JPS60124343A - Ion implantation device with rutherford scatter measuring instrument - Google Patents

Ion implantation device with rutherford scatter measuring instrument

Info

Publication number
JPS60124343A
JPS60124343A JP58229925A JP22992583A JPS60124343A JP S60124343 A JPS60124343 A JP S60124343A JP 58229925 A JP58229925 A JP 58229925A JP 22992583 A JP22992583 A JP 22992583A JP S60124343 A JPS60124343 A JP S60124343A
Authority
JP
Japan
Prior art keywords
ion
accelerator
frequency
rutherford
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58229925A
Other languages
Japanese (ja)
Inventor
Katsumi Tokikuchi
克己 登木口
Kuniyuki Sakumichi
訓之 作道
Osami Okada
岡田 修身
Hidemi Koike
英巳 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58229925A priority Critical patent/JPS60124343A/en
Publication of JPS60124343A publication Critical patent/JPS60124343A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To obtain an instrument to be used for rutherford scatter analysis during ion implantation by, as a high-frequency four-electrode accelerator, providing an external resonant accelerator capable of switching the kind of accelerated ion through the changing of applied frequencies or arranging plural high-frequency four-electrode accelerators each for exclusive use for a specific kind of ion. CONSTITUTION:A rutherford scattered particles measuring instrument 9 and a multi-channel analyzer 10 are set in an ion implantation chamber, and an external resonant accelerator 5' is used as a high-frequency four-electrode accelerator to supply an electric power to two pairs of opposed electrodes from an independent power source. In this case, it is designed such that, with the use of a frequency-switching regulator 8' and a gas switching device 1'', P<+> ion can be accelerated and implanted during ion implantation, and He ion can be accelerated to hit on the base plate during rutherford scatter analysis, for example.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はイオン打込み装置に係り、特に、打込み中にラ
ザフオード散乱分析を同時に行える打込み装置に関する
。。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ion implantation device, and more particularly to an implantation device that can simultaneously perform Rutherford scattering analysis during implantation. .

〔発明の背景〕[Background of the invention]

第1図は従来のイオン打込み装置を説明する図である。 FIG. 1 is a diagram illustrating a conventional ion implantation device.

従来のイオン打込みでは、イオン源1から引出されたイ
オンビーム1′は質量分離器2によって質量分離され、
特定のイオン種が試料基板4に打込まれる。質量分離器
2と試料基板4の間には、基板に均一に打込みが行なわ
れるよう、ビームをXY方向に走査するビーム走査系3
が設けられている。一方、ラザフオード散乱分析は高速
のHeイオンを基板にあて、基板中に含まれる元素によ
ってラザフォード散乱されるHeイオンのエネルギ分布
から、上記元素の同定と深さ分布をめるものである。し
かしながら、一般にラザフオード散乱分析用のHeイオ
ンエネルギは1〜3M e Vであるため、分析のため
には打込み試料を取出し、パンデグラーフ加速器やコツ
ククロフト加速器から出たHeイオンビームを使うラザ
フオード散乱分析装置に取つける必要があった。即ち。
In conventional ion implantation, an ion beam 1' extracted from an ion source 1 is mass separated by a mass separator 2.
A specific ion species is implanted into the sample substrate 4. Between the mass separator 2 and the sample substrate 4, there is a beam scanning system 3 that scans the beam in the X and Y directions so that the substrate is uniformly implanted.
is provided. On the other hand, in Rutherford scattering analysis, high-speed He ions are applied to a substrate, and the element contained in the substrate is identified and its depth distribution determined from the energy distribution of the He ions that are Rutherford scattered by the elements contained in the substrate. However, since the He ion energy for Rutherford scattering analysis is generally 1 to 3 M e V, the implanted sample must be removed for analysis and transferred to a Rutherford scattering analyzer that uses a He ion beam emitted from a Pandegraaf accelerator or Kotscroft accelerator. I needed to install it. That is.

