JPS60124362A - Flow rate and pressure control equipment of fuel cell power generating system - Google Patents

Flow rate and pressure control equipment of fuel cell power generating system

Info

Publication number
JPS60124362A
JPS60124362A JP58231990A JP23199083A JPS60124362A JP S60124362 A JPS60124362 A JP S60124362A JP 58231990 A JP58231990 A JP 58231990A JP 23199083 A JP23199083 A JP 23199083A JP S60124362 A JPS60124362 A JP S60124362A
Authority
JP
Japan
Prior art keywords
flow rate
fuel
differential pressure
output
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58231990A
Other languages
Japanese (ja)
Inventor
Shuichi Matsumoto
秀一 松本
Akira Sasaki
明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58231990A priority Critical patent/JPS60124362A/en
Publication of JPS60124362A publication Critical patent/JPS60124362A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04432Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Feedback Control In General (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To decrease variation of differential pressure caused by variation of flow rate by adding a non-interacting controller comprising a multiplier, an integrator, and an adder to output of a flow rate controller when flew rates of fuel and oxidizing agent are changed. CONSTITUTION:Deviation between inactive gas flow rate and fuel flow rate is calculated with a subtracter 18a, and the output to a flow rate control valve 8a is calculated with a flow rate controller 11a and inputted to a non-interacting controller 19. The output of oxidizing agent flow rate is calculated and inputted to the non-interacting controller 19. The output to a pressure control valve 14 is calculated by pressure of a cell chamber 1 and inputted to the non-interacting controller 19. The output to a differential pressure control valve 12a is calculated by differential pressure between a fuel chamber and the cell chamber 1 and inputted to the non-interacting controller 19. The output to a differential pressure control valve 12b is calculated by differential pressure between an oxidizing agent chamber 4 and the cell chamber 1 and inputted to the non-interacting controller 19. Output valves inputted to the non-interacting controller 19 from the controllers 11a, 11b, 16a, 16b, and 17 are calculated with the non- interacting controller 19 so as to negate interacting elements and inputted to control valves 8a, 8b, 12a, 12b, and 14.

Description

【発明の詳細な説明】 この発明は、燃料電池発電システムの互いに干渉要素を
持つ流量と圧力を制御する装置およびその方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device and method for controlling flow rate and pressure in a fuel cell power generation system that have mutually interfering elements.

従央どの種の聴器)−1,て竺1MV千す東のベネつた
。図において、(I)は圧力容器構造の電池筐体、(2
)はその電池筐体(1)に収納された燃料電池本体、(
3)は燃料室、(4)は酸化剤室、(5)は燃料室(3
)に燃料を供給・排気するだめの系統、(6)は酸化剤
室(4)に酸化剤を供給・排気するだめの系統、(7)
は電池筐体(1)に不活性ガスを供給・排気するだめの
系統、(8a)は燃料の流量調節弁、(9a)は燃料の
流量計、(8b)は酸化剤の流量調節弁、(9b)は酸
化剤の流量計、00)は不活性ガス系統(7)に取り付
けられたニードル弁、(9C)は不活性ガスの流量計、
(lla)は燃料の流量調節器、(xlb)は酸化剤の
流量調節器、(12a)は電池筐体(1)と燃料室(3
)の間の差圧調節弁、(13a)は電池筐体(1)と燃
料室(3)の間の差圧計、(12b)は電池筐体(1)
と酸化剤室(4)の間の差圧調節弁、(13b)は電池
筐体(1)と酸化剤室(4)の間の差圧計、04)は電
池筐体(1)の圧力調節弁、α0は電池筐体(1)の圧
力計、(16a )は電池筐体(1)と燃料室(3)の
間の差圧調節器、(16b)は電池筐体(1)と酸化剤
室(4)の間の差圧調節器、αηは電池筐体の圧力調節
器である。
What kind of hearing organ) -1, Tejiku 1MV Sensu Higashi no Benetsuta. In the figure, (I) is a battery case with a pressure vessel structure, (2
) is the fuel cell body housed in the battery housing (1), (
3) is the fuel chamber, (4) is the oxidizer chamber, and (5) is the fuel chamber (3).
) is a system that supplies and exhausts fuel to the oxidizer chamber (4), (6) is a system that supplies and exhausts oxidizer to the oxidizer chamber (4), and (7)
(8a) is a fuel flow control valve, (9a) is a fuel flow meter, (8b) is an oxidizer flow control valve, (9b) is an oxidizing agent flowmeter, 00) is a needle valve attached to the inert gas system (7), (9C) is an inert gas flowmeter,
(lla) is the fuel flow regulator, (xlb) is the oxidizer flow regulator, (12a) is the battery housing (1) and the fuel chamber (3).
), (13a) is a differential pressure gauge between battery housing (1) and fuel chamber (3), (12b) is battery housing (1)
and the oxidizer chamber (4), (13b) is the differential pressure gauge between the battery housing (1) and the oxidizer chamber (4), and 04) is the pressure regulator for the battery housing (1). valve, α0 is the pressure gauge of the battery housing (1), (16a) is the differential pressure regulator between the battery housing (1) and the fuel chamber (3), (16b) is the pressure gauge between the battery housing (1) and the oxidation valve. The differential pressure regulator between the drug chambers (4), αη, is the pressure regulator of the battery casing.

