内生産の
ペニシリナーゼ活性をサージエント(Sargent)
の変法〔Sawai et al;Antimicrob.Agents
Chemother.13、910(1978)参照〕で測定し、30
℃、1分間に1マイクロモル(μmole)のベンジ
ルペニリシンを水解する酵素量をペニシリナーゼ
1単位(U)とした。 前記形質転換株の菌体量は接種後、16時間で最
大に達し、第1図に示すとおり、菌体外ペニシリ
ナーゼの活性はほぼ20時間後から増大しはじめ、
28時間後に最大に達した(≒20U/ml)。生産さ
れたペニシリナーゼは非常に安定であり、第1図
aに示されるように、更にそのまま培養を48時間
まで継続しても生産量は減少せず、全酵素活性の
80%以上に達した。これに対して、菌体内ペニシ
リナーゼは、培養初期(接種後8〜20時間)にお
いて認められたが、その生産は全酵素活性の10%
程度であり、最高で8U/mlに過ぎず、しかもそ
の活性は急速に減少し、48時間後では全く認めら
れなかつた。第1図bは、全酵素活性に対する菌
体外ペニシリナーゼと菌体内ペニシリナーゼの生
成の割合を示すものである。 比較として、DNA供与菌の前記バチルス・No.
170菌(微工研菌寄第3221号)及びDNA受容菌の
公知のエシエリヒア・コリHB101(pBR322)株
(ペニシリナーゼ生産能の遺伝情報を担う
pBR322プラスミドを含有する菌株)〔Boyer et
al;Gene、vol2、p.95−113(1977)参照〕を、そ
れぞれ培養してペニシリナーゼ活性を測定した。 前記バチルス・No.170菌の場合は、使用培地
〔(g/):グルコース(又はグリセロール)
2.0、酵母エキス5.0、ポリペプトン5.0、
K2HPO41.0、MgSO4・7H2O、0.2をNaHCO310
でPH9.0に調整したもの〕100mlを含む500ml容の
フラスコに接種し、37℃で振盪培養した。 培養液の菌体外ペニシリナーゼ活性を4時間毎
に測定した。接種後、12時間で活性は最高
(19U/ml)に達し、以後急速に減少して40時間
では全く認められなかつた(第2図参照)。 一方、エシエリヒア・コリHB101(pBR322)
の場合は、前記エシエリヒア・コリHB101
(pEAP2)株の培養に用いたLB培地の100mlを
500ml容のフラスコに入れて接種し、37℃で振盪
培養した。第3図aに示されるように、接種後、
20時間で全活性の80%以上が菌体内ペニシリナー
ゼとして認められたが(最高35U/ml)、以後急
速に減少し、菌体外ペニシリナーゼ活性は10%以
下が認められるに過ぎなかつた。第3図bは、全
酵素活性に対する菌体外ペニシリナーゼと菌体内
ペニシリナーゼの生成の割合を示すものである。 実施例 2 前記エシエリヒア・コリHB101(pEAP2)(微
工研菌寄第6939号)(FERMP−6939)の菌体外
ペニシリナーゼ生産について、各培地を用いてそ
の影響を比較した。なお、培養条件は実施例1と
同様である。
The present invention involves culturing a host microbial cell containing a plasmid incorporating deoxyribonucleic acid (DNA) carrying specific genetic information involved in the extracellular selective production of polymeric substances, which are metabolites. The purpose of this method is to use this specific genetic information to generate and accumulate a polymeric substance outside the bacterial body, and to collect a significant amount of the produced substance. A method has been proposed to produce relatively low-molecular substances such as amino acids and peptides by introducing a plasmid containing DNA carrying specific genetic information into a host microorganism and culturing this microorganism. Plasmids capable of producing molecular substances have different propagation levels depending on the host microorganism, and it is not possible to achieve a sufficient expression function of the plasmid, and no effective culture method has been established. Conventionally, when a microorganism belonging to another genus is transformed as a host with a plasmid containing DNA carrying the genetic information for producing macromolecular substances, which are metabolites of microorganisms, outside the microbial cell, only a specific product can be produced. However, it has not been possible to produce a significant amount of the microorganisms outside the bacterial cells, and this has not been possible even through plasmid-based transformation using microorganisms of the genus Escherichia that can normally be used as hosts. In response, the present inventor introduced into a microorganism belonging to the genus Escherichia a plasmid incorporating DNA carrying genetic information involved in the extracellular selective production of a polymeric substance, which is a metabolite of a microorganism belonging to the genus Bacillus, and By discovering a method for culturing this microorganism, we succeeded in producing a significant amount of polymeric substances, typified by enzyme proteins, outside the microbial cells, making it possible for the first time to achieve the above-mentioned objective. The method of the present invention will be explained in detail below. The microorganism used in the method of the present invention contains a plasmid (extrachromosomal DNA, or vector DNA) in a format that can proliferate in cultured cells, such as the colicin E 1 factor known as an extrachromosomal gene (plasmid) of the genus Escherichia. , a microorganism belonging to the genus Escherichia represented by Escherichia coli, containing a plasmid incorporating foreign genetic DNA. Foreign gene incorporated into the vector DNA
DNA (chromosomal DNA fragment) is DNA that carries information related to the extracellular selective production of specific metabolites of microorganisms of the genus Bacillus, and is a DNA that carries information related to the extracellular selective production of specific metabolites of microorganisms of the genus Bacillus.