杓込みを行いながらその打込みイオン種の深さ分布を同
時観測できる打込み装置はなかった。第2図は別の従来
例を説明する図である。第2図でイオン源1から引出さ
れたイオンビーム1′は、高周波四重横加速器5によっ
てM e V領域まで加速さiL、試料基板4に打込ま
れる。第3図は高周波四重横加速器の概略構成図である
。本加速器は波うった四個の電極から成り、相対する2
個の電極の出つばった部分では、残りの2組の電極がへ
こむよう構成されている。本加速器は一種の空洞共振器
を構成しており、これに100 M Hzの高周波電界
を印加することにより軸方向に加速電界が生じイオンは
効率良く加速される。しかしながら、従来の共振器構造
の場合、この加速器を透過可能なイオン種は一種類であ
り、加速後のエネルギも固定であった。従って、第2図
でHeイオンによるラザフオード散乱分析を行うために
は、高周波四重横加速器そのものを交換する必要があり
、事実上、イオン打込みを行いながら、ラザフオード散
乱分析による打込みイオン種の深さ分布を知ることは不
可能であった。
There was no implantation device that could simultaneously observe the depth distribution of the implanted ion species while performing the ladle. FIG. 2 is a diagram illustrating another conventional example. In FIG. 2, the ion beam 1' extracted from the ion source 1 is accelerated to the M e V region by the high frequency quadruple transverse accelerator 5 and is implanted into the sample substrate 4 by iL. FIG. 3 is a schematic diagram of the high-frequency quadruple transverse accelerator. This accelerator consists of four undulating electrodes, two facing each other.
At the protruding portion of one electrode, the remaining two sets of electrodes are recessed. This accelerator constitutes a type of cavity resonator, and by applying a high frequency electric field of 100 MHz to this, an accelerating electric field is generated in the axial direction, and ions are efficiently accelerated. However, in the case of a conventional resonator structure, only one type of ion species can pass through this accelerator, and the energy after acceleration is also fixed. Therefore, in order to perform Rutherford scattering analysis using He ions in Figure 2, it is necessary to replace the high-frequency quadruple transverse accelerator itself, and in effect, while performing ion implantation, it is necessary to determine the depth of the implanted ion species by Rutherford scattering analysis. It was impossible to know the distribution.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来、実現不可能であったイオン打込
み中に、ラザフオード散乱分析を行う装置を提供するこ
とにあり、これにより任意の注入深さ分布が得られるイ
オン打込み装置の実現を図るものである。
An object of the present invention is to provide an apparatus that performs Rutherford scattering analysis during ion implantation, which has conventionally been impossible, and thereby aims to realize an ion implantation apparatus that can obtain an arbitrary implantation depth distribution. It is something.

〔発明の概要〕[Summary of the invention]

本発明においては、イオン打込み用の高周波四重横加速
器として構造を変えることなくその印加波数を変えるこ
とにより加速イオン種を切換え可能な外部共振形加速器
もしくは特定イオン種専用の高周波四重横加速器を複数
個並べ、以って打込みとラザフオード散乱分析を交互に
行う。
In the present invention, as a high-frequency quadruple transverse accelerator for ion implantation, an external resonant accelerator or a high-frequency quadruple transverse accelerator dedicated to a specific ion species is used, in which the accelerated ion species can be switched by changing the applied wave number without changing the structure. Multiple units are lined up, and implantation and Rutherford scattering analysis are performed alternately.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第4図により説明する。第4
図においては、高周波四重横加速器としては、外部共振
形加速器5′を用いた6本加速器では、相対する2組の
電極に、独立な電源から電力を供給するものである。こ
の場合、周波数切換え調整器8′とガス切換え装置1″
を使い、イオン打込み時にはP+イオンが加速、打込み
され、またラザフオード散乱分析時にはHeイオンが加
速され、基板にあたるようにした。
An embodiment of the present invention will be described below with reference to FIG. Fourth
In the figure, the high-frequency quadruple transverse accelerator is a six-accelerator using an external resonant accelerator 5', in which power is supplied to two sets of opposing electrodes from independent power sources. In this case, the frequency switching regulator 8' and the gas switching device 1''
During ion implantation, P+ ions were accelerated and implanted, and during Rutherford scattering analysis, He ions were accelerated so that they hit the substrate.

第5図は本発明に基づく別の実施例を説明する図である
FIG. 5 is a diagram illustrating another embodiment based on the present invention.

第5図ではビームラインにHeイオン加速用高周波四重
極加速器7を設けると共に、ラザフオード散乱粒子測定
器9とマルチチャンネルアナライザ10を設けている。
In FIG. 5, the beam line is provided with a high frequency quadrupole accelerator 7 for accelerating He ions, as well as a Rutherford scattering particle measuring instrument 9 and a multichannel analyzer 10.

さらに、スイッチング回路8を設け、イオン源1に流入
するガスのバルブをスイッチングすると共に各加速器の
駆動型g6′。
Furthermore, a switching circuit 8 is provided, which switches the valve for the gas flowing into the ion source 1 and the driving type g6' of each accelerator.

