JPS60123772A - Electrostatic potential measuring apparatus - Google Patents

Electrostatic potential measuring apparatus

Info

Publication number
JPS60123772A
JPS60123772A JP23216283A JP23216283A JPS60123772A JP S60123772 A JPS60123772 A JP S60123772A JP 23216283 A JP23216283 A JP 23216283A JP 23216283 A JP23216283 A JP 23216283A JP S60123772 A JPS60123772 A JP S60123772A
Authority
JP
Japan
Prior art keywords
circuit
discharge
discharge tube
electrodes
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23216283A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kaneko
金子 良明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Denshi Kogyo KK
Original Assignee
Sanki Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Denshi Kogyo KK filed Critical Sanki Denshi Kogyo KK
Priority to JP23216283A priority Critical patent/JPS60123772A/en
Priority to EP19840302260 priority patent/EP0125006B1/en
Priority to DE8484302260T priority patent/DE3467416D1/en
Publication of JPS60123772A publication Critical patent/JPS60123772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To make it possible to perform accurate quantitative analysis even when potential distribution is not uniform and to enable the measurement of extremely low potential, by such a simple structure that a small gas discharge tube is interposed between a pair of electrodes chargeable by electrostatic induction. CONSTITUTION:When the charge amounts of electrodes E1, E2 exceed definite values corresponding to the shape and discharge gap length of discharge electrodes in a discharge tube GDT and the kind and pressure of sealed gas, the discharge tube GDT is discharged and voltage (the induction voltage of an antenna A) corresponding to the direction of the discharge current thereof is applied to a comparator circuit CO through an OR gate circuit OR and the circuit CO through a polarity reversal circuit PI and the circuit OR. When this voltage is higher than reference voltage applied to the circuit CO through a terminal TS, a FF circuit FF is reversed by the output of the circuit CO and a light emitting diode LED is allowed to emit light through a drive circuit DR to inform that the discharge tube GDT discharges. Therefore, if the discharge voltage with a definite value of the discharge tube GDT is foreknown, the potential of a place to be measured can be calculated.

Description

【発明の詳細な説明】 本発明は、静電気電位測定装置に関するものである。[Detailed description of the invention] The present invention relates to an electrostatic potential measuring device.

従来、静電気電位を測定する場合には、例えばパーソリ
ュームの改良装置又は回転上クタ型電界測定器等が用い
られているが、前者は定量性に乏しく、後者は構造が複
雑で、電位分布が均一な場合には正確な測定が可能であ
るが、電位分布が不均一な場合には正確な測定を行うこ
とが不可能である。
Conventionally, when measuring electrostatic potential, for example, an improved Persolium device or a rotating top electric field measuring device has been used, but the former has poor quantitative properties, and the latter has a complicated structure and has a poor potential distribution. Accurate measurement is possible when the potential distribution is uniform, but accurate measurement is impossible when the potential distribution is non-uniform.

本発明は、簡単な構造で、電位分布が不均一な場合にお
いでも電位を定量的に正確に測定し得ると共に、極めて
低電位の111足の可能な静電気電位測定装置を実現す
ることを目的とする。
An object of the present invention is to realize an electrostatic potential measuring device that has a simple structure, can quantitatively and accurately measure potential even when the potential distribution is uneven, and is capable of measuring 111 pairs of extremely low potentials. do.

図は、本発明の一実施例を示す図で、El は電極5、
R2は接地電極、GDTは小型ガス放電管で、一方の放
電電極を電極引に接続し、他方の放電電極を接地電極E
2に接続しである。SIは絶縁支持体で、例えば適当な
接着剤によって電極Kl、R2及び放電管GDTを固着
支持する。Aはアンテナで、広帯域特性の小型ロッドア
ンテナ又はループアンテナ等より 成る。
The figure shows an embodiment of the present invention, where El is the electrode 5,
R2 is the ground electrode, GDT is a small gas discharge tube, one discharge electrode is connected to the electrode puller, and the other discharge electrode is connected to the ground electrode E.
It is connected to 2. SI is an insulating support that firmly supports the electrodes Kl, R2 and the discharge tube GDT using, for example, a suitable adhesive. A is an antenna, which consists of a small rod antenna or loop antenna with broadband characteristics.

