JPS60124493A - Flux cored wire for arc welding - Google Patents

Flux cored wire for arc welding

Info

Publication number
JPS60124493A
JPS60124493A JP23102783A JP23102783A JPS60124493A JP S60124493 A JPS60124493 A JP S60124493A JP 23102783 A JP23102783 A JP 23102783A JP 23102783 A JP23102783 A JP 23102783A JP S60124493 A JPS60124493 A JP S60124493A
Authority
JP
Japan
Prior art keywords
welding
wire
flux
welding speed
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23102783A
Other languages
Japanese (ja)
Inventor
Tsugio Oe
次男 大江
Tetsuo Suga
哲男 菅
Katsuzo Arai
新井 勝三
Yoshiya Sakai
酒井 芳也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23102783A priority Critical patent/JPS60124493A/en
Publication of JPS60124493A publication Critical patent/JPS60124493A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To increase a deposition rate and to improve welding efficiency by specifying the chemical components of a steel material constituting a sleeve material. CONSTITUTION:A steel material consisting of <=0.05% (wt%, hereafter the same) C, 0.02-1.00% Si, 0.45-1.50% Mn, 0.01-0.20% Ti, 0.01-0.20% Al, and the balance Fe and inevitable impurities is used as a sleeve material to constitute an Fx wire. The deposition rate of a high level is obtd. while good welding operability and deposited metal characteristic are assured by the above-mentioned wire.

Description

【発明の詳細な説明】 本発明はアーク溶接用フラックス入りワイヤ(以下Fx
ワイヤと略記する)に関し、特に溶接能率が一段と高め
られたFxワイヤに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flux-cored wire for arc welding (hereinafter referred to as Fx
(abbreviated as wire), and in particular relates to Fx wire, which has further improved welding efficiency.

Fx ワイヤは溶接作業性及び溶接能率が良好であり、
とりわけアーク安定性が良好でスパッタが少な(優れた
ビード外観を与える等の利点を有しているので、その使
用量はますます増加する傾向にある。これらの利点の中
で溶接能率は極めて大きな特長とされているが、溶接技
術が進歩するにつれて溶接能率向上に対する要求は更に
強まってきている。従来溶接能率向上対策としては、溶
接電流の増大やワイヤ突出し長さの増加など主として溶
接条件の側面から対策が講じられているが、ワイヤ組成
面の改善技術については未検討の領域が多い。
Fx wire has good welding workability and welding efficiency,
In particular, it has the advantages of good arc stability and low spatter (giving an excellent bead appearance), so its usage tends to increase more and more. Among these advantages, welding efficiency is extremely large. However, as welding technology advances, the demand for improving welding efficiency has become even stronger. Conventional measures to improve welding efficiency mainly focused on aspects of welding conditions, such as increasing welding current and increasing wire protrusion length. Countermeasures have been taken since then, but there are still many areas that have not been investigated regarding techniques for improving wire composition.

本蜀明者等はこの様な状況のもとで、Fxワイヤの構成
材料を工夫することによってFXワイヤの溶接能率を更
に改善できる余地はないか種々研究を進めてきた。その
結果鞘材を構成する鋼材の化学成分を適正に調整してや
れば、溶着速度が高まって溶接能率が著しく向上すると
いう事実をつきとめ、絃に本発明の完成をみた。
Under these circumstances, Akira Honshu and others have been conducting various studies to see if there is any room to further improve the welding efficiency of FX wire by devising the constituent materials of FX wire. As a result, they discovered that if the chemical composition of the steel material constituting the sheath material is properly adjusted, the welding speed can be increased and welding efficiency can be significantly improved, and the present invention has been completed.

即ち本発明に係るFxワイヤの構成とは、鞘材として C:0.05%(重量96二以下同じ)以下Si:0.
02〜1.00% Mn + 0.45〜1.5096 Ti:0.01〜0.204 Al:0.01〜0.20% 残部二Fe及び不可避不純物 からなる鋼材を用いたところに要旨を有するものである
That is, the structure of the Fx wire according to the present invention is such that the sheath material contains C: 0.05% (weight 962 or less) or less and Si: 0.05% or less.
02 to 1.00% Mn + 0.45 to 1.5096 Ti: 0.01 to 0.204 Al: 0.01 to 0.20% The remainder consists of Fe and inevitable impurities. It is something that you have.