次に動作について説明する。Next, the operation will be explained.

不活性ガス系統(7)に取り付けられたニードル弁(1
0)を開き、不活性ガスの流量を不活性ガスの流量計(
9C)で検出し、電池筐体(1)に窒素などの不活性ガ
スを供給する。このとき、燃料及び酸化剤の流量を各流
量計(9a)(9b)で検出し、流量調節器(n a)
(111))によって流量調節弁(8a)(8b)への
出力を演算して、燃料及び酸化剤の流1を制御する。ま
た、電池筐体(1)の圧力を圧力計αゆで検出し、圧力
調節器07)Kよって圧力調節弁αくへの出力を演算し
て、任意の動作圧力に設定する0さらに、燃料室(3)
と電池筐体(1)の間の差圧を差圧計(13a)で検出
し、差圧調節Rg (16a)によって差圧調節弁(1
2a)への出力を演算し、差圧を制御すると同時に酸化
剤室(4)と電池筐体(1)の間の差圧を差圧計(1z
b)で検出し、差圧調節器(ユ6b)によって差圧調節
弁(1211)への出力を演算し、差圧を制御する。こ
のように流量と圧力を制御して燃料電池を発電させる。
Needle valve (1) installed in the inert gas system (7)
0) and measure the inert gas flow rate using the inert gas flow meter (
9C) and supplies an inert gas such as nitrogen to the battery housing (1). At this time, the flow rate of fuel and oxidizer is detected by each flowmeter (9a) (9b), and the flow rate controller (na)
(111)) to calculate the output to the flow control valves (8a) and (8b) to control the flow 1 of fuel and oxidant. In addition, the pressure in the battery case (1) is detected by the pressure gauge α, and the output to the pressure control valve α is calculated by the pressure regulator 07)K to set the desired operating pressure. (3)
The differential pressure between the battery housing (1) and the battery housing (1) is detected by the differential pressure gauge (13a), and the differential pressure regulating valve (1
2a) to control the differential pressure, and at the same time measure the differential pressure between the oxidizer chamber (4) and the battery case (1) using a differential pressure gauge (1z
b), the differential pressure regulator (Y6b) calculates the output to the differential pressure regulating valve (1211), and controls the differential pressure. In this way, the flow rate and pressure are controlled to cause the fuel cell to generate electricity.