Examples include DNA that carries information that allows enzyme proteins such as glucanase to be produced outside the bacterial cell. The vector DNA may be extracted from naturally occurring DNA, or may be one in which part of the DNA other than the part essential for proliferation is missing.
Examples include the ColE 1 strain, the pMB9 strain, the pSC101 strain, the R6K strain, and the lambda phage strain. Further, the foreign gene may be added to the vector DNA.
Any known method can be applied to incorporate DNA. For example, a method is used in which DNA is selected and treated with an appropriate restriction enzyme (Endonuclease) to cleave the DNA, then mixed with similarly treated DNA to be used as a vector, and religated with ligase. When the conjugate of the foreign chromosomal DNA fragment and vector DNA obtained in this way is introduced into the cells of a recipient microorganism of the genus Escherichia by a transformation method and multiplied until it becomes stable as a genetic trait,
A transformed strain having both the desired genetic traits on the chromosome and the traits of the vector DNA can be obtained. To culture the microorganism thus obtained, a medium suitable for producing a substance produced by specific genetic information and suitable for the growth of the host microorganism of the genus Escherichia can be used. However, in the method of the present invention,
The composition of the medium used is to grow and proliferate in a medium that essentially contains inorganic salts required for growth.
It is necessary to continue culturing in the same medium for a period of time from when the amount of bacterial cells reaches the maximum until the production and accumulation of polymeric substances, which are metabolites, substantially cease in the medium. As an inorganic salt,
Particularly effective is sodium chloride, and potassium chloride can also be used. Examples of media containing inorganic salts include glucose, sucrose, lactose,
In addition to carbon sources such as maltose and glycerol, nitrogen sources such as aqueous ammonia and ammonium salts, and inorganic ions, nutrients such as amino acids and vitamins can be added as necessary, and are usually used as a growth medium for Escherichia coli. LB medium (tryptone, yeast extract, salt), BPB medium (Difco; polypeptone, yeast extract, potassium phosphate), nutrients, agar medium (Difco0001), tryptone, salt medium, etc. are used as basic media. Bye. In the above-mentioned medium that does not contain inorganic salts, more than 80% of the substances are produced within the bacterial cells, so the presence of inorganic salts is essential in order to produce most of the produced substances outside the bacterial cells. Further, the appropriate amount of inorganic salt to be used is 0.5 to 2.0% based on the medium composition. The effect of carbon source is glucose in the LB medium,
Particularly good results were also obtained when glycerol was further added, each at 0.1% relative to the medium composition.
It is desirable to add 0.2%. The culture method can adopt conditions suitable for the growth of microorganisms of the genus Escherichia, such as pH, temperature, enzyme supply amount, etc., but after inoculating the microorganisms into the medium,
During the period from when the microorganism grows and reaches its maximum cell mass, that is, from the late stage of logarithmic growth until production and accumulation of polymeric substances in the medium substantially cease,
It is necessary to continue using the same medium. The time from the time when the amount of microorganisms of the genus Escherichia reaches the maximum until the production and accumulation of polymeric substances in the medium substantially stops is in the range of about 16 to 48 hours. Note that the pH condition is not particularly affected, but a pH of 6 to 8 is suitable. In this way, a large amount of polymeric substances are produced outside the cells of the microorganism and can be advantageously collected without further adding inorganic salts and other components required for growth to the medium during culture. By the method of the present invention, not only a single target polymeric substance but also multiple enzyme proteins are produced (secreted) in large amounts outside the bacterial cells, and can be collected together. . That is, Esierihia