まず本発明者等は、鋼製鞘の化学成分によって溶着速度
が相当変わってくるという事実を予備実験によって確認
し、これを基に、溶着速度に及ぼす鋼製鞘成分の影響を
明らかにすべく基礎実験を行なった。即ち鞘材の素材で
ある軟鋼中から主合金成分としてCXMnX5 IN 
TL及びA1を取り挙げ、各元素の存在量によって溶着
速度がどの様に影響されるかを下記の方法によって調べ
た。
First, the present inventors confirmed through preliminary experiments that the welding speed varies considerably depending on the chemical composition of the steel sheath, and based on this, we aimed to clarify the influence of the steel sheath components on the welding speed. We conducted basic experiments. That is, CXMnX5 IN is used as the main alloy component from the mild steel that is the material of the sheath material.
Taking up TL and A1, how the welding rate is affected by the abundance of each element was investigated by the following method.

尚溶着速度の測定はJIS 2 8182に準拠して行
なった。
The welding speed was measured in accordance with JIS 2 8182.

〔供試ワイヤ及び溶接条件〕[Test wire and welding conditions]

ワイヤ 鞘 材 :軟鋼 充填フラックス:ライム系フラックス フラックス率 :15% 断面形状 :後記第4図囚 ワイヤ径 :1.6餌φ 溶接条件 溶接電流 :800A 溶接電圧 :82v 溶接速度 :80m/分 シールドガス :C02%201/分 ワイヤ突出し長さ:20fl 母 材 :12wt 溶接法 :ビードオンプレート法 結果は第1図に示した通りであり、溶着速度はciiが
減少するにつれて、又S 1 % M ns T i及
びAl量が増加するにつれて夫々高まっており、特にS
i量の増大に伴う溶着速度の向上は著しい。
Wire sheath Material: Mild steel Filling Flux: Lime-based flux Flux rate: 15% Cross-sectional shape: See Figure 4 below Wire diameter: 1.6 bait φ Welding conditions Welding current: 800A Welding voltage: 82V Welding speed: 80m/min Shield gas :C02%201/min Wire protrusion length: 20fl Base material: 12wt Welding method: Bead-on-plate method The results are as shown in Figure 1, and the welding speed increases as cii decreases, and S1% Mns As the Ti and Al contents increase, they increase, and in particular, S
The welding speed increases significantly as the amount of i increases.

この現象はFxワイヤの電気抵抗と対応しており、該電
気抵抗の増加4こよって溶接時のジュール発熱麓が増大
し、ワイヤの溶融速度が高まるものと考えられる。ちな
みに第2図はFXワイヤの電気抵抗と溶着速度の関係を
示したグラフであり、鋼製鞘の合金成分からみるとC量
の減少及びS i % Mn z71 % A l量の
増加によって鞘材の電気抵抗が増大し、これにより溶着
速度が高まったものと考えられる。尚フラックス率が高
い程(相対的に見れば鞘材の断面積が小さい程)電気抵
抗は大きく、またCUめつきワイヤではCuめつき量が
少ない種電気抵抗は大きく、夫々溶着速度は増大してい
る。フラックス成分自体は電気抵抗にあまり影響がなく
溶着速度に与える影響は少ない。
This phenomenon corresponds to the electrical resistance of the Fx wire, and it is thought that the increase in electrical resistance increases the Joule heat generation during welding and increases the melting rate of the wire. By the way, Figure 2 is a graph showing the relationship between the electrical resistance and welding speed of FX wire, and from the perspective of the alloy composition of the steel sheath, the decrease in the amount of C and the increase in the amount of S i % Mn z71 % A l make the sheath material It is thought that the electrical resistance of the welding layer increased, which increased the welding speed. Note that the higher the flux rate (relatively speaking, the smaller the cross-sectional area of the sheath material), the higher the electrical resistance, and in the case of CU-plated wire, the electrical resistance is higher for wires with less Cu plating, and the welding speed increases. ing. The flux component itself has little effect on electrical resistance and has little effect on welding speed.