RMはアンテナ整合抵抗、PIは極性反転回路、ORは
オアゲート回路、COは比較回路、T8は基準電圧印加
端子、FFはフリップ70・ンプ回路、R8はすゼット
スイッチ、DRは駆動回路、LIDは発光ダイオードで
ある。
RM is the antenna matching resistor, PI is the polarity inversion circuit, OR is the OR gate circuit, CO is the comparison circuit, T8 is the reference voltage application terminal, FF is the flip 70 amplifier circuit, R8 is the ZET switch, DR is the drive circuit, and LID is the It is a light emitting diode.

フリップフロップ回路FFをリセットした後、電極El
 、E2及び放電管GDTの絶縁支持体SIを被測定直
流電界又は被測定交流電界の任意個所に位置せしめると
、静電誘導によって被測定電位に応じた電荷がt極EI
 に生じ、その電荷量が一定値、即ち、放電管GDTに
おける放電電極の形状、放電間隙長及び封入ガスの種類
、圧力等に応じた一足値を超えると放電管GDTが放電
し、その放電電流の向きに対応する電圧がアンテナAに
誘起する。アンテナAの誘起電圧はオアゲート回路OR
Th介して比較回路coに加えられると共に、極性反転
口路PI及びオアゲート回路ORを介して比較回路Co
に加えられ、この電圧が、端子TSを介して比較口1i
8coに加えられる基準電圧より高い場合には比較回路
coの出力によりフリップフロップ回路FFが反転し、
その反転出力が駆動回路DRに加えられて発光ダイオー
ドLED を発光せしめ、放電管GDTが放電したこと
を報知する。したがってび封入ガスの種類、圧力等によ
り定まる放電管GOTの放電電圧を予め既知ならしめて
おけば発光ダイオ−I’ IJDの発光によって放電管
GDTの放電を知り得ると−共に、その際の放電電圧、
即ち、被測定個所における電位をめることが出来る。
After resetting the flip-flop circuit FF, the electrode El
, E2 and the insulating support SI of the discharge tube GDT are positioned at arbitrary points in the DC electric field to be measured or the AC electric field to be measured, a charge corresponding to the potential to be measured is generated at the t pole EI due to electrostatic induction.
When the amount of charge exceeds a certain value, that is, a value depending on the shape of the discharge electrode in the discharge tube GDT, the length of the discharge gap, the type of gas filled in, the pressure, etc., the discharge tube GDT discharges, and the discharge current increases. A voltage corresponding to the direction of is induced in antenna A. The induced voltage of antenna A is OR gate circuit OR
It is applied to the comparison circuit co via Th, and is also applied to the comparison circuit Co via the polarity inversion port PI and the OR gate circuit OR.
is applied to the comparison port 1i through the terminal TS.
When the voltage is higher than the reference voltage applied to 8co, the output of the comparison circuit co inverts the flip-flop circuit FF.
The inverted output is applied to the drive circuit DR to cause the light emitting diode LED to emit light, thereby notifying that the discharge tube GDT has discharged. Therefore, if the discharge voltage of the discharge tube GOT, which is determined by the type and pressure of the filled gas, is known in advance, it is possible to know the discharge of the discharge tube GDT from the light emission of the light emitting diode I'IJD, and also to determine the discharge voltage at that time. ,
That is, it is possible to reduce the potential at the location to be measured.

放電電極の形状、放電間隙長及び封入ガスの種類、圧力
等のパラメータのすべて、又はパラメータの何れかを異
ならしめた放電管、即ち、放電電圧の互に異なる放電管
を電極E1及び82間に介装したものを多数用意するか
、放電電圧の互に異なる放電管を共通の電極E1及び8
2間に差換え装着し得るように構成することにより任意
の被測定電位をめることが出来る。
Discharge tubes in which all or any of the parameters such as the shape of the discharge electrode, the length of the discharge gap, the type of filled gas, and the pressure are different, that is, the discharge tubes with different discharge voltages, are placed between the electrodes E1 and 82. Either prepare a large number of interposed tubes, or connect discharge tubes with different discharge voltages to a common electrode E1 and 8.
By configuring it so that it can be installed interchangeably between the two, any potential to be measured can be applied.