従来の流量・圧力制御装置は以上のように構成されてい
るので、電池出力負荷を変更する際に、燃料流量及び酸
化剤流量を変更すると、一定値に保持していた電池筐体
(1)と燃料室(3)、酸化剤室(4)との間の差圧が
急に大きく変動し、このために電池筐体(1)と燃料室
(3)、酸化剤室(4)との間のシーノペさらに燃料室
(3)と酸化剤室(4)とを隔離する電解液を含浸させ
た多孔質部材(マトリックス)及び電極を破壊する危険
性がある。また流量を変更してから再び差圧を一定値に
保持するまでに時間がかかるなどの欠点があった。
Since the conventional flow rate/pressure control device is configured as described above, when the fuel flow rate and oxidizer flow rate are changed when changing the battery output load, the battery casing (1), which was held at a constant value, The pressure difference between the battery housing (1), the fuel chamber (3), and the oxidizer chamber (4) suddenly fluctuates significantly. There is also a risk of destroying the electrolyte-impregnated porous material (matrix) and the electrodes that separate the fuel chamber (3) and the oxidizer chamber (4) between them. Another disadvantage is that it takes time to maintain the differential pressure at a constant value again after changing the flow rate.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、燃料流量及び酸化剤流量の変更時
、流量調節器(lla)Cub)の出力に、乗算器、積
分器、加算器等により構成される非干渉調節器を付加す
ることにより、流量変化にともなう差圧の変動を小さく
できる流量・圧力制御装置を提供することを目的として
いる。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and when changing the fuel flow rate and oxidizer flow rate, the output of the flow rate regulator (lla)Cub) is changed to a multiplier, an integrator, and an adder. It is an object of the present invention to provide a flow rate/pressure control device that can reduce fluctuations in differential pressure due to changes in flow rate by adding a non-interference regulator configured by a device or the like.

以下、この発明の一実施例を図について説明する。第2
図において、(11〜(71、(8a)(sb)、(9
aX9b)(9c)、QO) 、 (,1a)(11b
) 〜(13a)(lzb) 、α4)Q$ (16a
)(16b)、αηは上記従来装置と同一のものである
An embodiment of the present invention will be described below with reference to the drawings. Second
In the figure, (11 to (71, (8a) (sb), (9
aX9b) (9c), QO) , (,1a)(11b
) ~ (13a) (lzb) , α4)Q$ (16a
) (16b) and αη are the same as in the conventional device.

(18a )は燃料の流量計(9a)より検出された流
量と要求される負荷に換瀞された燃料流量との偏差を割
算する減算器、(18b)は酸化剤の流量計(9b)よ
り検出された流量と要求される負荷に換算された酸化剤
流量との偏差を計算する減算器、0傷は非干渉調節器で
ある。次に、非干渉調節器θ呻の一実施例を図について
説明する。第3図において、(8a)(8b)、(ll
a)(ユl’b)、(12a)(12b)、Q41.(
16a)(16b)、Q’i5は上記従来装置と同一の
ものである。(20a)(20’b)(20c X 2
0(]−X 20e)(2Of )(20g)(20h
)(201)(20j X 20k)(201)は乗算
器、(21a)(21b)(21c)(21a)(21
e)(21f)(21g)(21h)(211)(21
j X21k)(211)は積分器、(22a )(2
gb)(sgc)(22a)(22e)は加算器である
(18a) is a subtractor that divides the deviation between the flow rate detected by the fuel flow meter (9a) and the fuel flow rate converted to the required load, and (18b) is the oxidizer flow meter (9b). The subtractor that calculates the deviation between the detected flow rate and the oxidant flow rate converted to the required load is a non-interferential regulator. Next, an embodiment of the non-interference adjuster θ will be described with reference to the drawings. In FIG. 3, (8a), (8b), (ll
a) (Yul'b), (12a) (12b), Q41. (
16a) (16b) and Q'i5 are the same as those in the conventional device. (20a) (20'b) (20c X 2
0(]-X 20e)(2Of)(20g)(20h
) (201) (20j x 20k) (201) is a multiplier, (21a) (21b) (21c) (21a) (21
e) (21f) (21g) (21h) (211) (21
j X21k) (211) is an integrator, (22a) (2
gb)(sgc)(22a)(22e) are adders.

