JPS60125705A - Combined cycle power plant - Google Patents

Combined cycle power plant

Info

Publication number
JPS60125705A
JPS60125705A JP23128383A JP23128383A JPS60125705A JP S60125705 A JPS60125705 A JP S60125705A JP 23128383 A JP23128383 A JP 23128383A JP 23128383 A JP23128383 A JP 23128383A JP S60125705 A JPS60125705 A JP S60125705A
Authority
JP
Japan
Prior art keywords
steam
temperature
turbine
pressure
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23128383A
Other languages
Japanese (ja)
Inventor
Osamu Terajima
寺島 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23128383A priority Critical patent/JPS60125705A/en
Publication of JPS60125705A publication Critical patent/JPS60125705A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To flow steam of a temperature corresponding to the temperature of the casing of a steam turbine by providing a high pressure superheater bypass pipe which bypasses an inlet and an outlet of a high pressure superheater through a steam flow quantity adjusting valve. CONSTITUTION:The high-pressure superheater bypass pipe 35 having a steam flow quantity adjusting valve 34 is provided from this side of the high pressure superheater 19 of a generated steam pipe 18 of a high pressure steam drum 16, and is joined with a high pressure main steam pipe 22 at the outlet of the heater 19. The flow quantity of high temperature steam passing through the heater 19 and that of low temperature steam bypassed through the heater 19 are adjusted and mixed by means of the adjusting valve 34, and it is possible to feed steam to the steam turbine 4 by mating the temperature of steam in the rear of the joined point of the bypass pipe 35 and the steam pipe 22 with the temperature of the casing of the steam turbine 4. As a result, the temperature difference between the temperature of the steam turbine and the temperature of steam at the time of starting the turbine 4 and at the time of the load variation of the gas turbine 2 is reduced thereby to reduce the generation of thermal stress of the casing and the like.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガスタービンの排気ガスにより蒸気タービンの
駆動蒸気を発生させるコンバインドサイクル発電プラン
トに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a combined cycle power plant that generates driving steam for a steam turbine using exhaust gas from a gas turbine.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第1図は従来のコンバインドサイクル発電プラントの系
統図であって、空気圧縮機1、ガスタービン2、ガスタ
ービン発電機3、蒸気ターヒ′ン4および蒸気タービン
発電機5などから構成される。
FIG. 1 is a system diagram of a conventional combined cycle power generation plant, which includes an air compressor 1, a gas turbine 2, a gas turbine generator 3, a steam turbine 4, a steam turbine generator 5, and the like.

給気管6を介して空気圧縮機1に導入された空気は圧縮
されん燃焼器7に入り、燃料制御弁8を介して燃料供給
管9から供給される燃料と混合されて燃焼する。、燃焼
器7で発生した燃焼ガスは連絡管10を介してガスター
ビン2に入り、そこで膨張して仕事をして排ガスとなり
、排ガス管11を介して排熱回収ボイラー12に送られ
る。
Air introduced into the air compressor 1 via the air supply pipe 6 is not compressed and enters the combustor 7, where it is mixed with fuel supplied from the fuel supply pipe 9 via the fuel control valve 8 and combusted. The combustion gas generated in the combustor 7 enters the gas turbine 2 via the connecting pipe 10, expands there, performs work, becomes exhaust gas, and is sent to the exhaust heat recovery boiler 12 via the exhaust gas pipe 11.