7′をスイッチングする。これによりイオン打込み、例
えばP+の打込みを共振器6を使い、ラザフオード散乱
分析では共振器7を用いて、イオン打込みしながらラザ
フォード散乱分析を行うことが可能となった。本実施例
では、打込み電流の減少を少なく押えるため、イオン源
に近い加速器を打込みイオン種(ここではp−F)用の
ものとしている。なお、打込み電流としては、P+では
約1mAである。一方、ラザフオード散乱分析時のヘリ
ウムビーム電流としてもほぼ1mAに近いビーム電流が
得られ、分析時間は数秒の桁であった。
Switch 7'. This makes it possible to perform Rutherford scattering analysis while implanting ions by using the resonator 6 for ion implantation, for example P+ implantation, and using the resonator 7 for Rutherford scattering analysis. In this embodiment, in order to minimize the decrease in implantation current, an accelerator near the ion source is used for the implanted ion species (p-F in this case). Note that the implant current is approximately 1 mA for P+. On the other hand, a helium beam current close to 1 mA was obtained during Rutherford scattering analysis, and the analysis time was on the order of several seconds.

第6図は本発明に基づく別の実施例を説明する図である
。図では共振器7と走査系3の間に、ビームエネルギを
微調するためのシングルキャップ12を設けた。一方、
ラザフォード散乱粒子のエネルギスペクトルから得られ
る注入イオン種の深さ方向分布をディスプレイ11に表
示し、分布形状比較器13を使って目的とする分布形状
が得られるように、シングルギャップにがける電圧とそ
の状態での打込み量を制御した。これにより、イオン打
込みをしながら、その注入分布がわがると共に、その分
布形状をずい時、任意に変えることが可能となった。
FIG. 6 is a diagram illustrating another embodiment based on the present invention. In the figure, a single cap 12 is provided between the resonator 7 and the scanning system 3 for finely adjusting the beam energy. on the other hand,
The depth distribution of the implanted ion species obtained from the energy spectrum of the Rutherford scattering particles is displayed on the display 11, and the voltage applied to the single gap is adjusted using the distribution shape comparator 13 so that the desired distribution shape can be obtained. The amount of implantation in this state was controlled. This makes it possible to vary the implantation distribution while implanting ions, and to change the shape of the distribution at any time.

次に以上の実施例では打込み操作とラザフォード散乱分
析を交互に行うため、同時操作できなかった。このため
同時操作できた一実施例を第7図に示す。本実施例では
、イオン源と加速器からなるビーンラインを2ヶ設け、
片方をイオン打込み機側、他方をラザフォード散乱分析
用に用いた。
Next, in the above embodiments, the implantation operation and the Rutherford scattering analysis were performed alternately, so they could not be operated simultaneously. FIG. 7 shows an embodiment in which simultaneous operations can be performed. In this example, two bean lines consisting of an ion source and an accelerator are installed.
One side was used for the ion implanter and the other side was used for Rutherford scattering analysis.

次に第4.第6図に示した実施例では、打込みイオンの
エネルギは高周波四重極加速器を使用しているため、数
100keV〜数M e Vとなっている。従って、従
来の100keV以下の打込み機に対しラザフオード分
析を行った。別の一実施例を第8図に示す。図では、打
込もうとするイオン(例えばP+)は90°偏向の磁場
形質量分離器2′を使って選別され、基板4に打込まれ
る。
Next is the fourth. In the embodiment shown in FIG. 6, the energy of the implanted ions is from several 100 keV to several MeV because a high frequency quadrupole accelerator is used. Therefore, Rutherford analysis was performed on a conventional driving machine of 100 keV or less. Another embodiment is shown in FIG. In the figure, ions to be implanted (for example, P+) are selected using a 90° deflection magnetic field type mass separator 2' and implanted into a substrate 4.