本発明では上記の様な基礎実験結果を踏まえ、これに鋼
製鞘材として本来的に要求される特性を考慮しつつ各構
成元素の含有率を厳密に定めたものである。尚一般のF
xワイヤに怠ける鞘材を構成する軟鋼の化学成分は、伸
線等の加工性に主眼をおいてC:0.05%以上、Si
:0.0296以下、Mn:0.40%以下、Ti:0
.01%以下、−A l:0.01%以下に夫々制限さ
れており、少なくとも溶着速度向上という観点から各元
素の含有率を見直した例はない。
In the present invention, based on the above-mentioned basic experiment results, the content of each constituent element is strictly determined while taking into account the properties originally required for a steel sheath material. In addition, general F
The chemical composition of the mild steel that makes up the sheath material used in x wires is C: 0.05% or more, Si
: 0.0296 or less, Mn: 0.40% or less, Ti: 0
.. 0.01% or less, and -Al: 0.01% or less, and there is no example of reviewing the content of each element at least from the viewpoint of improving the welding speed.

以下本発明における鞘材構成元素の含有率範囲設定理由
を詳細に説明する。
The reason for setting the content range of the constituent elements of the sheath material in the present invention will be explained in detail below.

C:0.05%以下 アークの集中性を高めてアーク力を強化する作用がある
が、第1図でも説明した様にCRが増加するにつれて溶
着速度は明らかに低下する。しかもC量が多すぎると溶
着金属の靭性及び耐割れ性が低下すると共に、ワイヤ加
工時の線引き性も劣′化するので、これらの阻害効果が
実質上問題とならない0.05%を上限と定めた。
C: 0.05% or less It has the effect of increasing the concentration of the arc and strengthening the arc force, but as explained in FIG. 1, as the CR increases, the welding speed clearly decreases. Moreover, if the amount of C is too large, the toughness and cracking resistance of the welded metal will decrease, and the drawability during wire processing will also deteriorate, so the upper limit should be set at 0.05%, at which these inhibiting effects will not be a substantial problem. Established.

Si:0.02〜1.00% 脱酸剤として作用し溶着金属の耐気孔性を高める働きと
共に、第1図でも説明した様に溶着速度を高めるうえで
極めて重要な元素であり、少なくとも0.02%以上含
有させなければならない。しかし多すぎると溶着金属の
靭性が乏しくなるので1.0%以下に抑えなければなら
ない。
Si: 0.02-1.00% In addition to acting as a deoxidizing agent and increasing the porosity resistance of the weld metal, it is also an extremely important element in increasing the welding speed as explained in Fig. 1. It must be contained at least .02%. However, if it is too large, the toughness of the weld metal will be poor, so it must be kept at 1.0% or less.

Mn : 0.45〜1.50% アークを安定化し溶接作業性を向上すると共に溶着速度
を高めるのに有効な元素であり、0.45%以上含有さ
せなければならない。しかし多すぎると原料費が高まる
と共に鞘材が硬質化して線引性が劣悪になるので1.5
0%以下に抑えるべきである。
Mn: 0.45 to 1.50% Mn is an effective element for stabilizing the arc, improving welding workability, and increasing the welding speed, and must be contained in an amount of 0.45% or more. However, if it is too high, the raw material cost will increase and the sheath material will become hard and the drawability will be poor, so 1.5
It should be kept below 0%.

Ti:0.01〜0.20% 第1図からも明らかな様にワイヤ中のT、i量が増加す
るにつれて溶着速度は高まるが、その効果は0.01%
以上含有させることによって有効に発揮される。しかし
多すぎるとアークが不安定になると共に溶着金属の靭性
が低下する傾向があるので、0.20%以下に抑えなけ
ればならない。
Ti: 0.01-0.20% As is clear from Figure 1, as the amount of T and i in the wire increases, the welding speed increases, but the effect is 0.01%.
It is effectively exhibited by containing the above amount. However, if it is too large, the arc tends to become unstable and the toughness of the weld metal tends to decrease, so it must be kept at 0.20% or less.

Al:0.01〜0.20% 第1図からも明らかな様に溶着速度を高める作用がある
と共に、脱酸剤としての機能を発揮して溶着金属の耐ブ
ローホール性を高める。これらの効果は0.01%以上
含有させることによって有効に発揮されるが、灸すぎる
と溶着金属の靭性が乏しくなるので0.2096以下に
抑えるべきである。
Al: 0.01-0.20% As is clear from FIG. 1, Al has the effect of increasing the welding speed, and also functions as a deoxidizing agent to improve the blowhole resistance of the weld metal. These effects can be effectively exhibited by containing 0.01% or more, but too much moxibustion causes poor toughness of the weld metal, so the content should be suppressed to 0.2096 or less.