排熱回収ボイラー12に送られた排ガスは、復水ポンプ
13により抽出され給水管14を通して送り込まれる給
水を加熱して蒸気を発生させた後煙突15を介して大気
へ放出される。排熱回収ボイラー12には高圧蒸気ドラ
ム16および低圧蒸気ドラム17の2つの蒸気ドラムが
あり、高圧蒸気ドラム16で発生した高圧蒸気は高圧ド
ラム発生蒸気管18を介して高圧スーパーヒータ191
=送られ高圧蒸気止め弁20および高圧蒸気加減弁21
を有する高圧主蒸気管22を介して蒸気タービン4に送
気される。また低圧蒸気ドラム17で発生した低圧蒸気
は低圧スーパーヒータ23を介して低圧主蒸気止め弁2
4および低圧蒸気加減弁25を有する低圧主蒸気管26
を介して蒸気タービン4″に送気される。蒸気タービン
4ではこの高圧主蒸気および低圧主蒸気が各段落を通過
して膨張し所定の仕事をした後復水器27へ排出される
The exhaust gas sent to the exhaust heat recovery boiler 12 is extracted by a condensate pump 13, heats water fed through a water supply pipe 14 to generate steam, and is then released into the atmosphere through a chimney 15. The exhaust heat recovery boiler 12 has two steam drums, a high-pressure steam drum 16 and a low-pressure steam drum 17, and the high-pressure steam generated in the high-pressure steam drum 16 is sent to a high-pressure super heater 191 via a high-pressure drum generation steam pipe 18.
=Feed high pressure steam stop valve 20 and high pressure steam control valve 21
Air is sent to the steam turbine 4 via a high-pressure main steam pipe 22 having a In addition, the low pressure steam generated in the low pressure steam drum 17 is passed through the low pressure super heater 23 to the low pressure main steam stop valve 2.
4 and a low pressure main steam pipe 26 having a low pressure steam control valve 25
In the steam turbine 4, the high-pressure main steam and low-pressure main steam pass through each stage, expand, perform predetermined work, and then are discharged to the condenser 27.

この排出蒸気は復水器27で凝縮されて復水となり、そ
の後復水ポンプ13により抽出されて排熱回収ボイラー
12へ送られる。
This exhaust steam is condensed into condensate in the condenser 27, and then extracted by the condensate pump 13 and sent to the exhaust heat recovery boiler 12.

この様なコンバインドサイクル発電プラントでは、ガス
タービン2は蒸気タービン4に先行して運転され、ガス
タービン2の排ガスにより発生する蒸気で蒸気タービン
4が駆動されるため、ガスタービンが主、蒸気タービン
が従の関係となり、排熱回収ボイラー12で発生する蒸
気の温度はガスタービンの排ガス温度により決まり、こ
の排ガス温度はガスタービンの負荷により左右されると
いう特徴を有する。そのため蒸気タービンの起動時ある
いはガスタービンの負荷変化時には蒸気タービン4にと
りかなり可酷な運転が強いられることになる。すなわち
蒸気タービン4が冷機状態にあるときでも、第1図で示
すように排熱回収ボイラー12で発生した蒸気はそれぞ
れ高圧主蒸気管22および低圧主蒸気管26と復水器2
7の間を高圧バイパス弁28を備えた高圧バイパス管2
9、および低圧バイパス弁30を有する低圧バイパス管
31によりそれぞれ接続されており、高圧主蒸気の温度
は高温の状態に保持されている。このような場合におい
て、高圧主蒸気管22より分岐しタービングランド蒸気
供給弁3L、を有するタービングランド蒸気管33を介
してタービンにグランド蒸気を供給する場合、蒸気ター
ビン4のローターおよびケーシングはこの高温蒸気のた
め急激に加熱されて大きな熱応力が発生する。また、高
圧主蒸気止め弁20および高圧蒸気加減弁21を介して
冷機状態にある蒸気タービン4に高温蒸気を通気すると
ケーシングは急激に加熱されやはり大きな熱応力が発生
する。また、蒸気タービン4が運転中であってもガスタ
ービン2の負荷変化につれて蒸気タービン4への流入蒸
気温度が大きく変化し蒸気タービン4のゲージングはそ
の熱容量が比較的に大きいためケーシングの温度と蒸気
温度に温度差を生じケーシングが急激に加熱あるいは冷
却される結果となって大きな熱応力が発生し、ケーシン
グの構成部品にクラックを生じるおそれがある。
In such a combined cycle power generation plant, the gas turbine 2 is operated before the steam turbine 4, and the steam turbine 4 is driven by the steam generated by the exhaust gas of the gas turbine 2. This is a dependent relationship, and the temperature of the steam generated in the exhaust heat recovery boiler 12 is determined by the exhaust gas temperature of the gas turbine, and this exhaust gas temperature is characterized by being influenced by the load of the gas turbine. Therefore, when the steam turbine is started or when the load on the gas turbine changes, the steam turbine 4 is forced to operate quite harshly. That is, even when the steam turbine 4 is in a cold state, as shown in FIG.
A high-pressure bypass pipe 2 equipped with a high-pressure bypass valve 28 between
9 and a low-pressure bypass pipe 31 having a low-pressure bypass valve 30, and the temperature of the high-pressure main steam is maintained at a high temperature. In such a case, when grand steam is supplied to the turbine via the turbine grand steam pipe 33 branched from the high-pressure main steam pipe 22 and having the turbine ground steam supply valve 3L, the rotor and casing of the steam turbine 4 are Due to the steam, it heats up rapidly and generates large thermal stress. Furthermore, when high-temperature steam is vented to the cold steam turbine 4 through the high-pressure main steam stop valve 20 and the high-pressure steam control valve 21, the casing is rapidly heated and large thermal stress is also generated. Furthermore, even when the steam turbine 4 is in operation, the temperature of the steam flowing into the steam turbine 4 changes greatly as the load on the gas turbine 2 changes, and gauging of the steam turbine 4 has a relatively large heat capacity, so the temperature of the casing and the steam This creates a temperature difference that causes the casing to heat up or cool down rapidly, resulting in large thermal stresses that can cause cracks in the components of the casing.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点に鑑みなされたもので、蒸気ター
ビンの起動時あるいは運転時のケーシング温度に見合う
温度の蒸気を蒸気タービンに流すことのできるコンバイ
ンドサイクル発電プラントを提供することを目的とする
The present invention has been made in view of the above points, and an object of the present invention is to provide a combined cycle power generation plant that can flow steam at a temperature corresponding to the casing temperature at the time of startup or operation of the steam turbine to the steam turbine. .