By culturing the E. coli HB101 strain, alkaline phosphatase and β, which had previously been detected only within the bacterial body, were detected.
- It has been revealed that galactosidase and a protein group consisting of about 10 proteins are each secreted in significant amounts outside the bacterial cells, as described in the Examples below. This is because the approximately 2000 base pair DNA contained in the plasmid (pEAP2), which will be described later, obtained by the present invention is used for selective extracellular production (secretion) of metabolites.
This means that the host is endowed with this ability. The culture method of the present invention enables the production of enzyme proteins, antibiotics, polysaccharides, and other polymeric fermentation products in large quantities, and furthermore, it is possible to produce a large amount of fermented polymer products such as enzyme proteins, antibiotics, polysaccharides, and other polymer fermentation products. Responsible for genetic information involved in extracellular selective production of microorganisms belonging to
By using plasmids with DNA, it can be applied to mass production of hormone peptides such as insulin and physiologically active proteins such as interferon antibodies, contributing to the industrial fermentation production of polymeric substances. It is extremely large. The case of penicillinase, an enzyme protein, will be explained below as an example of the method of the present invention. First, we will exemplify the preparation of a transformed strain of Escherichia coli using a plasmid incorporating DNA carrying the genetic information for in vitro selection production. (1) Preparation of chromosomal DNA with genetic information for penicillinase production ability In a culture medium [ (g/): glycerol 2.0, yeast extract 5.0, polypeptone
5.0, K2HPO4 1.0 , MgSO47H2O0.2
pH adjusted to 9.0 with NaHCO 3 10], 30℃
After culturing with shaking for 19 hours and collecting bacterial cells in the late phase of logarithmic growth, chromosomal DNA was extracted and purified using the phenol DNA extraction method to obtain 5 mg of chromosomal DNA. (2) Insertion of chromosomal DNA fragment into vector Take 10μg of chromosomal DNA obtained in (1), add restriction endonuclease Hind, and incubate at 37℃ for 5 minutes.
Partial cleavage was performed after reacting for 10, 20, 30, and 60 minutes. On the other hand, the tetracycline-resistant (Tet r ) pMB9 plasmid used as a vector
DNA (manufactured by Bethesda Research Laboratories (USA)) was completely cut with Hind and incubated at 65°C.
After 5 minutes of heat treatment, the mixture was mixed with the former and incubated at 10°C for 24 hours using T4 phage-derived DNA ligase.
A ligation reaction of the DNA strands was carried out, and after heat treatment at 65°C for 5 minutes, twice the volume of ethanol was added to the reaction solution to precipitate and collect plasmid DNA incorporating chromosomal DNA. (3) Transformation with a plasmid carrying an extracellular selective production gene for penicillidase Escherichia coli HB101 strain, which is a hybrid strain of Escherichia coli K-12 and Escherichia coli B [Molecular Cloning A
See Laboratory Manual p.504 (1982)]
(genetic traits: F- , hsds20(r - B , m - B ), rec
A13, ara - 14, pro A2, lac Y1, gal K2,
rps L20 (Sm 1 ), xyl-5, mtl-1, sup
E44λ - ) in 10 ml of LB medium (10 g of tryptone (Difco), 5 g of yeast extract, 1 g of glucose, and 10 g of NaCl adjusted to pH 7.0 per 1 pure water)
The cells were inoculated, cultured with shaking at 37°C, grown to late logarithmic growth, and then harvested. This was sequentially suspended in a solution of 0.03M CaCl 2 at a final concentration under ice cooling to obtain competent cells. The plasmid DNA solution obtained in (2) was added to this cell suspension, reacted for 60 minutes on ice, and then subjected to a heat shock at 42°C for 1 to 2 minutes to extract the plasmid DNA.