次に動作について説明する。Next, the operation will be explained.

不活性ガス系統(7)に取り付けられたニードル弁(H
l)を開き、不活性ガスの流量を不活性ガスの流量計(
9C)で検出し、電池筐体(1)に窒素などの不活性ガ
スを供給する。このとき燃料の流量計(9a)より検出
された流量と要求される負荷に換算された燃量調節器(
11a)によって流量調節弁(8a)への出力が演算さ
れ、非干渉調節器0!へ入力される。同時に減算器(1
81))により、酸化剤の流量計(9b)より検出され
た流量と要求される負荷に換算された酸化剤流量との偏
差を計算し、流量調節器(11b)によって流量調節弁
(8b)yの出力が演算され非干渉調節器θ窃へ入力さ
れる。また、電池筐体(1)の圧力を圧力計α0で検出
し圧力調節器(17)によって圧力調節弁04)への出
力が演算きれ、非干渉調節器α窃へ入力される。さらに
、燃料室(3)と電池筐体(1)の間の差圧を差圧計(
13a)で検出し、差圧調節器(16a )によって差
圧調節弁(12a)への出力が演算され、非干渉調節器
01へ入力されると同時に酸化剤室(4)と電池筐体(
1)の間の差圧を差圧計(131) )で検出し、差圧
調節器(16b)によって差圧調節弁(1zb)への出
力が演算され、非干渉調節器OQへ入力される。
Needle valve (H) installed in the inert gas system (7)
l) and measure the inert gas flow rate using the inert gas flow meter (
9C) and supplies an inert gas such as nitrogen to the battery housing (1). At this time, the fuel flow rate detected by the fuel flow meter (9a) and the fuel amount regulator (
11a) calculates the output to the flow control valve (8a), and the non-interference regulator 0! is input to. At the same time, the subtractor (1
81)) calculates the deviation between the flow rate detected by the oxidant flow meter (9b) and the oxidant flow rate converted to the required load, and the flow rate regulator (11b) calculates the deviation between the flow rate and the flow rate of the oxidizer (81). The output of y is calculated and input to the non-interference adjuster θ. Further, the pressure in the battery case (1) is detected by the pressure gauge α0, and the pressure regulator (17) calculates the output to the pressure regulating valve 04), which is input to the non-interference regulator α0. Furthermore, the differential pressure between the fuel chamber (3) and the battery housing (1) is measured with a differential pressure gauge (
13a), the differential pressure regulator (16a) calculates the output to the differential pressure regulating valve (12a), and inputs it to the non-interference regulator 01. At the same time, the oxidizer chamber (4) and the battery case (
1) is detected by a differential pressure gauge (131)), and the output to the differential pressure regulating valve (1zb) is calculated by the differential pressure regulator (16b) and input to the non-interference regulator OQ.

ここで、非干渉調節器θ呻に入力された各調節器(xl
a)(lxb)、(16a)(16b)、αηから各調
節弁(aa)(sb)。
Here, each regulator (xl
a) (lxb), (16a) (16b), each control valve (aa) (sb) from αη.

(12a)(12b) 、Q4)への出力値は、非干渉
調節器Q9を〜(211)及び加算器(22a)〜(2
2θ)によって、干渉要素を打ち消すように演算され、
各調節弁(&L)(8b)。
(12a) (12b), Q4) output values to non-interference adjuster Q9 to ~(211) and adders (22a) to (2).
2θ) is calculated to cancel the interference element,
Each control valve (&L) (8b).

(12a)(12b)、Q4)へ出力される。(12a) (12b), output to Q4).