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明は、高圧スーパーヒータ
の入口と出口とを蒸気流量調整弁を介してバイパスする
高圧スーパーヒータバイパス管を設けたことを特徴とす
るものである。
In order to achieve the above object, the present invention is characterized by providing a high-pressure superheater bypass pipe that bypasses the inlet and outlet of the high-pressure superheater via a steam flow rate regulating valve.

〔発明の実施例〕[Embodiments of the invention]

以下第2図を参照して本発明の一実施例について説明す
る。第2図において第1図に示される部分と同一部分に
ついては同一符号を付しその説明を省略する。
An embodiment of the present invention will be described below with reference to FIG. In FIG. 2, the same parts as those shown in FIG. 1 are designated by the same reference numerals, and the explanation thereof will be omitted.

第2図に示すように本発明は高圧蒸気ドラム16の発生
蒸気管18の高圧スーパーヒータ19の手前より蒸気流
量調整弁34を有する高圧スーパーヒータバイパス管3
5を設け、高圧スーパーヒータ19の出口の高圧主蒸気
管22に合流させるものである。
As shown in FIG. 2, the present invention provides a high-pressure superheater bypass pipe 3 having a steam flow rate regulating valve 34 from the generating steam pipe 18 of the high-pressure steam drum 16 before the high-pressure superheater 19.
5 is provided to join the high pressure main steam pipe 22 at the outlet of the high pressure super heater 19.

本発明は上述のように構成されており、蒸気流量調整弁
34により高圧スーパーヒータ19を通過した高温蒸気
の流量と高圧スーパーヒータをバイパスさせたことによ
る低温蒸気の流計とを調整混合することにより、高圧ス
ーパーヒータバイパス管35と高圧主蒸気管22との合
流点後の蒸気温度を蒸気タービン4のケーシング温度に
見合うようにして蒸気タービン4に送給することができ
、蒸気タービン4の起動時およびガスタービン2の・負
荷変化時の蒸気タービンのケーシング温度と蒸気温度と
の温度差を少なくして、ケーシング等の構成部品におけ
る熱応力の発生を著しく低減させることができるもので
ある。
The present invention is configured as described above, and the steam flow rate adjustment valve 34 adjusts and mixes the flow rate of high temperature steam that has passed through the high pressure superheater 19 and the flow rate of low temperature steam that is obtained by bypassing the high pressure superheater. As a result, the steam temperature after the confluence of the high-pressure superheater bypass pipe 35 and the high-pressure main steam pipe 22 can be made to match the casing temperature of the steam turbine 4 and can be supplied to the steam turbine 4, and the steam turbine 4 can be started. By reducing the temperature difference between the casing temperature of the steam turbine and the steam temperature when the load of the gas turbine 2 changes, the generation of thermal stress in components such as the casing can be significantly reduced.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明によれば、蒸気タービンのケーシン
グ温度に適した温度の蒸気を送給することができるので
、ケーシングの過大熱応力によるクランクの発生を防止
することができる。
As described above, according to the present invention, it is possible to supply steam at a temperature suitable for the casing temperature of the steam turbine, and therefore it is possible to prevent cranking due to excessive thermal stress in the casing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術によるコンバインドサイクル発電プラ
ントの構成図、第2図は本発明の一実施例を示す構成図
である。 2・・・ガスタービン、4・・・蒸気タービン、12・
・・排熱回収ボイラー、 19・・・高圧スーパーヒーター、 34・・・蒸気流量調整弁、 35・・・高圧スーパーヒータバイパス管。 代理人 弁理士 則 近 憲 佑 (ばか1名)
FIG. 1 is a block diagram of a conventional combined cycle power generation plant, and FIG. 2 is a block diagram showing an embodiment of the present invention. 2... Gas turbine, 4... Steam turbine, 12...
...Exhaust heat recovery boiler, 19...High pressure super heater, 34...Steam flow rate adjustment valve, 35...High pressure super heater bypass pipe. Agent: Patent attorney Noriyuki Chika (one idiot)