was taken into cells. Next, this cell suspension was separately inoculated into the LB medium and incubated at 37°C for 3
After carrying out a transformation reaction by culturing with shaking for ~5 hours, the bacteria were harvested and washed to obtain the transformed strain, Escherichia coli HB101 (pEAP2) (Feikoken Bacteria Collection No. 6939).
(FERMP-6939). The plasmid (pEAP2) of this transformed strain is a DNA circular molecule containing a penicillinase DNA fragment that carries genetic information involved in the extracellular selective production (secretion) of penicillinase, that is, pMB9 plasmid DNA and approximately 2000 base pairs. consists of the DNA of
It is a 7.7kb DNA circular molecule, and its restriction enzyme cleavage map is as shown in Figure 4. The method of the present invention will be explained below using examples. Example 1 The transformed strain obtained in (3) above, Escherichia
Coli HB101 (pEAP2) (Feikoken Bibori No. 6939)
(EFRMP-6939) in 500 ml containing 100 ml of LB medium (10 g of tryptone, 5 g of yeast extract, 1 g of glucose, 2 g of glycerol, 10 g of NaCl).
The cells were cultured with shaking at 37°C in a large flask. Cell growth (measuring the amount of bacterial cells) is determined by measuring the absorbance (OD) at a wavelength of 660 nm, and the activity of penicillinase produced outside and inside the cells is measured using Sargent.
Variation of [Sawai et al; Antimicrob.Agents
Chemother. 13 , 910 (1978)], 30
The amount of enzyme that hydrolyzes 1 micromole (μmole) of benzylpenylicin per minute at ℃ was defined as 1 unit (U) of penicillinase. The amount of bacterial cells of the transformed strain reached its maximum 16 hours after inoculation, and as shown in Figure 1, the activity of extracellular penicillinase began to increase approximately 20 hours later.
The maximum was reached after 28 hours (≈20 U/ml). The produced penicillinase is very stable, and as shown in Figure 1a, even if the culture is continued for up to 48 hours, the production amount does not decrease, and the total enzyme activity decreases.
It reached over 80%. In contrast, intracellular penicillinase was observed in the early stage of culture (8 to 20 hours after inoculation), but its production accounts for 10% of the total enzyme activity.
The maximum activity was only 8 U/ml, and its activity decreased rapidly and was not observed at all after 48 hours. FIG. 1b shows the ratio of extracellular penicillinase and intracellular penicillinase production to the total enzyme activity. For comparison, the DNA donor Bacillus No.
170 bacteria (Feikoken Bacteria No. 3221) and a known DNA receptor strain Escherichia coli HB101 (pBR322) (carrying the genetic information for penicillinase production ability).
strain containing the pBR322 plasmid) [Boyer et
al; Gene, vol. 2, p. 95-113 (1977)] were cultured and the penicillinase activity was measured. In the case of Bacillus No. 170, the medium used [(g/): glucose (or glycerol)
2.0, yeast extract 5.0, polypeptone 5.0,
K2HPO4 1.0 , MgSO4.7H2O , 0.2NaHCO3 10
[adjusted to pH 9.0]] was inoculated into a 500 ml flask containing 100 ml, and cultured with shaking at 37°C. The extracellular penicillinase activity of the culture solution was measured every 4 hours. The activity reached its maximum (19 U/ml) 12 hours after inoculation, and then rapidly decreased until it was no longer observed at 40 hours (see Figure 2). On the other hand, E. coli HB101 (pBR322)
In the case of Escherichia coli HB101
(pEAP2) strain 100ml of LB medium used to culture
It was placed in a 500 ml flask, inoculated, and cultured with shaking at 37°C. As shown in Figure 3a, after inoculation,
At 20 hours, more than 80% of the total activity was observed as intracellular penicillinase (maximum 35 U/ml), but it rapidly decreased thereafter, and only 10% or less of extracellular penicillinase activity was observed. FIG. 3b shows the ratio of production of extracellular penicillinase and intracellular penicillinase to the total enzyme activity. Example 2 The influence of each culture medium on extracellular penicillinase production of Escherichia coli HB101 (pEAP2) (FERMP-6939) was compared using each medium. Note that the culture conditions were the same as in Example 1.