この時のビームエネルギはイオン源1に印加する加速電
圧によって決まる。−カラザフォード散乱分析用のビー
ムラインを図中に示したように配置している。ラザフォ
ード散乱測定時は、質量分離器2′の磁場の強さを零に
し、ヘリウムイオンが偏向されないようにした。本実施
例ではP+イオン打込みは100keV以下で行い、ラ
ザフオード散乱分析時には3 M e Vの1−1 e
イオンビームを用いた。これにより、従来打込み機でも
ラザフオー1−敗乱分析をイオン11込みと併用するこ
とが可能となった。
The beam energy at this time is determined by the accelerating voltage applied to the ion source 1. -The beam line for Carrutherford scattering analysis is arranged as shown in the figure. During the Rutherford scattering measurement, the strength of the magnetic field of the mass separator 2' was set to zero to prevent helium ions from being deflected. In this example, P+ ion implantation was performed at 100 keV or less, and at 1-1 e of 3 M e V during Rutherford scattering analysis.
An ion beam was used. As a result, it has become possible to use Razafo 1-Failure analysis in combination with Ion 11 inclusion even with conventional implanting machines.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、イオン打込み中にラザフオード散乱分
析を行うことができ、注入イオン二つ11て目的とする
任意の深さ分布形状を持つ打込みが可能となり、実用上
、多大な効果がある。
According to the present invention, Rutherford scattering analysis can be performed during ion implantation, and the two implanted ions 11 can be implanted to have any desired depth distribution shape, which has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は打込み装置の従来例を説明する図、第2図は打
込み装置の別の従来例を説明する図、第3図は高周波四
重極加速器の概略構造図、第4図は本発明に基づく一実
施例を説明する図、第5図ないし第8図は本発明に基づ
くそれぞれ別の実施例を説明する図である。 1・・・イオン源、1′・・・イオンビーム、1#・・
・ガス切換え装置、2・・・磁場形質量分離器、2′・
・・90゜偏向磁場形、質量分離器、3・・・ビーム走
査系、4・・・試料基板、5・・・高周波四重極加速器
、5′・・・外、一部共振形高周波四重極加速器、5“
・・・外部共振形高周波四重極用電源、6・・・打込み
イオン種用高周波四重極加速器、6′・・電源、7・・
・ヘリウムイオン用高周波四重極加速器、7′・・・電
源、8・・・スイッチング回路、8′・・・周波数調整
器、9・・・半導体検出器、10・・・マルチチャンネ
ルアナライザ、1トディスプレイ、12・・・シングル
キャップ、多1回 3 等3図 4 Φ 7 6 /
Figure 1 is a diagram explaining a conventional example of a driving device, Figure 2 is a diagram explaining another conventional example of a driving device, Figure 3 is a schematic structural diagram of a high frequency quadrupole accelerator, and Figure 4 is a diagram of the present invention. FIGS. 5 to 8 are diagrams illustrating different embodiments based on the present invention. 1...Ion source, 1'...Ion beam, 1#...
・Gas switching device, 2...Magnetic field type mass separator, 2'・
...90° deflection magnetic field type, mass separator, 3... Beam scanning system, 4... Sample substrate, 5... High frequency quadrupole accelerator, 5'... Outside, partially resonant high frequency quadrupole Heavy pole accelerator, 5"
... External resonance type high frequency quadrupole power supply, 6... High frequency quadrupole accelerator for implanted ion species, 6'... Power supply, 7...
・High frequency quadrupole accelerator for helium ions, 7'...Power source, 8...Switching circuit, 8'...Frequency adjuster, 9...Semiconductor detector, 10...Multi-channel analyzer, 1 display, 12...single cap, multiple times 3, etc. 3 Figure 4 Φ 7 6 /

Claims (1)