鞘材を構成する鋼材の主たる含有元素は以上の通りであ
るが、これらの元素の他希土類元素やZrの様な電気抵
抗を高める元素を少量含有させることも有効である。
The main elements contained in the steel material constituting the sheath material are as described above, but in addition to these elements, it is also effective to contain small amounts of elements that increase electrical resistance, such as rare earth elements and Zr.

本発明で使用する鋼製鞘の化学成分は以上の通りであり
、基本的にはこれらの要件を満たす鋼製鞘を使用すれば
、良好な溶接作業と溶着金属特性を確保しつつ高レベル
の溶着速度を得ることができるが、溶着速度に影響を及
ぼす他の因子についても簡単に説明を加える。
The chemical composition of the steel sheath used in the present invention is as described above, and basically, if a steel sheath that meets these requirements is used, it will be possible to achieve a high level of welding while ensuring good welding work and weld metal properties. Although the welding rate can be obtained, other factors that affect the welding rate will also be briefly discussed.

まず溶着速度に及ぼすフラックス成分の影響であるが、
鋼製鞘に比べるとその影響は小さい。即ちFxワイヤに
おいては溶接電流の大部分が鞘材中を流れる為、フラッ
クス成分が多少変化してもワイヤ全体の電気抵抗には殆
んど影響がなく(第2図参照)、溶着速度の違いとして
現われない為と考えられる。但しフラックス主成分のタ
イプが変わると溶滴移行現象の大きな変化に対応して溶
着効率が変動する為、この変動に伴って溶着速度も若干
増減する。そういった意味では、溶滴移行性のやや悪い
ライム・チタニア系やライム系(CaF2系を含む)の
フラックスよりも、溶滴移行性の良好なチタニア系フラ
ックスの方が高い溶着速度を得ることができる。尚フラ
ックス成分を水ガラス処理(フラックスを水ガラスと共
に混練造粒し、乾燥後粒調する処理)したり鋼製鞘内面
を絶縁化処理(酸化処理等)すれば、ワイヤの電気抵抗
が上昇する為、溶着速度の向上に多少の効果が認められ
る。又伸線加工用に使用される潤滑剤の種類も電気抵抗
には殆んど影響しないので、従来から知られたすべての
潤滑剤〔例えば高級脂肪酸エステル系(N a % K
% Ca % M g等の高級脂肪酸塩)、MO8Z系
、テフロン系、グラファイト系等〕を使用することがで
きる。しかしながら潤滑剤中のCalを少なくするとス
パッタ量が減少し、溶着速度を若干高めることができる
ので、低C化の容易なMoS2系潤滑剤が最適である。
First, the influence of flux components on welding speed.
The effect is small compared to steel scabbards. In other words, in Fx wire, most of the welding current flows through the sheath material, so even if the flux component changes slightly, it has almost no effect on the electrical resistance of the entire wire (see Figure 2), and the difference in welding speed. This is thought to be because it does not appear as . However, if the type of the main flux component changes, the welding efficiency will fluctuate in response to a large change in the droplet transfer phenomenon, so the welding speed will also slightly increase or decrease with this fluctuation. In this sense, a titania-based flux with good droplet transfer properties can achieve a higher welding rate than lime-titania-based or lime-based fluxes (including CaF2-based fluxes) with slightly poor droplet transfer properties. . The electrical resistance of the wire will increase if the flux component is treated with water glass (flux is kneaded and granulated with water glass, and the granulation is adjusted after drying) or the inner surface of the steel sheath is insulated (oxidation treatment, etc.). Therefore, some effect on improving the welding speed is recognized. In addition, the type of lubricant used for wire drawing has almost no effect on electrical resistance, so all conventionally known lubricants [such as higher fatty acid esters (N a % K
% Ca % M g), MO8Z series, Teflon series, graphite series, etc.] can be used. However, if the Cal content in the lubricant is reduced, the amount of spatter will be reduced and the welding speed can be slightly increased, so MoS2-based lubricants that can easily be reduced in C are optimal.