【表】 前記LB培地の成分による影響をみた結果を第
2表に示す。
[Table] Table 2 shows the results of looking at the effects of the components of the LB medium.

【表】 なお、トリプトン、トリプトーズ、ポリペプト
ン濃度はそれぞれ1%、NaClも1%である。 更に、LB培地中の炭素源の影響の結果を第3
表に示す。
[Table] The concentrations of tryptone, tryptose, and polypeptone are each 1%, and NaCl is also 1%. Furthermore, the results of the influence of carbon sources in the LB medium are shown in the third section.
Shown in the table.

【表】【table】

【表】 なお、グルコース、スターチ、シユークロー
ス、マルトース濃度はそれぞれ0.1%、グリセロ
ールは0.2%、NaClは1%である。 次に、トリプトン(1%)、グルコース(0.1
%)、グリセロール(0.2%)、酵母エキス(1%)
を含む培地にNaClを添加して20時間培養し、
NaClの影響を調べた。結果を第4表に示す。
[Table] The concentrations of glucose, starch, sucrose, and maltose are each 0.1%, glycerol is 0.2%, and NaCl is 1%. Next, tryptone (1%), glucose (0.1
%), glycerol (0.2%), yeast extract (1%)
Add NaCl to the medium containing and culture for 20 hours.
The influence of NaCl was investigated. The results are shown in Table 4.

【表】 実施例 3 前記エシエリヒア・コリHB101(pEAP2)(微
工研菌寄第6939号)(FERM P−6939)の菌体
外生産物質について、プラスミド(pEAP2)を
導入しないエシエリヒア・コリHB101株及び
pMB9プラスミドを導入したエシエリヒア・コリ
HB101株の生産物質と比較して、ペニシリナー
ゼ以外の酵素蛋白類を調べた結果を第5表に示
す。 なお、培養条件は、実施例1のLB培地で、37
℃にて20時間振盪培養し、また生産酵素蛋白の
内、アルカリホスフアターゼ及びβ−ガラクトシ
ダーゼの酵素活性は、波長420nmにおける吸光
度(OD)を測定して表わしたものであり、蛋白
質濃度は、培地1ml当りのmgとして表わし、その
他の条件は実施例1と同様である。
[Table] Example 3 Escherichia coli HB101 strain into which the plasmid (pEAP2) is not introduced regarding the extracellularly produced substances of the above Escherichia coli HB101 (pEAP2) (FERM P-6939) (FERM P-6939) as well as
Escherichia coli introduced with pMB9 plasmid
Table 5 shows the results of examining enzyme proteins other than penicillinase in comparison with the substances produced by the HB101 strain. The culture conditions were the LB medium of Example 1, 37
The enzyme activities of alkaline phosphatase and β-galactosidase were expressed by measuring the absorbance (OD) at a wavelength of 420 nm, and the protein concentration was Expressed as mg per ml of medium, other conditions were the same as in Example 1.