【特許請求の範囲】 1、イオン源、高周波四重横加速器、打込み室で構成さ
れるイオン打込み装置において、イオン源と打込み室と
の間に1ケもしくは複数個の高周波四重横加速器を設け
、かつイオン源への導入試料ガスの切換え装置を設ける
と共に、打込み室にラザフオード散乱測定装置を組み込
むことにより、イオン打込みと、ラザフオード散乱分析
を交互に行なわしめることを特徴としたラヶ設ける高周
波四重横加速器として、外部共振形加速器とすると共に
、イオン打込み用イオン種加速のための高周波四重極加
速器印加周波数とラザフオード散乱用ヘリウムイオン加
速のための印加周波数を切換え調整する調整器を設けた
ことを特徴とする竿中中井佐多うザフオード散乱測定装
置付きイオン打込み装置。 3、打込みイオン種用の高周波四重横加速器とラザフオ
ード散乱分析に用いるヘリウムイオン用高周波四重極加
速器を直列に並べて構成し、かつイオン打込み及びラザ
フォード散乱分析を交互に行なわしめるための高周波四
重極加速器動ン打込み装置。 4、イオン源と高周波四重横加速器からなるビームライ
ンを2ヶ以上設けて同時に試料基板にビーム照射し、以
って打込み操作を中断することなくラザフオード散乱分
析を可能にせしめた特許請求の範囲第1項記載のラザフ
ォード散乱測定装置付きイオン打込み装置。 5、試料基板と高周波四重横加速器の中間に90゜偏向
の質量分離マグネットを設けると共に、このマグネット
の一端から打込みイオン種発生用のイオン源から出たビ
ームを導入せしめ、質量分離されたI M e V以下
のイオンビームを試料基板に打込みながら、ラザフオー
ド散乱分析を同時に行なうようにしたことを特徴とする
特許請求の範囲第1項に記載のラザフォード散乱測定装
置付きイオン打込み装置。
[Claims] 1. In an ion implantation apparatus consisting of an ion source, a high-frequency quadruple transverse accelerator, and an implantation chamber, one or more high-frequency quadruple transverse accelerators are provided between the ion source and the implantation chamber. , and is equipped with a switching device for the sample gas introduced into the ion source, and also incorporates a Rutherford scattering measurement device in the implantation chamber to perform ion implantation and Rutherford scattering analysis alternately. The heavy transverse accelerator is an external resonant type accelerator, and a regulator is installed to switch and adjust the frequency applied by the high-frequency quadrupole accelerator for accelerating ion species for ion implantation and the applied frequency for accelerating helium ions for Rutherford scattering. This is an ion implantation device equipped with a Usaford scattering measuring device. 3. A high-frequency quadrupole transverse accelerator for implanting ion species and a high-frequency quadrupole accelerator for helium ions used for Rutherford scattering analysis are arranged in series, and a high-frequency quadrupole accelerator for performing ion implantation and Rutherford scattering analysis alternately. Polar accelerator driving device. 4. The scope of the patent claims that two or more beam lines each consisting of an ion source and a high-frequency quadruple transverse accelerator are provided to simultaneously irradiate a sample substrate with beams, thereby enabling Rutherford scattering analysis without interrupting the implantation operation. An ion implantation device equipped with a Rutherford scattering measurement device according to item 1. 5. A mass separation magnet with a 90° deflection is installed between the sample substrate and the high-frequency quadruple transverse accelerator, and a beam emitted from an ion source for generating implanted ion species is introduced from one end of the magnet, so that the mass-separated I The ion implantation apparatus with a Rutherford scattering measuring device according to claim 1, characterized in that Rutherford scattering analysis is simultaneously performed while implanting an ion beam of M e V or less into a sample substrate.
JP58229925A 1983-12-07 1983-12-07 Ion implantation device with rutherford scatter measuring instrument Pending JPS60124343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58229925A JPS60124343A (en) 1983-12-07 1983-12-07 Ion implantation device with rutherford scatter measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58229925A JPS60124343A (en) 1983-12-07 1983-12-07 Ion implantation device with rutherford scatter measuring instrument

Publications (1)

Publication Number Publication Date
JPS60124343A true JPS60124343A (en) 1985-07-03

Family

ID=16899884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58229925A Pending JPS60124343A (en) 1983-12-07 1983-12-07 Ion implantation device with rutherford scatter measuring instrument

Country Status (1)

Country Link
JP (1) JPS60124343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027968A1 (en) * 1999-10-13 2001-04-19 Applied Materials, Inc. Determining beam alignment in ion implantation using rutherford back scattering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027968A1 (en) * 1999-10-13 2001-04-19 Applied Materials, Inc. Determining beam alignment in ion implantation using rutherford back scattering
US6555832B1 (en) 1999-10-13 2003-04-29 Applied Materials, Inc. Determining beam alignment in ion implantation using Rutherford Back Scattering

Similar Documents

Publication Publication Date Title
TW367518B (en) Method and apparatus for ion beam formation in an ion implanter
US11818830B2 (en) RF quadrupole particle accelerator
US9024282B2 (en) Techniques and apparatus for high rate hydrogen implantation and co-implantion
US20240029997A1 (en) Apparatus, system and method for energy spread ion beam
KR20020047256A (en) Wide parameter range ion beam scanners
KR20150043971A (en) Medium current ribbon beam for ion implantation
JP3896543B2 (en) A mechanism for suppressing neutron radiation in the beam line of an ion implanter.
JPS60124343A (en) Ion implantation device with rutherford scatter measuring instrument
JP3168903B2 (en) High-frequency accelerator and method of using the same
JP2526941B2 (en) Ion implanter
JP2644958B2 (en) Ion source device and ion implantation device provided with the ion source device
JP2617240B2 (en) Control method of acceleration energy in high frequency quadrupole accelerator
JPS60121655A (en) High voltage ion driving device
EP0066175A1 (en) Ion implanter
JPH0697640B2 (en) Acceleration energy control method in high frequency quadrupole accelerator
Thopan et al. Design and simulation of a low-energy single ion irradiation system for micro/nano-biosample investigation
JPH05258710A (en) Ion implantation device
Mynard et al. Progress report on the 400 keV research implanter at the University of Surrey
JPH0877960A (en) Ion implantating device
JPH05136078A (en) Ion implantor
JPS61114453A (en) Charged particle ray device
JP2978191B2 (en) Ion beam irradiation method
JP3138292B2 (en) Ion beam irradiation method and apparatus
JP2000036279A (en) Ion implanting device
KR20010054277A (en) Ion Counting Device