 −次にフラックスの充填率は10〜80%が好ましく
、10%未満では十分量の金属粉やスラグ姶成剤を含ま
せることができない為、溶着金属の成分調整が困難にな
ると共に、スラグ被包性等も乏しくなって溶接作業性が
低下する。しかし80%を越えると、鞘材を薄肉にしな
ければならなくなる為に製品ワイヤが柔かくなり、送給
性が低下する地道電性やアーク安定性も悪化してアンダ
ーカット等が発生し易くなり、更には大入熱溶接が困難
になる等の傾向が現われる。尚フラックス率が増大する
ほど鋼製鞘は薄肉となり、それに伴って電気抵抗が増大
し溶着速度は高くなる。ちなみに第8図はチタニア系フ
ラックスを軟鋼鞘に充填してなるFXワイヤにおいて、
フラックス率と溶着速度の関係を調べた実験結果のグラ
フである。このグラフからも明らかな様に、フラックス
率を20%以上にしてやれば溶着速度を一層効果的に高
めることができる。
-Next, the flux filling rate is preferably 10 to 80%; if it is less than 10%, it will not be possible to contain a sufficient amount of metal powder or slag forming agent, making it difficult to adjust the composition of the weld metal, and causing slag coating. The enveloping properties are also poor, and welding workability is reduced. However, if it exceeds 80%, the sheath material must be made thinner, which makes the product wire softer, lowers the feedability, deteriorates the arc stability, and makes undercuts more likely to occur. Furthermore, there is a tendency that large heat input welding becomes difficult. Note that as the flux rate increases, the steel sheath becomes thinner, the electrical resistance increases accordingly, and the welding speed increases. By the way, Figure 8 shows an FX wire whose mild steel sheath is filled with titania-based flux.
It is a graph of experimental results examining the relationship between flux rate and welding speed. As is clear from this graph, the welding speed can be further effectively increased by increasing the flux rate to 20% or more.

次にFXワイヤの断面形状であるが、該形状には一切の
制限がなく例えば第4図囚、(B)、(C)、鋤等に示
す任意の形状のものを使用することができる。但し第4
図(Qの様に断面形状の複雑なものは、一般に鞘材を薄
くすることができこれにより電気抵抗を高めることがで
きるので、溶着速度向上という本発明の効果を促進する
うえでは好まL7いものと言える。尚第4図(6)に示
した様ないわゆるシームレスワイヤにおいては、通電性
の改善と発錆防止の為表面にA1やCu等のめつき処理
を施すことが多いが、このめっき処理は電気抵抗を減少
させる為、溶着速度向上という目的からすればマイナス
作用を与える。ちなみに第5図はFXワイヤ表面のCu
めつき量と溶着速度の関係を示した実験結果のグラフで
ある。但し実験条件としては、軟鋼製シームレス鞘材内
にチタニア系フラックスを充填してなる1、2MφのF
xワイヤに所定量のCuめつき処理を施し、シールドガ
ス: Co2(201/分)、270(A)X 80(
V)X 80 (C1)m)で溶接を行ない、JIS 
Z 8182に準じて密着速度を調べた。第5図からも
明らかな様にめっき量(ワイヤ全重量に対する重量96
)は0.2096以下が好ましく、0.20%を越える
と鞘材の電気抵抗が小さくなりすぎて溶着速度を十分に
高めるこ−とができなくなる。しかもめつき処理に要す
る時間が長くなって生産性が低下する他、溶着金属の靭
性も低下する傾向がある。
Next, regarding the cross-sectional shape of the FX wire, there are no restrictions on the cross-sectional shape, and any shape shown in FIG. 4, (B), (C), or the like can be used, for example. However, the fourth
Figure (L7) with a complicated cross-sectional shape as shown in Q generally allows the sheath material to be made thinner, thereby increasing the electrical resistance. In so-called seamless wires as shown in Figure 4 (6), the surface is often plated with A1 or Cu to improve conductivity and prevent rust. Since plating reduces the electrical resistance, it has a negative effect from the purpose of increasing the welding speed.By the way, Figure 5 shows the Cu on the surface of the FX wire.
It is a graph of experimental results showing the relationship between plating amount and welding speed. However, as for the experimental conditions, a 1 or 2 Mφ F made by filling a titania-based flux into a seamless mild steel sheath material was used.
A predetermined amount of Cu plating is applied to the x wire, and shielding gas: Co2 (201/min), 270 (A) x 80 (
V)X80 (C1)m), JIS
The adhesion speed was examined according to Z8182. As is clear from Figure 5, the amount of plating (weight 96 relative to the total weight of the wire)
) is preferably 0.2096 or less; if it exceeds 0.20%, the electrical resistance of the sheath material becomes too small, making it impossible to sufficiently increase the welding speed. Moreover, the time required for the plating process becomes longer, which reduces productivity, and the toughness of the welded metal also tends to decrease.