【表】 単位はmg/mlである。
参考例 実施例1の形質転換株の培養液を10分間、
10000×gで超遠心してアンモニウム硫酸塩で80
%飽和溶液とした。この沈澱物を水に溶解し、一
夜、0.1M NaClを含む0.05M燐酸緩衝液(PH7.0)
で透析した。この透析物を同一の緩衝液で平衡化
したセフアデツクスG−75(Sephadex G−75)
に通じて精製ペニシリナーゼを得た。 また、前記バチルス・No.170菌(微工研菌寄第
3221号)の培養液を同様に処理して精製ペニシリ
ナーゼを得た。 両者のペニシリナーゼの同一性をみるために、
酵素活性におけるPHの影響、熱安定性、分子量等
を測定した。その結果、次のとおり両者の同一性
が確認された。 (a) 酵素の安定性は各PH値の緩衝液を用い、30℃
で45分間インキユベートした後、調べた。その
結果、両酵素は、いずれもPH7〜10で安定であ
り、至適PHはPH6.0〜7.0であつた。 (b) 酵素の熱安定性は、酵素を0.05M燐酸緩衝液
(PH7.0)に溶解し、その溶液を10分間、所定の
温度で熱処理し、残存活性をPH7.0で測定する
ことにより調べた。その結果、いずれの酵素も
50℃まで安定であつた。 (c) 酵素の分子量の測定は、ゲル過法で行なつ
た。両酵素の分子量はいずれも27000〜22000と
推定された。
[Table] Unit is mg/ml.
Reference Example The culture solution of the transformed strain of Example 1 was incubated for 10 minutes.
Ultracentrifuge at 10,000 x g and dilute with ammonium sulfate.
% saturated solution. This precipitate was dissolved in water and overnight in 0.05M phosphate buffer (PH7.0) containing 0.1M NaCl.
Dialyzed with This dialysate was equilibrated with the same buffer solution to Sephadex G-75.
Purified penicillinase was obtained. In addition, the aforementioned Bacillus No. 170 bacterium (Feikoken Bacteria Collection
3221) was treated in the same manner to obtain purified penicillinase. To see the identity of both penicillinase,
The influence of pH on enzyme activity, thermal stability, molecular weight, etc. were measured. As a result, the identity of the two was confirmed as follows. (a) Enzyme stability was measured at 30°C using buffer solutions of various PH values.
After incubation for 45 minutes, the samples were examined. As a result, both enzymes were stable at pH 7 to 10, and the optimum pH was PH 6.0 to 7.0. (b) The thermostability of the enzyme can be determined by dissolving the enzyme in 0.05M phosphate buffer (PH7.0), heat-treating the solution at a specified temperature for 10 minutes, and measuring the residual activity at pH7.0. Examined. As a result, both enzymes
It was stable up to 50℃. (c) The molecular weight of the enzyme was measured by gel filtration method. The molecular weights of both enzymes were estimated to be 27,000 to 22,000.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法で用いたエシエリヒア・
コリHB101(pEAP2)によるペニシリナーゼの活
性を、第2図は、バチルス・No.170菌によるペニ
シリナーゼの活性を、第3図は、公知のエシエリ
ヒア・コリHB101(pBR322)によるペニシリナ
ーゼの活性をそれぞれ示すグラフである。第4図
は、エシエリヒア・コリHB101(pEAP2)のプラ
スミド(pEAP2)の制限酵素切断地図である。
Figure 1 shows Escherichia
Figure 2 is a graph showing the penicillinase activity by Bacillus No. 170, and Figure 3 is a graph showing the penicillinase activity by the known Escherichia coli HB101 (pBR322). It is. FIG. 4 is a restriction enzyme cleavage map of the plasmid (pEAP2) of Escherichia coli HB101 (pEAP2).