図には電極E2を接地した場合を例示しであるが、電極
E2の代りにEl を接地してもよいこと勿論で、又、
電極E1及びIli!2を共に接地することなく、両電
極を浮かした状態に保つことにより電位差の測定を可能
ならしめ得る。
The figure shows an example where the electrode E2 is grounded, but it goes without saying that El may be grounded instead of the electrode E2.
Electrodes E1 and Ili! By keeping both electrodes floating without grounding them together, it may be possible to measure the potential difference.

電極E1及びl1i2は誘導により帯電して放電管GD
Tを放電せしめ得るものであれば、その材質、形状及び
絶縁支持体SIへの支持方法等は任意で差支えなく、又
、コロナ放電を生じない範囲で電極を小型に形成するこ
とにより高分解能を以て電位分布をめることが出来る。
Electrodes E1 and l1i2 are charged by induction and discharge tube GD
As long as it can discharge T, its material, shape, and method of supporting it to the insulating support SI may be arbitrary.Also, by forming the electrode in a small size within a range that does not cause corona discharge, high resolution can be achieved. Potential distribution can be adjusted.

放電管GDTとアンテナA間の距離は測定感度に影響す
るのみで電位測定値には無関係であり、又、比較回路C
Oに加える基準電圧は、誤動作によって発光ダイオード
LEDが発光するのを防ぐ目的で加えるものであるから
、基準電圧の大きざを予想される被測定電位に応じて適
当に選んで差支えない。
The distance between the discharge tube GDT and the antenna A only affects the measurement sensitivity and is unrelated to the potential measurement value.
Since the reference voltage applied to O is applied for the purpose of preventing the light emitting diode LED from emitting light due to malfunction, the magnitude of the reference voltage may be appropriately selected depending on the expected potential to be measured.

尚、図には発光ダイオ−トムEDの発光によって放電を
生じたことを報知するように構成した場合を例示したが
、発光ダイオードの代りにブザー等を用い得ること勿論
で、放電の検出回路全体の構成も図示のものに限らず、
放電を検出し得る回路であれば任意適宜の回路を用いて
本発明を実施することが出来る。
Although the figure shows an example of a configuration in which the occurrence of a discharge is notified by light emission from the light emitting diode ED, it goes without saying that a buzzer or the like can be used instead of the light emitting diode, and the entire discharge detection circuit can be used. The configuration is not limited to that shown in the diagram,
The present invention can be implemented using any suitable circuit as long as it is capable of detecting discharge.

以上の説明から明らかなように、本発明装置は静電誘導
による帯電の可能な一対の電極間に小型ガス放電管を介
装し、電極の誘導電荷が一足量を超えた場合に生ずる放
電管の放電を検出して電極の置かれた個所における静電
気電位を測定するように構成したもので、放電管lこお
ける放電電極の形状、放電間隙長及び封入ガスの種類、
圧力等を適当に選ぶことによって、大気中において帯電
電極間に気中放電を生せしめるような場合に比し遥かに
低電位の測定が可能で、測定対象電位も空間電位に限る
ことなく、静電誘導現象によって電極に帯電せしめ得る
電位、例えば物体の電位等の>jl11足も可能で、何
れの場合も直流電位であるか交流電位であるか、或は電
位分布が均一であるか不均一であるか等に関係な(正確
な定量測定が可能なると共に、構造取扱いも簡単容易な
もので、実用上の効果甚だ大である。
As is clear from the above description, the device of the present invention has a small gas discharge tube interposed between a pair of electrodes that can be charged by electrostatic induction, and the discharge that occurs when the induced charge on the electrodes exceeds one foot. It is configured to detect discharge in the tube and measure the electrostatic potential at the location where the electrode is placed.
By appropriately selecting the pressure, etc., it is possible to measure a much lower potential than when an air discharge is caused between charged electrodes in the atmosphere, and the potential to be measured is not limited to the space potential; A potential that can charge an electrode by an electric induction phenomenon, such as the potential of an object, is also possible, and in either case, it is determined whether it is a DC potential or an AC potential, or whether the potential distribution is uniform or non-uniform. In addition to being able to perform accurate quantitative measurements, the structure is simple and easy to handle, and has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の一実施例を示す図で、El及びE2:電
極、GDT :放電管、S■:絶縁支持体、A:アンテ
ナ、RM;アンテナ整合抵抗、P工;極性反転回路、O
Rニオアゲート回路、CO:比較回路、TS二基準電圧
印加端子、FF:フリップフロップ回路、Rs:り七・
ントスイッチ、DR:駆動回路、LED:発光ダイオー
ドである。
The figure shows an embodiment of the present invention, in which El and E2: electrodes, GDT: discharge tube, S: insulating support, A: antenna, RM: antenna matching resistor, P: polarity inversion circuit, O
R Nior gate circuit, CO: Comparison circuit, TS2 reference voltage application terminal, FF: Flip-flop circuit, Rs: R7.
DR: drive circuit, LED: light emitting diode.