φ またワイヤ径は用婆に応じて1.2M、1.6m+’、
φ 2、0 mm 、 2.4 tytznφ、8.2Mφ
等の中から任意に選択することができるが、溶接能率向
上という観点からすれば細径の方が有利である。更に本
発明のFX ワイヤを用いる溶接はCO□やAr等のシ
ールドガスを用いて行なうのが一般的であるが、シール
ドガスを使用しないセルフシールドアーク溶接にも適用
することができ、また溶接対象鋼種は軟鋼、高張力鋼、
低合金鋼が主体であるが、充填フラックス中の合金元素
量を調整すれば他の鋼種にも同様に適用することができ
る。
φ Also, the wire diameter is 1.2M, 1.6m+',
φ2, 0mm, 2.4tytznφ, 8.2Mφ
The diameter can be arbitrarily selected from among the above, but from the viewpoint of improving welding efficiency, a smaller diameter is more advantageous. Furthermore, welding using the FX wire of the present invention is generally performed using a shielding gas such as CO□ or Ar, but it can also be applied to self-shielded arc welding that does not use a shielding gas. Steel types include mild steel, high tensile steel,
Although it is mainly used for low-alloy steel, it can be applied to other steel types as well by adjusting the amount of alloying elements in the filling flux.

本発明は以上の様に構成されるが、要は鋼製鞘の化学成
分を厳密に規定し、Fxワイヤの電気抵抗を高めてジュ
ール発熱量を増大させることによって溶着速度を高めた
もので、溶接能率の向上に著しく寄与し得るものである
The present invention is constructed as described above, but the key point is that the chemical composition of the steel sheath is strictly specified, and the welding speed is increased by increasing the electric resistance of the Fx wire and increasing the Joule heating value. This can significantly contribute to improving welding efficiency.

次に界験例を挙げて本発明の効果を明確にする。Next, a field example will be given to clarify the effects of the present invention.

実験例1 第1表に示す化学成分の軟鋼製鞘材と第2表に示す成分
組成の充填フラックスを使用し、常法に従って1.6關
φのFXワイヤを製造した。尚伸線用潤滑剤としてはM
oS2を使用した。フラツクス率及びワイヤ断面形状は
第2表に示した通りである0 第1表 外皮金属の成分(%) 上記で得たFXワイヤを使用して下記の条件でビードオ
ンプレートにより溶接を行ない、その際の溶着速度を前
記と同様の方法(JIS Z8182)で測定した。
Experimental Example 1 Using a mild steel sheath material having the chemical composition shown in Table 1 and a filling flux having the chemical composition shown in Table 2, an FX wire with a diameter of 1.6 mm was manufactured according to a conventional method. As a lubricant for wire drawing, M
oS2 was used. The flux rate and wire cross-sectional shape are as shown in Table 2. The welding speed was measured in the same manner as described above (JIS Z8182).

〔溶接条件〕[Welding conditions]

溶接電流:800A、DC(至) 溶接電圧= 82v 溶接速度: 80tM/分− シールドガス:CO2,201/分 母 材:0.12%C,0,29%S ill、44%
Mn、0.020%P、 0100896S1残部鉄 チップ−母材間距離:20mm 結果を第8表に示す。
Welding current: 800A, DC (to) Welding voltage = 82v Welding speed: 80tM/min - Shielding gas: CO2,201/denominator Material: 0.12%C, 0.29%Sill, 44%
Mn, 0.020% P, 0100896S1 remaining iron tip-to-base metal distance: 20 mm The results are shown in Table 8.

第8表 実験結果 以上の実験結果より次の事が把握される。Table 8 Experimental results The following is understood from the above experimental results.