なお、上記実施例では電池出力負荷変更要求による燃料
及び酸化剤の流量と電池筐体に対する燃料室及び酸化剤
室の差圧の間の干渉要素を打ち消したものを示しだが、
これは電池本体動作圧力変更要求に対するものでもよい
In addition, in the above example, the interference factor between the flow rate of fuel and oxidizer and the differential pressure between the fuel chamber and the oxidizer chamber with respect to the battery casing due to the battery output load change request is canceled.
This may be in response to a request to change the operating pressure of the battery body.

以上のように、この発明によれば、各調節器と各調節弁
の間に非干渉調節器を設けるように構成したので、電池
出力負荷を変動させる際電池本体に供給する燃料及び酸
化剤の圧力と電池筐体圧力との差圧の変動を小さく抑え
ることができ、再び差圧を一定値に保持するまでの時間
が短縮できる給装置の系統図、第2図はこの発明の一実
施例による燃料電池発電システムのガス供給装置の系統
図、第3図はこの発明の一実施例による非干渉調節器の
信号線図である。
As described above, according to the present invention, since a non-interference regulator is provided between each regulator and each control valve, the amount of fuel and oxidizer supplied to the battery main body is controlled when varying the battery output load. FIG. 2 is a system diagram of a supply device that can suppress variations in the differential pressure between the pressure and the battery casing pressure and shorten the time it takes to maintain the differential pressure at a constant value again. FIG. 2 is an embodiment of the present invention. FIG. 3 is a system diagram of a gas supply device for a fuel cell power generation system according to the present invention, and FIG. 3 is a signal line diagram of a non-interference regulator according to an embodiment of the present invention.

(1)・・・電池筐体、(2)・・燃料電池本体、(3
)・・・燃料室、(4)・酸化剤室、(5)・燃料系統
、(6)・・酸化剤系統、(7)・・・不活性ガス系統
、(8a)(8b)・・流量調節弁、(9a)(9b)
(9c) +++流量計、(10) −=−ドル弁、(
11a)(clb)・・・流量調節器、(12a)(1
2b) =−差圧調節弁、(13a)(13b)・・・
差圧計、Q4)・・・圧力調節弁、α0・・圧力削、(
16a)(16b) 、=−差圧調節器、aη 圧力調
節器、(18a)(181))−減算器、0儲・非干渉
調節器、(20a )(20b)(20c X 20(
l X 20e )(2Of )(20g )(20h
 )(201)(20j )(20k )(zol)=
乗算器、(21a)(zlb)(21c)(21a)(
z:+、e)(21f)(21g)(21h )(21
i)(21j )(21k)(211)・・・積分器、
(22a)(22b)(22c)(22+1)(22e
) ・加算器なお、図中同一符号は同−又は相黒部分を
示す。
(1)...Battery housing, (2)...Fuel cell main body, (3
)... Fuel chamber, (4) - Oxidizer chamber, (5) - Fuel system, (6) - Oxidizer system, (7)... Inert gas system, (8a) (8b)... Flow control valve, (9a) (9b)
(9c) +++ flow meter, (10) -=- dollar valve, (
11a) (clb)...Flow rate regulator, (12a) (1
2b) =-differential pressure control valve, (13a) (13b)...
Differential pressure gauge, Q4)...Pressure control valve, α0...Pressure cutter, (
16a) (16b) , = - differential pressure regulator, aη pressure regulator, (18a) (181)) - subtractor, 0 gain/non-interference regulator, (20a) (20b) (20c
l × 20e ) (2Of ) (20g ) (20h
)(201)(20j)(20k)(zol)=
Multiplier, (21a) (zlb) (21c) (21a) (
z: +, e) (21f) (21g) (21h) (21
i) (21j) (21k) (211)...integrator,
(22a) (22b) (22c) (22+1) (22e
) Adder Note that the same reference numerals in the figures indicate the same or black parts.