Claims (1)

【特許請求の範囲】[Claims] 1 バチルス(Bacillus)・No.170菌の代謝産物で
あるペニシリナーゼの菌体外選択生産に関与する
遺伝情報を担うデオキシリボ核酸(DNA)、また
は、該DNAとペニシリナーゼ以外の蛋白質をコ
ードするDNAとを組み込んだプラスミドを含有
するエシエリヒア(Escherichia)属に属する微
生物を、生育のために要求される無機塩を含有す
る培地に接種し、接種後、前記微生物の菌体量が
最大に達したときから実質的に前記培地中にペニ
シリナーゼ、または、ペニシリナーゼと前記蛋白
質の生成、蓄積が停止するまでの時間中、培養を
そのまま継続することによつて、前記微生物の菌
体外にペニシリナーゼ、または、ペニシリナーゼ
と前記蛋白質とを生成せしめることを特徴とする
微生物の培養方法。
1. Deoxyribonucleic acid (DNA) that carries genetic information involved in the extracellular selective production of penicillinase, a metabolite of Bacillus No. 170, or this DNA and DNA encoding a protein other than penicillinase. A microorganism belonging to the genus Escherichia that contains an integrated plasmid is inoculated into a medium containing an inorganic salt required for growth, and after inoculation, the microorganism is substantially By continuing the culture until the production and accumulation of penicillinase or penicillinase and the protein in the medium stops, penicillinase or penicillinase and the protein are removed outside the microorganism. A method for culturing microorganisms, characterized by producing proteins.
JP58038087A 1983-03-08 1983-03-08 Cultivation of microorganism Granted JPS59162874A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP58038087A JPS59162874A (en) 1983-03-08 1983-03-08 Cultivation of microorganism
DK138984A DK138984A (en) 1983-03-08 1984-02-29 PLASMID, METHOD OF PRODUCING IT, MICROORGANISMS CONTAINING SAME AND PROCEDURE FOR CULTIVATING THE MICROORGANISM
FI840843A FI85721C (en) 1983-03-08 1984-03-02 Method for extracellular production of penicillinase, plasmid used in the method and method for constructing the plasmid
AT88121510T ATE90387T1 (en) 1983-03-08 1984-03-07 PLASMIDS, PROCESSES FOR THEIR PRODUCTION, MICROORGANISMS CONTAINING THEM, AND METHODS FOR THE EXTRACELLULAR PRODUCTION OF XYLANASE BY GROWING THESE MICROORGANISMS.
DE8484102440T DE3484207D1 (en) 1983-03-08 1984-03-07 PLASMIDES, METHODS FOR PREPARING THEM, MICROORGANISMS CONTAINING THESE PLASMIDES, AND METHOD FOR CULTIVATING THE MICROORGANISMS.
EP84102440A EP0121138B1 (en) 1983-03-08 1984-03-07 Plasmids, methods for contruction of the same, microorganisms carrying the plasmids and methods for cultivation of the microorganisms
EP88121510A EP0316023B1 (en) 1983-03-08 1984-03-07 Plasmids, methods for their construction, microorganisms carrying them and methods for the extracellular production of xylanase by cultivation of the microorganisms
AT84102440T ATE61410T1 (en) 1983-03-08 1984-03-07 PLASMIDS, METHODS FOR THEIR PREPARATION, MICROORGANISMS CONTAINING SUCH PLASMIDS AND METHODS FOR CULTIVATION OF THE MICROORGANISMS.
DE19843486163 DE3486163T2 (en) 1983-03-08 1984-03-07 Plasmids, processes for their preparation, microorganisms containing them and methods for extracellular production of xylanase by culturing these microorganisms.
CA000449095A CA1226833A (en) 1983-03-08 1984-03-08 Plasmids, methods for construction of the same, microorganisms carrying the plasmids and methods for cultivation of the microorganism
US07/032,032 US4962055A (en) 1983-03-08 1987-03-30 Plasmid, method for construction of the same, microorganisms carrying the plasmid and method for cultivation of the microorganism
FI890246A FI86438C (en) 1983-03-08 1989-01-17 Plasmids Inducing Extracellular Secretion of Xylanase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58038087A JPS59162874A (en) 1983-03-08 1983-03-08 Cultivation of microorganism