No、 1〜7. 9. 11. 18は、外皮金属成
分が本発明で規定する要件を外れているため、十分な溶
着速度が得られていない。又、No、 1〜8より、フ
ラックス成分としてはTiO□系のものが望ましいこと
が認められる。なお、No、8. 10゜12.14は
能率性の面ではよい結果が得られているが、No、 8
はワイヤの線引性に問題があり、No、10.12.1
4は溶接性能に問題(吸引エネルギーの面で、JIS 
Z 8818 YFW24を満足しがたくなる)がある
ので、好ましくない。そして、No−15〜24は、本
発明の要件を満たすものであるが、No、 15〜18
に示す如く外皮金属成分の調整は、能率性の向上に有効
である。N□、 19 (No、 1との比較)は、C
aF 2系のフラックスでも外皮金属成分を本発明の規
定範囲のものとすれば溶着速度が増加することを示す。
No. 1-7. 9. 11. In No. 18, a sufficient welding speed could not be obtained because the outer skin metal component did not meet the requirements defined by the present invention. Further, from Nos. 1 to 8, it is recognized that a TiO□-based flux component is desirable. In addition, No. 8. 10゜12.14 gave good results in terms of efficiency, but No. 8
There is a problem with the wire drawability, No, 10.12.1
4 has a problem with welding performance (in terms of suction energy, JIS
Z 8818 YFW24 becomes difficult to satisfy), so it is not preferable. And, No. 15 to 24 satisfy the requirements of the present invention, but No. 15 to 18
As shown in Figure 2, adjusting the metal components of the outer skin is effective in improving efficiency. N□, 19 (compared with No. 1) is C
It is shown that even with aF2-based flux, the welding speed increases if the outer metal component is within the specified range of the present invention.

No、15.20.21は、フラックス率の増加が、N
o、 22 (No、 1との比較)はワイヤ断面診状
の複雑化が、それぞれ溶着速度の増加に効果があること
を示している。No、28.24は、鞘材外面にCuメ
ッキを施したものであるが、メッキ量は少ない方がよい
ことが把握できる。
No. 15.20.21 indicates that the increase in flux rate is N
No. 22 (compared with No. 1) indicates that increasing the complexity of the wire cross-sectional diagnosis is effective in increasing the welding speed. In No. 28.24, the outer surface of the sheath material was plated with Cu, but it can be seen that the smaller the amount of plating, the better.

以上の如く、フラックス入りワイヤの能率性は本発明の
適用により大幅に改善することができる。
As described above, the efficiency of flux-cored wires can be significantly improved by applying the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼製鞘中の各元素量と溶着速度の関係を示すグ
ラフ(但しSi及びMnは上方の横軸単位、他の元素は
下方の横軸単位を夫々示す)、第2図はFxワイヤの電
気抵抗と溶着速度の関係を状を例示する略図、第5図は
シームレスFXワイヤにおけるCuめつき量と溶着速度
の関係を示すグラフである。 出願人株式会社神戸製鋼所 手続補正書(方丈) 1.事件の表示 昭和58年特許願第231027 号 2、発明の名称 アーク溶接用フラックス入りワイヤ 3、補正をする者 事件との関係 特許出願人 神戸市中央区脇浜町−丁目3番18号 (119)株式会社 神戸製鋼所 代表者 牧 冬 彦 4、代理人〒530 大阪市北区堂島2丁目3番7号 シンコービル 昭和58年2月28日 (発送日) 6、補正の対象 第4図(D)
Figure 1 is a graph showing the relationship between the amount of each element in the steel sheath and the welding rate (Si and Mn are shown in units of the upper horizontal axis, and other elements are shown in units of the lower horizontal axis). FIG. 5 is a schematic diagram illustrating the relationship between the electric resistance and the welding speed of the FX wire, and FIG. 5 is a graph showing the relationship between the amount of Cu plating and the welding speed in the seamless FX wire. Applicant Kobe Steel, Ltd. Procedural Amendment (Hojo) 1. Display of the case Patent Application No. 231027 of 1982 2, Name of the invention Flux-cored wire for arc welding 3, Person making the amendment Relationship to the case Patent applicant No. 3-18 (119) Wakihama-cho-chome, Chuo-ku, Kobe City Kobe Steel, Ltd. Representative: Fuyuhiko Maki 4, Agent: Shinko Building, 2-3-7 Dojima, Kita-ku, Osaka 530 February 28, 1981 (Shipping date) 6. Subject of amendment Figure 4 (D )