Claims (1)

【特許請求の範囲】[Claims] (1)誘導による帯電の可能な第1及び第2の電極と、
放電電極を前記第1及び第2の電極に各別に接続した小
型ガス放電管と、この小型ガス放電管の放電を検出する
回路とよ?成ることを特徴とする静電気電位測定装置。 (2ン誘導による帯電の可能な第1及び第2の電極の何
れか一方を接地した特許請求の範囲第1項記載の静電気
電位測定装置。
(1) first and second electrodes that can be charged by induction;
A small gas discharge tube in which discharge electrodes are connected to the first and second electrodes, respectively, and a circuit for detecting discharge of this small gas discharge tube. An electrostatic potential measuring device characterized by: (The electrostatic potential measuring device according to claim 1, wherein either one of the first and second electrodes capable of being charged by induction is grounded.
JP23216283A 1983-04-06 1983-12-08 Electrostatic potential measuring apparatus Pending JPS60123772A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23216283A JPS60123772A (en) 1983-12-08 1983-12-08 Electrostatic potential measuring apparatus
EP19840302260 EP0125006B1 (en) 1983-04-06 1984-04-03 Apparatus for measuring the electric potential of an electrostatic field
DE8484302260T DE3467416D1 (en) 1983-04-06 1984-04-03 Apparatus for measuring the electric potential of an electrostatic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23216283A JPS60123772A (en) 1983-12-08 1983-12-08 Electrostatic potential measuring apparatus

Publications (1)

Publication Number Publication Date
JPS60123772A true JPS60123772A (en) 1985-07-02

Family

ID=16934964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23216283A Pending JPS60123772A (en) 1983-04-06 1983-12-08 Electrostatic potential measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60123772A (en)

Similar Documents

Publication Publication Date Title
USRE32552E (en) Gaseous impurity detector employing corona discharge phenomenon
US3866114A (en) Electrostatic measurement system
JPS60123772A (en) Electrostatic potential measuring apparatus
US3872377A (en) Cold cathode ionization gauge
EP3225982A1 (en) Device for measuring ion concentration
JPS59187270A (en) Electrostatic potential measuring apparatus
US2542822A (en) X-ray thickness gauge
Thanh Characteristics of a corona system under negative direct and pulsed voltage
Petit‐Clerc et al. New feedback Kelvin probe
SU133123A1 (en) Method for detecting pores or small holes in films or thin coatings of dielectric material
SU1064485A1 (en) Device for determining electrostatic properties of dielectric materials
JPH055751A (en) Direct current high voltage measuring apparatus
JPS628896B2 (en)
US3449663A (en) Magnetic testing system current measuring device
EP0125006B1 (en) Apparatus for measuring the electric potential of an electrostatic field
Dunlap et al. Thermocouple gauge for vacuum measurement
SU483631A1 (en) Electrostatic field tension measuring device
RU2251099C1 (en) Aeroines concentration detector
SU375711A1 (en) ? 5СЬСи <OWNER ilATEHTiiu ^ TUU:
JPS54147085A (en) Measuring apparatus for degree of vacuum
SU1177778A1 (en) Method of determining coordinates of flaws in electric insulation materials
RU1775688C (en) Electric field intensity measuring device
JPH11297145A (en) Insulator dirt detecting device
RU2024875C1 (en) Gas flow velocity meter
SU578321A1 (en) Device for determining stability of hydrocarbon-based drilling muds