Publications (2)

Publication Number Publication Date
JPS59162874A JPS59162874A (en) 1984-09-13
JPH0355105B2 true JPH0355105B2 (en) 1991-08-22

Family

ID=12515688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58038087A Granted JPS59162874A (en) 1983-03-08 1983-03-08 Cultivation of microorganism

Country Status (1)

Country Link
JP (1) JPS59162874A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4123494A1 (en) 2021-07-20 2023-01-25 Mitsubishi Heavy Industries, Ltd. Assembly evaluation system, assembly evaluation method, and assembly evaluation program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135599A (en) * 1984-12-04 1986-06-23 Green Cross Corp:The Production of heteroprotein

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519092A (en) * 1978-06-08 1980-02-09 Harvard College Selected protein producing method
JPS5756495A (en) * 1980-09-24 1982-04-05 Kyowa Hakko Kogyo Co Ltd Novel dna-introduction vector and recombinant dna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519092A (en) * 1978-06-08 1980-02-09 Harvard College Selected protein producing method
JPS5756495A (en) * 1980-09-24 1982-04-05 Kyowa Hakko Kogyo Co Ltd Novel dna-introduction vector and recombinant dna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4123494A1 (en) 2021-07-20 2023-01-25 Mitsubishi Heavy Industries, Ltd. Assembly evaluation system, assembly evaluation method, and assembly evaluation program

Also Published As

Publication number Publication date
JPS59162874A (en) 1984-09-13

Similar Documents

Publication Publication Date Title
EP0120693B1 (en) Maltogenic amylase enzyme product, preparation and use thereof
JP2520895B2 (en) Method for producing L-glutamic acid
US4624922A (en) Plasmid, method for construction of the same, microorganism carrying the plasmid and method for cultivation of the microorganism
JPS6037989A (en) Production increase of penicilin acylase and plasmid used therein
JPH0355105B2 (en)
JP3492935B2 (en) Plasmid vector
EP0129119B1 (en) Method for producting l-aspartic acid
EP0123903A2 (en) Method for producing L-aspartic acid
JPH0142674B2 (en)
EP0121138B1 (en) Plasmids, methods for contruction of the same, microorganisms carrying the plasmids and methods for cultivation of the microorganisms
EP0164754A1 (en) Process for producing N-acetylneuraminate lyase
JP2587764B2 (en) Method for producing N-acylneuraminic acid aldolase
US4962055A (en) Plasmid, method for construction of the same, microorganisms carrying the plasmid and method for cultivation of the microorganism
EP0187382B1 (en) Plasmid, method for construction of the same, microorganism carrying the plasmid and method for cultivation of the microorganism
JPH0375153B2 (en)
JPS6229982A (en) Novel plasmid and novel microorganism transformed by said plasmid
FI86438B (en) Plasmids which induce extracellular secretion of xylanase, methods for production thereof, and methods for production of xylanase
JPH0142675B2 (en)
JP2833793B2 (en) Plasmid encoding heparinase, heparinase-producing strain carrying this plasmid, and method for producing heparinase
US5190874A (en) Method for producing penicillinase and xylanase
JP2681634B2 (en) New bacterial strain with enhanced thermostable liquefied amylase production capacity
EP0316023B1 (en) Plasmids, methods for their construction, microorganisms carrying them and methods for the extracellular production of xylanase by cultivation of the microorganisms
HYUN et al. Strain improvement for enhanced production of streptokinase and streptodornase in Streptococcus sp.
JPS6139037B2 (en)
JPS61280284A (en) Recombinant dna, production thereof, and production of bactrerium of bacillus genus and cellulase containing same