Claims (1)

【特許請求の範囲】 鋼製鞘内に粉粒状フラックスを充填してなるアーク溶接
用フラックス入りワイヤにかいて、鋼製鞘の化学成分が C:0.05%(重量%:以下同じ)以下Si:0.0
2〜1.00% Mn : 0.45〜1.50% Ti:0.01〜0.2(I A1:0.01〜0.20% 残部:Fe及び不可避不純物 であることを特徴とするアーク溶接用フラックス入りワ
イヤ。
[Scope of Claim] A flux-cored wire for arc welding in which a steel sheath is filled with granular flux, wherein the chemical composition of the steel sheath is C: 0.05% or less (weight %: the same applies hereinafter). Si:0.0
2-1.00% Mn: 0.45-1.50% Ti: 0.01-0.2 (I A1: 0.01-0.20% Balance: Fe and inevitable impurities Flux-cored wire for arc welding.
JP23102783A 1983-12-07 1983-12-07 Flux cored wire for arc welding Pending JPS60124493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23102783A JPS60124493A (en) 1983-12-07 1983-12-07 Flux cored wire for arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23102783A JPS60124493A (en) 1983-12-07 1983-12-07 Flux cored wire for arc welding

Publications (1)

Publication Number Publication Date
JPS60124493A true JPS60124493A (en) 1985-07-03

Family

ID=16917114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23102783A Pending JPS60124493A (en) 1983-12-07 1983-12-07 Flux cored wire for arc welding

Country Status (1)

Country Link
JP (1) JPS60124493A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652071A1 (en) * 1993-08-12 1995-05-10 Kabushiki Kaisha Kobe Seiko Sho Flux-cored wire for gas shield arc welding with low fume
CN104831152A (en) * 2015-04-27 2015-08-12 唐山钢铁集团有限责任公司 Production method of micro-titanium enhanced steel belt for hot rolling stamping based on sheet billet flow

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652071A1 (en) * 1993-08-12 1995-05-10 Kabushiki Kaisha Kobe Seiko Sho Flux-cored wire for gas shield arc welding with low fume
CN104831152A (en) * 2015-04-27 2015-08-12 唐山钢铁集团有限责任公司 Production method of micro-titanium enhanced steel belt for hot rolling stamping based on sheet billet flow

Similar Documents

Publication Publication Date Title
EP3261798B1 (en) Aluminum metal-cored welding wire
US5132514A (en) Basic metal cored electrode
JP5652574B1 (en) Solid wire for gas shielded arc welding, gas shielded arc welding metal, welded joint, welded member, welding method, and method of manufacturing welded joint
KR910009158B1 (en) Consumable welding electrode
JPH03268892A (en) Electrode having low-hydrogen basic metal insert
JPS62501200A (en) Cored filler metal and its manufacturing method
US11426824B2 (en) Aluminum-containing welding electrode
JP2019034340A (en) Electrodes for forming austenitic and duplex steel weld metal
JPH06285672A (en) Flux cored wire of titania base for gas-shielded arc welding
JPS60124493A (en) Flux cored wire for arc welding
JP3339759B2 (en) Titanium flux cored wire for gas shielded arc welding
JPS6125470B2 (en)
JPS6216747B2 (en)
JPH10180488A (en) Flux cored wire for electro gas arc welding
JP3718323B2 (en) Flux-cored wire for multi-electrode vertical electrogas arc welding for extra heavy steel
JPH03281089A (en) Welding alloy improved for material with high yield strength, and welding method therefor
JPS62248597A (en) Flux cored wire for gas shielded arc welding
JPH0521677B2 (en)
JPH01150494A (en) Solid wire for gas-shielded arc welding
JPS6167594A (en) Carbon dioxide gas arc welding wire which is excellent in arc stability, and its manufacture
JP3217536B2 (en) Composite wire for overlay welding on Al-based materials
JPH0825061B2 (en) Flux-cored wire for gas shield arc welding
JP2000158187A (en) Flux cored wire for gas shield arc welding, and manufacture
JP2023147167A (en) welding wire
JPH06246483A (en) Composite wire for build-up welding to surface of ti base material