代理人 大岩増雄Agent Masuo Oiwa

Claims (2)

【特許請求の範囲】[Claims] (1)燃料及び酸化剤を電池本体に供給することにより
電気出力を得る燃料電池発電システムにおいて、非干渉
調節器を設置して流量と圧力を制御することを特徴とす
る燃料電池発電システムの流量・圧力制御装置。
(1) Flow rate of a fuel cell power generation system that obtains electrical output by supplying fuel and oxidizer to the cell body, characterized in that a non-interference regulator is installed to control flow rate and pressure.・Pressure control device.
(2)非干渉調節器は、電池本体に供給する燃料及び酸
化剤の流量と、燃料及び酸化剤の圧力と電池筐体圧力と
の差圧の間の干渉要素を打ち消して制御することを特徴
とする特許請求の範囲第1項記載の燃料電池発電システ
ムの流量・圧力制御装置0
(2) The non-interference regulator controls the flow rates of fuel and oxidizer supplied to the battery body by canceling out interference factors between the pressure of the fuel and oxidizer and the pressure of the battery casing. Flow rate/pressure control device 0 for a fuel cell power generation system according to claim 1
JP58231990A 1983-12-07 1983-12-07 Flow rate and pressure control equipment of fuel cell power generating system Pending JPS60124362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58231990A JPS60124362A (en) 1983-12-07 1983-12-07 Flow rate and pressure control equipment of fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58231990A JPS60124362A (en) 1983-12-07 1983-12-07 Flow rate and pressure control equipment of fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPS60124362A true JPS60124362A (en) 1985-07-03

Family

ID=16932210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58231990A Pending JPS60124362A (en) 1983-12-07 1983-12-07 Flow rate and pressure control equipment of fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPS60124362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086996A1 (en) * 2001-04-20 2002-10-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Fuel cell system and method for regulating pressure in fuel cell systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086996A1 (en) * 2001-04-20 2002-10-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Fuel cell system and method for regulating pressure in fuel cell systems
DE10119339B4 (en) * 2001-04-20 2006-03-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Fuel cell system and method for pressure regulation in fuel cell systems and use of the fuel cell system
US7618730B2 (en) 2001-04-20 2009-11-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Fuel cell system and method for regulating pressure in fuel cell systems

Similar Documents

Publication Publication Date Title
KR101090551B1 (en) Temperature control apparatus, processing apparatus, and temperature control method
JPH0239441B2 (en)
Epelboin et al. The study of the passivation process by the electrode impedance analysis
US7087335B2 (en) H-infinity control with integrator compensation for anode pressure control in a fuel cell stack
JPS60124362A (en) Flow rate and pressure control equipment of fuel cell power generating system
US20100233555A1 (en) Closed-loop control system for a controlled system
JPS6260789B2 (en)
JPS583278B2 (en) composite transducer
JP3517260B2 (en) Fuel cell power generator and control method for fuel cell power generator
Newman Optimization of potential and hydrogen utilization in an acid fuel cell
JPH079812B2 (en) Fuel cell
JPS58128673A (en) Control of fuel cell power generating plant
JP2020510293A (en) Method for detecting leaks in an energy converter system
JPS6318305B2 (en)
JPH01146265A (en) Rebalancing device of electrolyte flow type cell
JPS59105274A (en) Fuel supply control equipment of fuel cell
JPS5887771A (en) Air flow rate controlling device of fuel cell
JPH0714595A (en) Operating method of power generating device of fuel cell type
JPS62160665A (en) Fuel cell power generation system
Varigonda et al. Challenges in fuel cell power plant control: The role of system level dynamic models
JPS58133775A (en) Cooling method of fuel cell power generating system
JPS6297264A (en) Fuel cell power generating system
JPH08250139A (en) Fuel-cell generating system
JPH119941A (en) Humidity adjusting method
JPS6039772A (en) System for controlling pressure and flow rate in fuel cell power generation plant