Claims (1)

【特許請求の範囲】[Claims] ガスタービンの排気を排熱回収ボイラーに送り、給水を
加熱して高圧蒸気を発生させ、この高圧蒸気をiiI記
排熱回収ボイラー内の高圧スーパーヒータを通して蒸気
タービンに送る方式のコンバインドサイクル発電プラン
トにおいて、前記高圧スーパーヒータの入口と出口とを
蒸気流量調整弁を介してバイパスする高圧スーパーヒー
タバイパス管を設けたことを特徴とするコンバインドサ
イクル発電プラント。
In a combined cycle power generation plant in which exhaust gas from a gas turbine is sent to an exhaust heat recovery boiler, feed water is heated to generate high-pressure steam, and this high-pressure steam is sent to a steam turbine through a high-pressure super heater in the exhaust heat recovery boiler described in iii. A combined cycle power generation plant, characterized in that a high-pressure superheater bypass pipe is provided that bypasses the inlet and outlet of the high-pressure superheater via a steam flow rate regulating valve.
JP23128383A 1983-12-09 1983-12-09 Combined cycle power plant Pending JPS60125705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23128383A JPS60125705A (en) 1983-12-09 1983-12-09 Combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23128383A JPS60125705A (en) 1983-12-09 1983-12-09 Combined cycle power plant

Publications (1)

Publication Number Publication Date
JPS60125705A true JPS60125705A (en) 1985-07-05

Family

ID=16921173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23128383A Pending JPS60125705A (en) 1983-12-09 1983-12-09 Combined cycle power plant

Country Status (1)

Country Link
JP (1) JPS60125705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101660433A (en) * 2008-07-29 2010-03-03 通用电气公司 Heat recovery steam generator for a combined cycle power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101660433A (en) * 2008-07-29 2010-03-03 通用电气公司 Heat recovery steam generator for a combined cycle power plant

Similar Documents

Publication Publication Date Title
JP3481983B2 (en) How to start a steam turbine
US4282708A (en) Method for the shutdown and restarting of combined power plant
US6109019A (en) Steam cooled gas turbine system
US2605610A (en) Multiple gas turbine power plant supplying waste heat to an air preheater and a boiler in parallel
US6945052B2 (en) Methods and apparatus for starting up emission-free gas-turbine power stations
US7621133B2 (en) Methods and apparatus for starting up combined cycle power systems
US6233940B1 (en) Dual-pressure stem injection partial-regeneration-cycle gas turbine system
US6389797B1 (en) Gas turbine combined cycle system
JPH08114104A (en) Composite gas-steam turbine power plant
KR101322359B1 (en) Method for starting a gas and steam turbine system
JP2003533624A (en) Gas turbine plant and method for increasing the power of the plant
US6286297B1 (en) Steam cooled type combined cycle power generation plant and operation method thereof
JP2000130108A (en) Starting method for combined cycle power plant
US20220195896A1 (en) Steam turbine plant and operation method, combined cycle plant and operation method
CA2242073C (en) Combined cycle power generation plant
JPH08210151A (en) Power plant
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
JPS58160502A (en) Starting method for combined cycle plant
JPH074210A (en) Steam-cooled gas turbine combined plant
JPH06323162A (en) Steam-cooled gas turbine power plant
JPS60125705A (en) Combined cycle power plant
JPS5993907A (en) Quick starting device for combined-cycle power generation plant
EP1178195A2 (en) Gas turbine system
JPH02259301A (en) Waste heat recovery boiler
JPH10325336A (en) Gas turbine power generating system